JP3555158B2 - Method for producing 3,4,5,6-tetrafluorophthalic anhydride - Google Patents

Method for producing 3,4,5,6-tetrafluorophthalic anhydride Download PDF

Info

Publication number
JP3555158B2
JP3555158B2 JP02552894A JP2552894A JP3555158B2 JP 3555158 B2 JP3555158 B2 JP 3555158B2 JP 02552894 A JP02552894 A JP 02552894A JP 2552894 A JP2552894 A JP 2552894A JP 3555158 B2 JP3555158 B2 JP 3555158B2
Authority
JP
Japan
Prior art keywords
isobenzofuranone
hexafluoro
tetrafluorophthaloyl
difluoride
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02552894A
Other languages
Japanese (ja)
Other versions
JPH07233161A (en
Inventor
隆司 関
耕治 杉本
清作 熊井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP02552894A priority Critical patent/JP3555158B2/en
Priority to EP95102026A priority patent/EP0669310B1/en
Priority to ES95102026T priority patent/ES2126798T3/en
Priority to EP98109043A priority patent/EP0877011A1/en
Priority to EP98109044A priority patent/EP0866050A1/en
Priority to DE69506749T priority patent/DE69506749T2/en
Priority to US08/391,060 priority patent/US5523476A/en
Priority to KR1019950003358A priority patent/KR100242373B1/en
Priority to CN95100792A priority patent/CN1061029C/en
Publication of JPH07233161A publication Critical patent/JPH07233161A/en
Priority to US08/601,157 priority patent/US5648504A/en
Priority to KR1019990031285A priority patent/KR100264694B1/en
Application granted granted Critical
Publication of JP3555158B2 publication Critical patent/JP3555158B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Furan Compounds (AREA)

Description

【0001】
【産業上の利用分野】
本発明は医薬品の中間体として有用な、テトラフルオロ無水フタル酸の新規製造方法に関する。
【0002】
【従来の技術】
テトラフルオロ無水フタル酸を得る方法には、テトラフルオロフタル酸を出発原料とし、酸触媒存在下に脱水する方法(工業化学雑誌、73巻、447、1970年)、キシレン中で共沸脱水する方法(特開平2−306945)がある。また、テトラフルオロフタルイミドを出発原料とし、濃硫酸、酢酸、および水の共存下に加水分解、さらに脱水を行う方法がある(特公平5−57255)。
【0003】
【発明が解決しようとする課題】
テトラフルオロフタル酸を出発原料とする方法では、出発原料自体の調製法が問題となる。該調法としては、フタロニトリルを塩素化してテトラクロロフタロニトリルに変換し、その後、フッ素化しさらに加水分解する方法(特開昭61−85349等)、テトラクロロ無水フタル酸を塩素化して3,3,4,5,6,7−ヘキサクロロ−1−[3H]−イソベンゾフラノン(ペルクロロフタリド)とし、つぎにフッ素化して3,4,5,6−テトラフルオロフタロイルフルオリドとし、さらに加水分解する方法(特開昭62−61948)、テトラクロロ無水フタル酸をアミン類と反応させテトラクロロフタルイミド類とし、さらにフッ素化、加水分解する方法(特開昭63−258442、USP5047553)が知られている。
【0004】
しかし、いずれの方法においても、精製工程で、大量の極性溶媒を用い、かつ、水から抽出を行っているため、水の除去に手間がかかる問題点がある。また、純度が低いため、高純度の目的物を得るためには、再結晶等の精製工程を必要としている。したがって、テトラフルオロフタル酸を原料とする方法は工業的に不利である。
【0005】
テトラフルオロフタルイミドを出発原料とする方法は、硫酸による加水分解を行っており、生成する硫酸アミンの廃液処理の問題がある。また、収率も60%程度と低い問題点がある。
【0006】
【課題を解決するための手段】
本発明は、上記の従来の技術が有する欠点を解消し、工業的に有利なテトラフルオロ無水フタル酸の製造方法およびその中間体を提供する。
【0007】
すなわち、本発明は、テトラクロロ無水フタル酸を塩素化反応せしめて3,3,4,5,6,7−ヘキサクロロ−1−[3H]−イソベンゾフラノンとし、該3,3,4,5,6,7−ヘキサクロロ−1−[3H]−イソベンゾフラノンをフッ素化反応せしめて3,4,5,6−テトラフルオロフタロイルジフルオリドおよび/または3,3,4,5,6,7−ヘキサフルオロ−1−[3H]−イソベンゾフラノンとし、3,4,5,6−テトラフルオロフタロイルジフルオリドおよび/または3,3,4,5,6,7−ヘキサフルオロ−1−[3H]−イソベンゾフラノンを無機塩基または有機酸と反応せしめることを特徴とするテトラフルオロ無水フタル酸の製造方法を提供する。
【0008】
テトラクロロ無水フタル酸は工業的に入手容易な化合物である。テトラクロロ無水フタル酸を塩素化して3,3,4,5,6,7−ヘキサクロロ−1−[3H]−イソベンゾフラノンとする方法は、通常の塩素化の方法および条件が適用できる。例えば、通常の塩素化剤と反応することにより実施できる。塩素化剤としては、五塩化リン、オキシ塩化リン、塩化チオニル等が好ましく、特に、五塩化リンが好ましい。塩素化剤の使用量はテトラクロロ無水フタル酸に対して、0.01〜10倍モル量程度、好ましくは0.5〜2倍モル量がよい。
【0009】
塩素化反応は無溶媒または溶媒の存在下のいずれであっても実施できる。溶媒としては、反応物を溶かすものであれば特に限定されないが、非プロトン性極性溶媒または非プロトン性非極性溶媒が好ましい。非プロトン性極性溶媒としては、スルホラン、N,N−ジメチルホルムアミド、1,3−ジメチルイミダゾリジノン等、非プロトン性非極性溶媒としては、トルエン、キシレン、トリクロロベンゼン、ジクロロベンゼン、モノクロロベンゼン等が好ましい。溶媒の量は、テトラクロロ無水フタル酸の1重量部に対して0.01〜100重量部程度、好ましくは、0.1〜5重量部がよい。
【0010】
塩素化反応の反応温度は塩素化剤の種類や溶媒の有無、溶媒の種類、反応物の量等によって適宜変更可能であり、通常の場合、20〜300℃程度、好ましくは、100〜200℃がよい。
【0011】
上記の塩素化反応で得られた3,3,4,5,6,7−ヘキサクロロ−1−[3H]−イソベンゾフラノンは、フッ素化反応せしめることにより、3,4,5,6−テトラフルオロフタロイルジフルオリドおよび/または3,3,4,5,6,7−ヘキサフルオロ−1−[3H]−イソベンゾフラノンとなる。
【0012】
フッ素化反応は、フッ素化剤と反応させることにより実施できる。フッ素化剤としては、アルカリ金属フッ化物が好ましく、特に、NaF、KF、RbF、CsF等が好ましい。これらのうち、KFが好ましく、特にスプレー乾燥したフッ化カリウムが好ましい。フッ素化剤の量は3,3,4,5,6,7−ヘキサクロロ−1−[3H]−イソベンゾフラノンに対して0.1〜20倍モル程度、好ましくは2〜12倍モルがよい。
【0013】
上記のフッ素化反応は、無溶媒または溶媒の存在下のいずれであっても実施できるが、溶媒の存在下で実施するのが好ましい。溶媒としては、反応物を溶かすものであれば特に限定されないが、非プロトン性極性溶媒または非プロトン性非極性溶媒が好ましい。非プロトン性極性溶媒としてはN,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、ジメチルスルホン、スルホラン、ヘキサメチルホスホルトリアミド、N−メチル−2−ピロリドン、1,3−ジメチルイミダゾリジノン、アセトニトリル、ベンゾニトリル、ジオキサン、ジグライム、テトラグライム等が好ましく、特にスルホラン、N,N−ジメチルホルムアミドが好ましい。非プロトン性非極性溶媒としては、トルエン、キシレン、トリクロロベンゼン、ジクロロベンゼン、モノクロロベンゼン等が好ましい。溶媒の量は3,3,4,5,6,7−ヘキサクロロ−1−[3H]−イソベンゾフラノンの1重量部に対して0.5〜10重量部、好ましくは1〜5重量部程度がよい。
【0014】
フッ素化反応の際に、反応促進剤として相間移動触媒を含ませてもよい。相間移動触媒としては、テトラメチルアンモニウムクロリド、テトラブチルアンモニウムブロミド等の四級アンモニウム塩、N−ネオペンチル−4−(N’,N’−ジメチルアミノ)ピリジニウムクロリド、N−(2−エチルヘキシル)−4−(N’,N’−ジメチルアミノ)ピリジニウムクロリド等のピリジニウム塩、またはテトラブチルホスホニウムブロミド、テトラフェニルホスホニウムブロミド等の四級ホスホニウム塩等が挙げられる。これらのうち、テトラブチルホスホニウムブロミド、テトラフェニルホスホニウムブロミドが好ましい。相間移動触媒の量としては、3,3,4,5,6,7−ヘキサクロロ−1−[3H]−イソベンゾフラノンの100重量部に対して1〜50重量部程度、好ましくは5〜20重量部がよい。
【0015】
上記フッ素化反応の反応温度は50〜250℃、好ましくは100〜230℃がよい。
【0016】
上記のフッ素化反応により3,4,5,6−テトラフルオロフタロイルジフルオリドと3,3,4,5,6,7−ヘキサフルオロ−1−[3H]−イソベンゾフラノンとが、通常の場合混合物として得られるが、必要に応じて分離操作を行い、各々を単独で得ることもできる。
【0017】
上記の方法で得られた3,4,5,6−テトラフルオロフタロイルジフルオリドおよび/または3,3,4,5,6,7−ヘキサフルオロ−1−[3H]−イソベンゾフラノンは無機塩基または有機酸と反応せしめることにより、テトラフルオロ無水フタル酸が生成する。
【0018】
3,4,5,6−テトラフルオロフタロイルジフルオリドと3,3,4,5,6,7−ヘキサフルオロ−1−[3H]−イソベンゾフラノンとの割合は特に限定されず、いずれの割合であってもよい。また、各々を単独で用いることもできる。
【0019】
無機塩基としてはアルカリ金属塩が好ましい。アルカリ金属塩としては、炭酸水素ナトリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸カリウム、水酸化ナトリウム、水酸化カリウム、炭酸カルシウム等が好ましく、特に炭酸ナトリウム、炭酸カリウム等が好ましい。無機塩基の量は、3,4,5,6−テトラフルオロフタロイルジフルオリドと3,3,4,5,6,7−ヘキサフルオロ−1−[3H]−イソベンゾフラノンの合計量の1重量部に対して0.01〜50重量部、好ましくは0.5〜1.5重量部程度がよい。
【0020】
有機酸としては有機カルボン酸が好ましく、脂肪族系カルボン酸または芳香族系カルボン酸のいずれであってもよい。脂肪族系カルボン酸としては、ギ酸、酢酸、プロピオン酸、酸、トリフルオロ酢酸等が好ましく、芳香族系カルボン酸としては、安息香酸、パラクロロ安息香酸、2,3−ジクロロ安息香酸、パラメチル安息香酸等が好ましい。これらのうち、脂肪族系カルボン酸が好ましく、特に酢酸が好ましい。有機カルボン酸の量は、3,4,5,6−テトラフルオロフタロイルジフルオリドと3,3,4,5,6,7−ヘキサフルオロ−1−[3H]−イソベンゾフラノンの合計量の1モルに対して0.01〜1000モル、好ましくは0.5〜20モルがよい。
【0021】
上記の3,4,5,6−テトラフルオロフタロイルジフルオリドおよび/または3,3,4,5,6,7−ヘキサフルオロ−1−[3H]−イソベンゾフラノンと無機塩基または有機酸との反応は、無溶媒または溶媒の存在下で加熱することにより実施できる。
【0022】
溶媒としては、非プロトン性溶媒が好ましい。非プロトン性溶媒としては、非プロトン非極性溶媒または非プロトン性極性溶媒のいずれであってもよい。非プロトン極性溶媒としては、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、ジメチルスルホン、スルホラン、ヘキサメチルホスホルトリアミド、N−メチル−2−ピロリドン、1,3−ジメチルイミダゾリジノン、アセトニトリル、ベンゾニトリル、ジオキサン、ジグライム、テトラグライム等が好ましく、非プロトン非極性溶媒としては、トルエン、キシレン、ナフタレン、クロロベンゼン、ジクロロベンゼン等が好ましい。
【0023】
無機塩基と反応せしめる場合の溶媒の量は、3,4,5,6−テトラフルオロフタロイルジフルオリドと3,3,4,5,6,7−ヘキサフルオロ−1−[3H]−イソベンゾフラノンの合計量の1重量部に対して0.01〜10重量部、好ましくは0.5〜5重量部程度がよい。また、有機酸と反応せしめる場合の溶媒の量は、3,4,5,6−テトラフルオロフタロイルジフルオリドと3,3,4,5,6,7−ヘキサフルオロ−1−[3H]−イソベンゾフラノンの合計量の1重量部に対して0.01〜100重量部、好ましくは0.5〜20重量部程度がよい。
【0024】
反応温度は、無機塩基または有機カルボン酸と反応させる場合のいずれも、30〜400℃程度であるが、これは無機塩基または有機酸の種類や量、溶媒の有無や種類、反応物の量等によって適宜変更可能である。
【0025】
【実施例】
以下、本発明の実施例について、さらに具体的に説明する。
【0026】
[実施例1]
還流コンデンサーおよび撹拌機を備えた、2リットルガラス製反応器にテトラクロロ無水フタル酸500g(1.748モル)、五塩化リン441g(2.10モル)、オキシ塩化リン100gを仕込み、混合物を撹拌することなく135℃に加熱した。その後140±5℃に保ちながら18時間撹拌した。つぎに、オキシ塩化リンを蒸留により除去した。その後、減圧下、オキシ塩化リン、五塩化リンを留去した。釜温を120℃に低下させ、トルエン200g、ヘキサン2リットルを徐々に加え、一晩放置した。結晶物を濾過し減圧乾燥して3,3,4,5,6,7−ヘキサクロロ−1−[3H]−イソベンゾフラノン430.0gを得た。収率72.1%であった。
【0027】
[実施例2]
還流コンデンサーおよび撹拌機を備えた100ccガラス製反応器に3,3,4,5,6,7−ヘキサクロロ−1−[3H]−イソベンゾフラノン80g(0.235モル)、スプレー乾燥フッ化カリウム109.0g(1.88モル)、スルホラン320gを仕込み、激しく撹拌しながら、130℃で5時間反応させた。その後、反応液から蒸留分離を行い、3,4,5,6−テトラフルオロフタロイルジフルオリドと3,3,4,5,6,7−ヘキサフルオロ−1−[3H]−イソベンゾフラノンの混合物(1:1)42.8gを得た。収率75.2%であった。該混合物から3,3,4,5,6,7−ヘキサフルオロ−1−[3H]−イソベンゾフラノンを蒸留分離して19F−NMRスペクトルおよび沸点を測定した。
【0028】
19F−NMR(CDCOCD、CFCl)δ:−76.4(s,2F),−136.0(m,1F),−140.2(m,1F),−140.7(m,1F),−146.1(m,1F)。
bp.47℃/7mmHg。
【0029】
[実施例3]
還流コンデンサーおよび撹拌機を備えた500ccガラス製反応器に、3,4,5,6−テトラフルオロフタロイルジフルオリドと3,3,4,5,6,7−ヘキサフルオロ−1−[3H]−イソベンゾフラノンの混合物(1:1)100g(0.413モル)、炭酸ナトリウム43.8g(0.413モル)およびキシレン200gを仕込み、激しく撹拌しながら130℃で3時間反応させた。その後、無機物を濾過により除き、蒸留分離を行い、テトラフルオロ無水フタル酸83.1gを得た。収率91.5%であった。
【0030】
[実施例4]
還流コンデンサーおよび撹拌機を備えた500ccガラス製反応器に、3,4,5,6−テトラフルオロフタロイルジフルオリドと3,3,4,5,6,7−ヘキサフルオロ−1−[3H]−イソベンゾフラノンの混合物(1:1)100g(0.413モル)、炭酸ナトリウム43.8g(0.413モル)を仕込み、激しく撹拌しながら130℃で5時間反応させた。その後蒸留分離を行い、テトラフルオロ無水フタル酸75.6gを得た。収率83.2%であった。
【0031】
[実施例5]
還流コンデンサーおよび撹拌機を備えた100ccガラス製反応器に、3,4,5,6−テトラフルオロフタロイルジフルオリドと3,3,4,5,6,7−ヘキサフルオロ−1−[3H]−イソベンゾフラノンの混合物(1:1)50g(0.207モル)、炭酸水素ナトリウム17.4g(0.207モル)を仕込み、激しく撹拌しながら130℃で5時間反応させた。その後、蒸留分離を行い、テトラフルオロ無水フタル酸33.0gを得た。収率72.5%であった。
【0032】
[実施例6]
還流コンデンサーおよび撹拌機を備えた500ccガラス製反応器に、3,4,5,6−テトラフルオロフタロイルジフルオリド100g(0.413モル)、炭酸ナトリウム43.8g(0.413モル)およびキシレン200gを仕込み、激しく撹拌しながら130℃で1.5時間反応させた。その後、無機物を濾過により除き、蒸留分離を行い、テトラフルオロ無水フタル酸84.9gを得た。収率93.4%であった。
【0033】
[実施例7]
還流コンデンサーおよび撹拌機を備えた500ccガラス製反応器に、3,4,5,6−テトラフルオロフタロイルジフルオリドと3,3,4,5,6,7−ヘキサフルオロ−1−[3H]−イソベンゾフラノンの混合物(1:1)100g(0.413モル)、炭酸ナトリウム43.8g(0.413モル)を仕込み、激しく撹拌しながら130℃で8時間反応させた。その後蒸留分離を行い、テトラフルオロ無水フタル酸79.5gを得た。収率87.5%であった。
【0034】
[実施例8]
還流コンデンサーおよび撹拌機を備えた200ccガラス製反応器に、3,4,5,6−テトラフルオロフタロイルジフルオリドと3,3,4,5,6,7−ヘキサフルオロ−1−[3H]−イソベンゾフラノンの混合物(1:1)50g(0.207モル)、酢酸50ccを仕込み、激しく撹拌しながら16時間還流させた。その後、蒸留分離を行いテトラフルオロ無水フタル酸29.3gを得た。収率64.3%であった。
【0035】
[実施例9]
還流コンデンサーおよび撹拌機を備えた200ccガラス製反応器に、3,4,5,6−テトラフルオロフタロイルジフルオリドと3,3,4,5,6,7−ヘキサフルオロ−1−[3H]−イソベンゾフラノンの混合物(1:1)50g(0.207モル)、トリフルオロ酢酸50ccを仕込み、激しく撹拌しながら72時間還流させた。その後、蒸留分離を行いテトラフルオロ無水フタル酸29.6gを得た。収率65%であった。
【0036】
[実施例10]
還流コンデンサーおよび撹拌機を備えた200ccガラス製反応器に、3,4,5,6−テトラフルオロフタロイルジフルオリドと3,3,4,5,6,7−ヘキサフルオロ−1−[3H]−イソベンゾフラノンの混合物(1:1)50g(0.207モル)、2,4−ジクロロ安息香酸79.0g(0.414モル)を仕込み、激しく撹拌しながら150℃で6時間反応させた。その後、蒸留分離を行いテトラフルオロ無水フタル酸28.5gを得た。収率62.5%であった。
【0037】
[実施例11]
還流コンデンサーおよび撹拌機を備えた300ccガラス製反応器に、3,4,5,6−テトラフルオロフタロイルジフルオリドと3,3,4,5,6,7−ヘキサフルオロ−1−[3H]−イソベンゾフラノンの混合物(1:1)50g(0.207モル)、2,4−ジクロロ安息香酸59.3g(0.31モル)および、キシレン100ccを仕込み、激しく撹拌しながら150℃で12時間反応させた。その後、蒸留分離を行いテトラフルオロ無水フタル酸32.8gを得た。収率72.0%であった。
【0038】
[実施例12]
還流コンデンサーおよび撹拌機を備えた300ccガラス製反応器に、3,4,5,6−テトラフルオロフタロイルジフルオリド100g(0,413モル)、酢酸100ccを仕込み、激しく撹拌しながら130℃で1.5時間反応させた。その後、無機物を濾過により除き、蒸留分離を行い、テトラフルオロ無水フタル酸66.8gを得た。収率73.5%であった。
【0039】
[実施例13]
還流コンデンサーおよび撹拌機を備えた300ccガラス製反応器に、3,3,4,5,6,7−ヘキサフルオロ−1−[3H]−イソベンゾフラノン100g(0.413モル)および酢酸100cc仕込み、還流下、48時間反応させた。その後、蒸留分離を行い、テトラフルオロ無水フタル酸79.5gを得た。収率87.5%であった。
【0040】
【発明の効果】
本発明方法は、入手容易な化合物を出発原料として効率的にテトラフルオロ無水フタル酸を得ることができる。反応はいずれも容易な方法であり、かつ、安全であり、しかも高収率である。したがって、本発明方法は、非常に工業的に有利な方法である。
[0001]
[Industrial applications]
The present invention relates to a novel method for producing tetrafluorophthalic anhydride, which is useful as a pharmaceutical intermediate.
[0002]
[Prior art]
The method for obtaining tetrafluoro anhydride, tetrafluorophthalic acid as a starting material, a method of dewatering in the presence of an acid catalyst (Industrial Chemistry Journal, Vol. 73, 447, 1970), to azeotropic dehydration in xylene There is a method (JP-A-2-306945). Further, the tetrafluorophthalimido as a starting material, sulfuric acid, acetic acid, and the presence in the hydrolysis of water, there is a further method of performing dehydration (Kokoku 5-57255).
[0003]
[Problems to be solved by the invention]
In the method using tetrafluorophthalic acid as a starting material, a method of preparing the starting material itself becomes a problem. The said preparation method, converted to tetrachlorophthalic phthalonitrile by chlorination of phthalonitrile, then further hydrolyzing fluorinated (JP 61-85349, etc.), and chlorinating tetrachlorophthalic anhydride 3 , 3,4,5,6,7-hexachloro-1- [3H] -isobenzofuranone (perchlorophthalide) and then fluorinated to 3,4,5,6-tetrafluorophthaloyl fluoride A method of further hydrolyzing (JP-A-62-61948), a method of reacting tetrachlorophthalic anhydride with an amine to form tetrachlorophthalimides, and further fluorinating and hydrolyzing (JP-A-63-258442, US Pat. No. 5,047,553). It has been known.
[0004]
However, in any of the methods, since a large amount of a polar solvent is used in the purification step and extraction is performed from water, there is a problem that it takes time to remove water. Further, since the purity is low, a purification step such as recrystallization is required to obtain a high-purity target product. Therefore, the method using tetrafluorophthalic acid as a raw material is industrially disadvantageous.
[0005]
In the method using tetrafluorophthalimide as a starting material, hydrolysis is performed using sulfuric acid, and there is a problem of treating the generated amine sulfate as a waste liquid. Further, there is a problem that the yield is as low as about 60%.
[0006]
[Means for Solving the Problems]
The present invention solves the above-mentioned disadvantages of the prior art, and provides an industrially advantageous method for producing tetrafluorophthalic anhydride and an intermediate thereof.
[0007]
That is, the present invention provides a chlorination reaction of tetrachlorophthalic anhydride to obtain 3,3,4,5,6,7-hexachloro-1- [3H] -isobenzofuranone. , 6,7-Hexachloro-1- [3H] -isobenzofuranone is fluorinated to give 3,4,5,6-tetrafluorophthaloyldifluoride and / or 3,3,4,5,6,7 -Hexafluoro-1- [3H] -isobenzofuranone, wherein the 3,4,5,6-tetrafluorophthaloyl difluoride and / or 3,3,4,5,6,7-hexafluoro-1- A process for producing tetrafluorophthalic anhydride, characterized by reacting [3H] -isobenzofuranone with an inorganic base or an organic acid.
[0008]
Tetrachlorophthalic anhydride is a commercially available compound. For the method of chlorinating tetrachlorophthalic anhydride to 3,3,4,5,6,7-hexachloro-1- [3H] -isobenzofuranone, ordinary chlorination methods and conditions can be applied. For example, it can be carried out by reacting with a usual chlorinating agent. As the chlorinating agent, phosphorus pentachloride, phosphorus oxychloride, thionyl chloride and the like are preferable, and phosphorus pentachloride is particularly preferable. The amount of the chlorinating agent to be used is about 0.01 to 10 times mol, preferably 0.5 to 2 times mol, based on tetrachlorophthalic anhydride.
[0009]
The chlorination reaction is Mu溶Nakadachima others be practiced either in the presence of a solvent. The solvent is not particularly limited as long as it can dissolve the reactants, but is preferably an aprotic polar solvent or an aprotic nonpolar solvent. Examples of the aprotic polar solvent, sulfolane, N, N- dimethylformamide, 1,3-dimethylimidazolidinone and the like, aprotic non-polar solvent, toluene, xylene, trichlorobenzene, dichlorobenzene, mono chlorobenzene Is preferred. The amount of the solvent is about 0.01 to 100 parts by weight, preferably 0.1 to 5 parts by weight, based on 1 part by weight of tetrachlorophthalic anhydride.
[0010]
The reaction temperature of the chlorination reaction is can be appropriately changed depending on the amount or the like chlorinating agent type and the presence or absence of a solvent, the kind of solvent, reactants, usually, 2 0 to 300 ° C. approximately, preferably, 100 to 200 ° C is good.
[0011]
3,3,4,5,6,7-Hexachloro-1- [3H] -isobenzofuranone obtained by the above chlorination reaction is subjected to fluorination reaction to give 3,4,5,6-tetrahydrofuran. It becomes fluorophthaloyl difluoride and / or 3,3,4,5,6,7-hexafluoro-1- [3H] -isobenzofuranone.
[0012]
The fluorination reaction can be performed by reacting with a fluorinating agent. As the fluorinating agent, an alkali metal fluoride is preferable, and particularly, NaF, KF, RbF, CsF and the like are preferable. Of these, KF is preferred, and spray-dried potassium fluoride is particularly preferred. The amount of the fluorinating agent is about 0.1 to 20 times mol, preferably 2 to 12 times mol based on 3,3,4,5,6,7-hexachloro-1- [3H] -isobenzofuranone. .
[0013]
The fluorination reaction of the above is or solventless be practiced either in the presence of a solvent, preferably carried out in the presence of a solvent. The solvent is not particularly limited as long as it can dissolve the reactants, but is preferably an aprotic polar solvent or an aprotic nonpolar solvent. Examples of aprotic polar solvents include N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, dimethylsulfone, sulfolane, hexamethylphosphortriamide, N-methyl-2-pyrrolidone, and 1,3-dimethylimidazolide. Preferred are nonone, acetonitrile, benzonitrile, dioxane, diglyme, tetraglyme and the like, and particularly preferred is sulfolane and N, N-dimethylformamide. Examples of the aprotic non-polar solvent, toluene, xylene, trichlorobenzene, dichlorobenzene, mono chlorobenzene and the like are preferable. The amount of the solvent is 0.5 to 10 parts by weight, preferably about 1 to 5 parts by weight, based on 1 part by weight of 3,3,4,5,6,7-hexachloro-1- [3H] -isobenzofuranone. Is good.
[0014]
During the fluorination reaction, a phase transfer catalyst may be included as a reaction accelerator. As the phase transfer catalyst, tetramethylammonium chloride, quaternary ammonium salts such as tetrabutylammonium bromide, N- neopentyl -4- (N ', N'- dimethylamino) pin lysine chloride, N- (2-ethyl Ruhe hexyl) -4- (N ', N'- dimethylamino) pyridinium salts such as pin lysine chloride or tetrabutylphosphonium bromide, quaternary phosphonium salts such as tetraphenylphosphonium bromide and the like. Of these, tetrabutylphosphonium bromide and tetraphenylphosphonium bromide are preferred. The amount of the phase transfer catalyst is about 1 to 50 parts by weight, preferably 5 to 20 parts by weight, per 100 parts by weight of 3,3,4,5,6,7-hexachloro-1- [3H] -isobenzofuranone. Parts by weight are good.
[0015]
The reaction temperature for the above fluorination reaction 5 0 to 250 ° C., preferably from 10 0 to 230 ° C..
[0016]
By the above fluorination reaction , 3,4,5,6-tetrafluorophthaloyldifluoride and 3,3,4,5,6,7-hexafluoro-1- [3H] -isobenzofuranone are usually In the case of the above , it is obtained as a mixture, but if necessary, a separation operation may be performed to obtain each of them alone.
[0017]
3,4,5,6-tetrafluorophthaloyl difluoride and / or 3,3,4,5,6,7-hexafluoro-1- [3H] -isobenzofuranone obtained by the above method is an inorganic By reacting with a base or an organic acid, tetrafluorophthalic anhydride is produced.
[0018]
The ratio between 3,4,5,6-tetrafluorophthaloyl difluoride and 3,3,4,5,6,7-hexafluoro-1- [3H] -isobenzofuranone is not particularly limited, and It may be a ratio. Moreover, each can also be used independently.
[0019]
As the inorganic base, an alkali metal salt is preferable. As the alkali metal salt, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium carbonate, potassium carbonate, sodium hydroxide, potassium hydroxide, calcium carbonate, and the like are preferable, and sodium carbonate, potassium carbonate, and the like are particularly preferable. The amount of the inorganic base is one of the total amount of 3,4,5,6-tetrafluorophthaloyl difluoride and 3,3,4,5,6,7-hexafluoro-1- [3H] -isobenzofuranone. The amount is preferably 0.01 to 50 parts by weight, more preferably about 0.5 to 1.5 parts by weight based on parts by weight.
[0020]
Preferably organic carboxylic acids as the organic acids may be any of aliphatic carboxylic acids or aromatic carboxylic acids. As the aliphatic carboxylic acid, formic acid, acetic acid, propionic acid, butyric acid, preferably trifluoroacetic acid and the like, as the aromatic carboxylic acid, benzoic acid, para chloro benzoic acid, 2,3-dichlorobenzoic acid, para-methyl benzoic Acids and the like are preferred. Of these, aliphatic carboxylic acids are preferred, and acetic acid is particularly preferred. The amount of the organic carboxylic acid is the sum of 3,4,5,6-tetrafluorophthaloyl difluoride and 3,3,4,5,6,7-hexafluoro-1- [3H] -isobenzofuranone. The amount is preferably 0.01 to 1000 mol, preferably 0.5 to 20 mol, per 1 mol.
[0021]
3,4,5,6-tetrafluorophthaloyl difluoride and / or 3,3,4,5,6,7-hexafluoro-1- [3H] -isobenzofuranone and an inorganic base or an organic acid Can be carried out by heating without a solvent or in the presence of a solvent.
[0022]
As the solvent, an aprotic solvent is preferable. Examples of the aprotic solvent, or an aprotic non-polar solvent may be either an aprotic polar solvent. Examples of aprotic polar solvents include N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, dimethylsulfone, sulfolane, hexamethylphosphortriamide, N-methyl-2-pyrrolidone, 1,3-dimethylimidazo Rijinon, acetonitrile, benzonitrile, dioxane, diglyme, tetraglyme and the like are preferable, as the aprotic polar solvent, toluene, xylene, naphthalene, chlorobenzene, dichlorobenzene and the like are preferable.
[0023]
When reacting with an inorganic base, the amount of the solvent is 3,4,5,6-tetrafluorophthaloyl difluoride and 3,3,4,5,6,7-hexafluoro-1- [3H] -isobenzo. 0.01 to 10 parts by weight, preferably about 0.5 to 5 parts by weight, per part by weight of the total amount of furanone. The amount of the solvent used when reacting with an organic acid is 3,4,5,6-tetrafluorophthaloyldifluoride and 3,3,4,5,6,7-hexafluoro-1- [3H]- The amount is preferably 0.01 to 100 parts by weight, and more preferably about 0.5 to 20 parts by weight, based on 1 part by weight of the total amount of isobenzofuranone.
[0024]
The reaction temperature is about 30 to 400 ° C. in the case of reacting with an inorganic base or an organic carboxylic acid. Can be changed as appropriate.
[0025]
【Example】
Hereinafter, examples of the present invention will be described more specifically.
[0026]
[Example 1]
A 2-liter glass reactor equipped with a reflux condenser and a stirrer was charged with 500 g (1.748 mol) of tetrachlorophthalic anhydride, 441 g (2.10 mol) of phosphorus pentachloride, and 100 g of phosphorus oxychloride, and the mixture was stirred. Heated to 135 ° C. without aging. Thereafter, the mixture was stirred for 18 hours while maintaining the temperature at 140 ± 5 ° C. Next, phosphorus oxychloride was removed by distillation. Then, under reduced pressure, phosphorus oxychloride was distilled off phosphorus pentachloride. The kettle temperature was lowered to 120 ° C., 200 g of toluene and 2 liters of hexane were gradually added, and the mixture was left overnight. The crystal was filtered and dried under reduced pressure to obtain 430.0 g of 3,3,4,5,6,7-hexachloro-1- [3H] -isobenzofuranone. It was yield 7 2.1%.
[0027]
[Example 2]
80 g (0.235 mol) of 3,3,4,5,6,7-hexachloro-1- [3H] -isobenzofuranone in a 100 cc glass reactor equipped with a reflux condenser and a stirrer, spray-dried potassium fluoride 109.0 g (1.88 mol) and 320 g of sulfolane were charged and reacted at 130 ° C. for 5 hours with vigorous stirring. Thereafter, the reaction solution was subjected to distillation separation to obtain 3,4,5,6-tetrafluorophthaloyl difluoride and 3,3,4,5,6,7-hexafluoro-1- [3H] -isobenzofuranone. 42.8 g of a mixture (1: 1) were obtained. The yield was 75.2%. From the mixture, 3,3,4,5,6,7-hexafluoro-1- [3H] -isobenzofuranone was separated by distillation, and the 19 F-NMR spectrum and boiling point were measured.
[0028]
19 F-NMR (CD 3 COCD 3 , CFCl 3 ) δ: −76.4 (s, 2F), −136.0 (m, 1F), −140.2 (m, 1F), −140.7 ( m, 1F), -146.1 (m, 1F).
bp. 47 ° C / 7 mmHg.
[0029]
[Example 3]
In a 500 cc glass reactor equipped with a reflux condenser and a stirrer, 3,4,5,6-tetrafluorophthaloyl difluoride and 3,3,4,5,6,7-hexafluoro-1- [3H] were added. 100 g (0.413 mol) of a mixture of isobenzofuranone (1: 1), 43.8 g (0.413 mol) of sodium carbonate and 200 g of xylene were charged and reacted at 130 ° C. for 3 hours with vigorous stirring. Thereafter, the inorganic substance was removed by filtration, and distillation separation was performed to obtain 83.1 g of tetrafluorophthalic anhydride. The yield was 91.5%.
[0030]
[Example 4]
In a 500 cc glass reactor equipped with a reflux condenser and a stirrer, 3,4,5,6-tetrafluorophthaloyl difluoride and 3,3,4,5,6,7-hexafluoro-1- [3H] were added. 100 g (0.413 mol) of a mixture of isobenzofuranone (1: 1) and 43.8 g (0.413 mol) of sodium carbonate were charged and reacted at 130 ° C. for 5 hours with vigorous stirring. Thereafter, distillation separation was performed to obtain 75.6 g of tetrafluorophthalic anhydride. The yield was 83.2%.
[0031]
[Example 5]
In a 100 cc glass reactor equipped with a reflux condenser and a stirrer, 3,4,5,6-tetrafluorophthaloyl difluoride and 3,3,4,5,6,7-hexafluoro-1- [3H] were added. 50 g (0.207 mol) of a mixture of isobenzofuranone (1: 1) and 17.4 g (0.207 mol) of sodium hydrogencarbonate were charged and reacted at 130 ° C. for 5 hours with vigorous stirring. Thereafter, distillation separation was performed to obtain 33.0 g of tetrafluorophthalic anhydride. The yield was 72.5%.
[0032]
[Example 6]
In a 500 cc glass reactor equipped with a reflux condenser and a stirrer, 100 g (0.413 mol) of 3,4,5,6-tetrafluorophthaloyl difluoride, 43.8 g (0.413 mol) of sodium carbonate and xylene were added. 200 g was charged and reacted at 130 ° C. for 1.5 hours with vigorous stirring. Thereafter, the inorganic substance was removed by filtration, and the mixture was separated by distillation to obtain 84.9 g of tetrafluorophthalic anhydride. The yield was 93.4%.
[0033]
[Example 7]
In a 500 cc glass reactor equipped with a reflux condenser and a stirrer, 3,4,5,6-tetrafluorophthaloyl difluoride and 3,3,4,5,6,7-hexafluoro-1- [3H] 100 g (0.413 mol) of a mixture of isobenzofuranone (1: 1) and 43.8 g (0.413 mol) of sodium carbonate were charged and reacted at 130 ° C. for 8 hours with vigorous stirring. Thereafter, distillation separation was performed to obtain 79.5 g of tetrafluorophthalic anhydride. The yield was 87.5%.
[0034]
Example 8
In a 200 cc glass reactor equipped with a reflux condenser and a stirrer, 3,4,5,6-tetrafluorophthaloyl difluoride and 3,3,4,5,6,7-hexafluoro-1- [3H] were added. 50 g (0.207 mol) of a mixture of isobenzofuranone (1: 1) and 50 cc of acetic acid were charged and refluxed for 16 hours with vigorous stirring. Thereafter, distillation to yield the tetrafluoro anhydride 29.3 g. The yield was 64.3%.
[0035]
[Example 9]
In a 200 cc glass reactor equipped with a reflux condenser and a stirrer, 3,4,5,6-tetrafluorophthaloyl difluoride and 3,3,4,5,6,7-hexafluoro-1- [3H] were added. 50 g (0.207 mol) of a mixture of isobenzofuranone (1: 1) and 50 cc of trifluoroacetic acid were charged and refluxed for 72 hours with vigorous stirring. Thereafter, distillation to yield the tetrafluoro anhydride 29.6 g. The yield was 65%.
[0036]
[Example 10]
In a 200 cc glass reactor equipped with a reflux condenser and a stirrer, 3,4,5,6-tetrafluorophthaloyl difluoride and 3,3,4,5,6,7-hexafluoro-1- [3H] were added. 50 g (0.207 mol) of a mixture of isobenzofuranone (1: 1) and 79.0 g (0.414 mol) of 2,4-dichlorobenzoic acid were charged and reacted at 150 ° C. for 6 hours with vigorous stirring. . Thereafter, distillation to yield the tetrafluoro anhydride 28.5 g. The yield was 62.5%.
[0037]
[Example 11]
In a 300 cc glass reactor equipped with a reflux condenser and a stirrer, 3,4,5,6-tetrafluorophthaloyl difluoride and 3,3,4,5,6,7-hexafluoro-1- [3H] 50 g (0.207 mol) of a mixture of isobenzofuranone (1: 1), 59.3 g (0.31 mol) of 2,4-dichlorobenzoic acid and 100 cc of xylene were charged and 12 Allowed to react for hours. Thereafter, distillation to yield the tetrafluoro anhydride 32.8 g. The yield was 72.0%.
[0038]
[Example 12]
A 300 cc glass reactor equipped with a reflux condenser and a stirrer was charged with 100 g (0.413 mol) of 3,4,5,6-tetrafluorophthaloyl difluoride and 100 cc of acetic acid, and stirred at 130 ° C. under vigorous stirring. The reaction was carried out for 5 hours. Thereafter, inorganic substances were removed by filtration, and separation by distillation was performed to obtain 66.8 g of tetrafluorophthalic anhydride. The yield was 73.5%.
[0039]
Example 13
In 300cc glass reactor equipped with a reflux condenser and stirrer, 3,3,4,5,6,7- hexafluoro -1- [3H] - -isobenzofuranone 100 g (0.413 mol) and vinegar 100 cc of an acid was charged and reacted under reflux for 48 hours. Thereafter, distillation separation was performed to obtain 79.5 g of tetrafluorophthalic anhydride. The yield was 87.5%.
[0040]
【The invention's effect】
According to the method of the present invention, tetrafluorophthalic anhydride can be efficiently obtained using a readily available compound as a starting material. All of the reactions are easy methods, are safe, and have high yields. Therefore, the method of the present invention is a very industrially advantageous method.

Claims (5)

テトラクロロ無水フタル酸を塩素化反応せしめて3,3,4,5,6,7−ヘキサクロロ−1−[3H]−イソベンゾフラノンとし、該3,3,4,5,6,7−ヘキサクロロ−1−[3H]−イソベンゾフラノンをフッ素化反応せしめて3,4,5,6−テトラフルオロフタロイルジフルオリドおよび/または3,3,4,5,6,7−ヘキサフルオロ−1−[3H]−イソベンゾフラノンとし、該3,4,5,6−テトラフルオロフタロイルジフルオリドおよび/または3,3,4,5,6,7−ヘキサフルオロ−1−[3H]−イソベンゾフラノンを無機塩基または有機酸と反応せしめることを特徴とするテトラフルオロ無水フタル酸の製造方法。Chlorination reaction of tetrachlorophthalic anhydride to 3,3,4,5,6,7-hexachloro-1- [3H] -isobenzofuranone, and said 3,3,4,5,6,7-hexachloro Fluorination of -1- [3H] -isobenzofuranone to give 3,4,5,6-tetrafluorophthaloyl difluoride and / or 3,3,4,5,6,7-hexafluoro-1- [3H] -isobenzofuranone, and the 3,4,5,6-tetrafluorophthaloyl difluoride and / or 3,3,4,5,6,7-hexafluoro-1- [3H] -isobenzo A process for producing tetrafluorophthalic anhydride, comprising reacting furanone with an inorganic base or an organic acid. フッ素化反応をアルカリ金属フッ化物を用いて実施する請求項1に記載の製造方法。The method according to claim 1 , wherein the fluorination reaction is performed using an alkali metal fluoride. 3,4,5,6−テトラフルオロフタロイルジフルオリドおよび/または3,3,4,5,6,7−ヘキサフルオロ−1−[3H]−イソベンゾフラノンを無機塩基または有機酸と反応せしめることを特徴とするテトラフルオロ無水フタル酸の製造方法。Reacting 3,4,5,6-tetrafluorophthaloyl difluoride and / or 3,3,4,5,6,7-hexafluoro-1- [3H] -isobenzofuranone with an inorganic base or an organic acid A method for producing tetrafluorophthalic anhydride, comprising: 無機塩基が炭酸ナトリウムまたは炭酸カリウムであり、有機酸が有機カルボン酸である請求項1〜のいずれかに記載の製造方法。Inorganic base Ri sodium carbonate or potassium carbonate der method according to any one of claims 1 to third organic acid is an organic carboxylic acid. 3,3,4,5,6,7−ヘキサフルオロ−1−[3H]−イソベンゾフラノン。3,3,4,5,6,7-Hexafluoro-1- [3H] -isobenzofuranone.
JP02552894A 1994-02-23 1994-02-23 Method for producing 3,4,5,6-tetrafluorophthalic anhydride Expired - Fee Related JP3555158B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP02552894A JP3555158B2 (en) 1994-02-23 1994-02-23 Method for producing 3,4,5,6-tetrafluorophthalic anhydride
ES95102026T ES2126798T3 (en) 1994-02-23 1995-02-14 PROCEDURE FOR THE PREPARATION OF TETRAFLUOROPHTHALIC ANHYDRIDE.
EP98109043A EP0877011A1 (en) 1994-02-23 1995-02-14 Processes for producing tetra-fluorophthalic anhydride and fluorobenzoic acids
EP98109044A EP0866050A1 (en) 1994-02-23 1995-02-14 Processes for producing tetra-fluorophthalic anhydride and fluorobenzioc acids
DE69506749T DE69506749T2 (en) 1994-02-23 1995-02-14 Process for the preparation of tetrafluorophthalic anhydride
EP95102026A EP0669310B1 (en) 1994-02-23 1995-02-14 Processes for producing tetrafluorophthalic anhydride
US08/391,060 US5523476A (en) 1994-02-23 1995-02-21 Processes for producing tetrafluorophthalic anhydride and fluorobenzoic acids
KR1019950003358A KR100242373B1 (en) 1994-02-23 1995-02-21 Process for producing tetrafluorophthalic anhydride
CN95100792A CN1061029C (en) 1994-02-23 1995-02-23 Processes for producing tetrafluorophthalic anhydride and fluorobenzoic acids
US08/601,157 US5648504A (en) 1994-02-23 1996-02-13 Process for producing tetrafluorophthalic anhydride
KR1019990031285A KR100264694B1 (en) 1994-02-23 1999-07-30 Processes for producing fluorobenzoic acids and fluorobenzoic acid esters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02552894A JP3555158B2 (en) 1994-02-23 1994-02-23 Method for producing 3,4,5,6-tetrafluorophthalic anhydride

Publications (2)

Publication Number Publication Date
JPH07233161A JPH07233161A (en) 1995-09-05
JP3555158B2 true JP3555158B2 (en) 2004-08-18

Family

ID=12168549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02552894A Expired - Fee Related JP3555158B2 (en) 1994-02-23 1994-02-23 Method for producing 3,4,5,6-tetrafluorophthalic anhydride

Country Status (1)

Country Link
JP (1) JP3555158B2 (en)

Also Published As

Publication number Publication date
JPH07233161A (en) 1995-09-05

Similar Documents

Publication Publication Date Title
WO2006016510A1 (en) Method for producing 2-amino-5-iodobenzoic acid
JP4838924B2 (en) Process for producing 2-chloro-5-chloromethylthiazole
EP0669310B1 (en) Processes for producing tetrafluorophthalic anhydride
JP2744971B2 (en) Partially fluorinated carboxylic acids and derivatives thereof and method for producing the same
JP2006518734A (en) Method for producing oxydiphthalic anhydride using bicarbonate as catalyst
JPH06279357A (en) Preparation of polyhalogenated benzotrifluoride, benzotrichloride and benzoyl chloride and new trihalogenated trichloride and benzoyl chloride
JP3555158B2 (en) Method for producing 3,4,5,6-tetrafluorophthalic anhydride
JPH069535A (en) Production of 2,4,5-trifluorobenzonitrile
JP4619602B2 (en) Method for producing diphenyl ether compound
JP3056539B2 (en) Process for preparing oxydiphthalic anhydride and acyloxyphthalic anhydride
JP2003238515A (en) Fluorine-containing aromatic compound and method for producing the same
JP3543391B2 (en) Method for producing 3,5,6-trifluoro-4-hydroxyphthalic acid
JPH08231462A (en) Perfluoroalkylarboxylic acid fluoride and production of its derivative
JPH021432A (en) Production of 2,2-bis(4-aminophenyl)hexafluoro-propane
JP3543585B2 (en) Method for producing 2,2 ', 5,5', 6,6'-hexafluorobiphenyl-3,3 ', 4,4'-tetracarboxylic acid precursor
KR100264694B1 (en) Processes for producing fluorobenzoic acids and fluorobenzoic acid esters
JP3637924B2 (en) Process for producing N-chloroaromatic carboxylic acid amide
JPH06316545A (en) Preparation of chlorinated 4,5-difluorobenzoic acid, -benzoic acid derivative and -benzaldehyde
JPH03161467A (en) Production of 5-fluorobenzonitriles and 4,5-difluorobenzoic acids
JPH0635419B2 (en) Method for producing fluoroaliphatic carboxylic acid
JP4554130B2 (en) Process for producing 2-halo-6-nitrobenzoic acid
JPH08319254A (en) Production of substituted or nonsubstituted phthalic acid salt
JPH10168051A (en) Production of 2,3-dihalogeno-6-trifluoromethylbenzonitrile
JPH04321644A (en) Production of 2,4,5-trifluorobenzoic acid
JP2001058965A (en) Production of fluorinated aromatic compound

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040503

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees