JP3554869B2 - Hot water supply water drainage mechanism - Google Patents

Hot water supply water drainage mechanism Download PDF

Info

Publication number
JP3554869B2
JP3554869B2 JP19172694A JP19172694A JP3554869B2 JP 3554869 B2 JP3554869 B2 JP 3554869B2 JP 19172694 A JP19172694 A JP 19172694A JP 19172694 A JP19172694 A JP 19172694A JP 3554869 B2 JP3554869 B2 JP 3554869B2
Authority
JP
Japan
Prior art keywords
hot water
water supply
supply pipe
temperature
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19172694A
Other languages
Japanese (ja)
Other versions
JPH0828896A (en
Inventor
浩彦 藪田
雅史 荒川
育哉 井戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inax Corp
Original Assignee
Inax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inax Corp filed Critical Inax Corp
Priority to JP19172694A priority Critical patent/JP3554869B2/en
Publication of JPH0828896A publication Critical patent/JPH0828896A/en
Application granted granted Critical
Publication of JP3554869B2 publication Critical patent/JP3554869B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、ホテル等の高層建物において給湯主管と給水主管から洋風便器に設置した温水洗浄装置等に湯水を導入するための配管や、ガス給湯器の配管に利用される給湯配管の捨水機構に関する。
【0002】
【従来の技術】
従来、ホテル等の高層建物における温水洗浄装置の配管構造は、図8に示すように、階下から階上へ向けて縦方向に延設されている給湯主管46及び給水主管47から分岐接続した給湯配管48及び給水配管49に、夫々逆止弁50,51を介してサーモスタット付混合水栓52に流入される構造である。
そして、サーモスタット付混合水栓52の夫々の流入口から流入した水と湯は、サーモスタット付混合水栓52内の感温部(図示省略)によって適温水の温度まで混合され、この適温水に混合された湯水は、リリーフ付減圧弁53で減圧され、湯温が過昇したときに閉じる安全弁54を通して温水シャワー(お尻洗浄)流路55、チャーム(ビデ洗浄)流路56、捨水流路57の3つの流路に分岐されている。そして、流路55,56には流量調整用の流調弁58,59が設けられ、流路57には開閉弁60が設けられている。符号61a〜61cは、夫々バキュームブレーカを示している。
【0003】
【発明が解決しようとする課題】
ところで、上記シャワー洗浄又はチャーム洗浄を行う場合、配管内の残り湯を初期冷水として捨水させる必要があるが、従来構造では、開閉弁60を開けて捨水するので、ここでの捨水は給湯配管48内の残り湯をサーモスタット付混合水栓52内で給水配管49内の冷水と混合した後の湯水であり、本来給湯配管48内の残り湯を早く捨水するのが好ましいにも係わらず、この残り湯に給水配管49からの供給される水を混合した後の湯水を捨水するので、捨水の温度がなかなか上昇しないために捨水の量が多くなり、ひいては捨水に要する時間も長くかかるという問題もあった。
さらに、捨水するときには、給湯配管48内の残り湯は、サーモスタット付混合水栓52、減圧弁53、安全弁54、開閉弁60の複数機器を経由するので、給湯圧が低い場合は、なかなか初期冷水が捨水できないという問題もあった。
【0004】
【課題を解決するための手段】
本発明に係る請求項1記載の給湯配管の捨水機構は、温度調節部に至る給湯配管の途中を分岐した分岐管路を一方の流入ポートとする捨水用流路切換弁が設けられ、該流路切換弁の他方の流入ポートには温度調節部を経た出湯管路が接続され、前記流路切換弁は給湯配管内側の残り湯を出湯管路側の残り湯よりも優先して捨水する機構である。
【0005】
本発明に係る請求項2記載の給湯配管の捨水機構は、温度調節部に至る給湯配管の途中を分岐した分岐管路を流入ポートとする第1の捨水バルブと、前記温度調節部を経た出湯管路が接続される第2の捨水バルブとが設けられ、これら第1及び第2の捨水バルブは給湯配管内側の残り湯を出湯管路側の残り湯よりも優先して捨水制御される機構である。
【0006】
本発明に係る請求項3記載の給湯配管の捨水機構は、請求項1記載における前記出湯管路の途中に温度センサが配置され、該温度センサの出力により捨水用流路切換弁の流出ポートに接続された捨水バルブが開閉制御される機構である。
【0007】
本発明に係る請求項4記載の給湯配管の捨水機構は、温度調節部に至る給湯配管の途中を分岐した分岐管路を流入ポートとする第1の捨水バルブと、前記温度調節部を経た出湯管路が接続される第2の捨水バルブと、前記第1及び第2の捨水バルブの流入側の湯温を検出する第1及び第2の温度センサがそれぞれ設けられ、これら温度センサの検知結果によって、第1及び第2の捨水バルブは給湯配管内側の残り湯を出湯管路側の残り湯よりも優先して捨水するとともに、出湯管路から所定温度の湯が流出されるまで第2の捨水バルブを開制御する機構である。
【0008】
本発明に係る請求項5記載の給湯配管の捨水機構は、請求項1乃至4の内のいずれかに記載の機構における温度調節部が洗浄ノズルより噴出する温水洗浄装置用のサーモスタット付混合水栓である。
【0009】
【作用】
請求項1においては、給湯配管は、捨水用の流路切換弁を介して温度調節部へ連通接続されるので、給湯配管内の残り湯が温度調節部を経過する前に流路切換弁を通して優先的に捨水される。このように、給湯配管内の残り湯を給水配管内の水と混合しないで、直接に捨水するので、捨水量を少なくして節水化を図ることができるとともに、捨水に要する時間を短縮することができる。また、温調弁や減圧弁等を通さないで捨水が効率良く行える。さらに言うと、シャワートイレ用のサーモスタット付き混合水栓の混合流量は、0〜21/minくらいで、これ以上の流量は得にくい(例えば、51/min捨てようとすると、サーモスタット付き混合水栓が大きくなるだけでなく小流量の時の温度安定性が悪くなる)が、本機構によると、容易に大流量での捨て水が可能である。
【0010】
請求項2においては、請求項1における捨水用の流路切換弁に代えて、分岐管路及び出湯管路の夫々に第1及び第2の捨水バルブを設けているので、夫々の捨水バルブが開閉切換される設定温度を同じ値にするだけでなく、異なる値にも設定することができて、夫々の捨水バルブの開閉タイミングを任意に設定して制御することができる。
【0011】
請求項3においては、捨水用流量切換弁による捨水動作を出湯管路内の湯温によって制御できるので、分岐管路からの捨水動作が終了した後でも温度調節部内の温度が冷えているために出湯管路に出てくる冷たい水を捨水することができる。
【0012】
請求項4においては、請求項3の作用に加えて、分岐管路からの捨水動作が終了した後に温度調節部内に急に熱い湯が入ると出し始めの温度調節特性が安定しないが、これに対して分岐管路に熱い湯が来たら出湯管路の第2の捨水バルブを開けてこの問題を防止できる。そして、第2の温度センサで検出された出湯管路内の湯温が所定温度になったのを確認して前記第2の捨水バルブを閉制御する。
【0013】
請求項1乃至4記載の給湯配管の捨水機構は、請求項5記載の如く、ホテル等の高層建物における便器の温水洗浄装置の配管接続に利用される機構である。
【0014】
【実施例】
以下、本発明に係る給湯配管の捨水機構について図面を参照して説明する。
図1及び図2は本発明に係る給湯配管の捨水機構の第1実施例を示す図面である。
この給湯配管の捨水機構は、ホテル等の高層建物における洋風便器に設置した温水洗浄装置に適用した場合を例示している。
ホテル等では、階下から階上にかけて給湯主管1及び給水主管2が縦方向に延設されており、これら主管1,2から給湯配管3及び給水配管4が各部屋毎の洋風便器用の温水洗浄装置の近傍まで配管されている。
【0015】
給水配管4からシャワー(お尻洗浄)流路5及びチャーム(ビデ洗浄)流路6に至る出湯管路7は、サーモスタット付混合水栓8、リリーフ付減圧弁9及び温度変動を緩和する温度変動緩和タンク10を経由して形成されている。
【0016】
ところで、サーモスタット付混合水栓8へ至る給湯配管3の途中から分岐管路11が分岐されて、この分岐管路11は捨水用流路切換弁12の一方の流入ポート13aに接続されている。流路切換弁12の他方の流入ポート13bには、前記温度変動緩和タンク10を経由した前記出湯管路7が分岐して接続されている。
流路切換弁12は、混合水栓8や配管内等に残っている残り湯を初期冷水として捨水させるための弁であって、給湯配管3内の残り湯の温度が所定温度よりも低いときに、この残り湯を混合水栓8、減圧弁9、温度変動緩和タンク10を経由して捨水される温水に優先して流出ポート14から捨水流路15へ流出させるようにしている。
【0017】
なお、混合水栓8及び流路切換弁12の流入口には、逆止弁16a〜16bが設けられ、シャワー流路5及びチャーム流路6には、流量調整用の流調弁17,18が設けられ、捨水流路15には開閉弁19が設けられている。また、これら流路5,6,15にはバキュームブレーカ20a〜20cが設けられている。
【0018】
図2は、具体的な流路切換弁12の構造を示す断面図である。
流路切換弁12の本体21は中空角柱体からなり、該本体21内の下部には感温収縮体22を間挿した軸体23が下側蓋体24に螺着して固定されるとともにブラケット25により周方向に固定して取り付けられている。このブラケット25には流路26,26が形成されている。軸体23は連結具27を介してさらに上方へ延設され、捨水側流出ポート14に連通した流路28を挟んでその上下位置に2つの弁体29,30が取り付けられている。
【0019】
上側の弁体29は、上側蓋体31と前記流路28の上端外縁部に取り付けられた弁座32との間で流入ポート13bに連通する上側弁室33の空間を形成している。一方、下側の弁体30は、下側蓋体24と前記流路28の下端外縁部に取り付けられた弁座34との間で流路26を通って流入ポート13aに連通する下側弁室35の空間を形成している。
この弁座34と前記連結具27との間には、下向きに付勢されたバネ体36が取り付けられている。
【0020】
而して、この流路切換弁12においては、給湯配管3を通して供給される湯が給湯主管1に供給されている湯温に近い温度になるまでは、バネ体36の付勢力により弁体30は弁座34から離れているために流入ポート13aから流路26,28を通って流出ポート14に連通する流路が形成される。一方、この流路を通過する湯が給湯主管1に供給されている湯温に近い温度になると、感温収縮体22が前記バネ体36の付勢力に抗して伸長するので、弁体30は弁座34に着座して流入ポート13aから流出ポート14に連通する流路を遮断すると同時に、流入ポート13bから流路28を通って流出ポート14へ連通させるように流路は切り換えられる。
【0021】
上記構成からなる捨水機構においては、サーモスタット付混合水栓8に流入した水と湯は、サーモスタット付混合水栓8内の感温部によって38±2°Cの適温水に混合され、この適温水に混合された湯水は、減圧弁9で減圧され、温度変動緩和タンク10を経て出湯管路7に至り、流路5又は6を通ってシャワートイレのシャワーノズル・シリンダ(図示省略)へ供給され、お尻洗浄又はビデ洗浄として噴出される。
【0022】
一方、サーモスタット付混合水栓8ないし流調弁17,18を閉じると、ノズルシリンダ内の圧力が低下し、シリンダ内のリターンスプリングの力で、シャワーノズルはシリンダ内に収納される。このとき、給湯配管3や混合水栓8内等に残留している残り湯は、死に水として残ることになる。
【0023】
このような状態において、再度温水洗浄する際には、混合水栓8や給湯配管3等に残留している温度の低い残り湯を捨てるために、捨水用の開閉弁19を開く。開閉弁19が開かれたときに給湯配管3に残留している残り湯の温度が低いと、流路切換弁12においては上記したように流入ポート13aと流出ポート14が連通するために、給湯配管3に残留している残り湯は、混合水栓8を経由していないで流路切換弁12を通して直接捨水される。
【0024】
そして、残り湯の温度が所定の温度まで上昇すると、流路切換弁12においては上記したように流入ポート13aと流出ポート14との連通が遮断され、それに代わって流入ポート13bと流出ポート14とが連通されるので、混合水栓8、減圧弁9、温度変動緩和タンク10等に残留している残留水が流路切換弁12を通して捨水される。
而して、給湯配管3内の残り湯は、混合水栓8において給水配管4内の水と混合しないで、捨水されることになるので、捨水量を少なくして節水化を図ることができるとともに、捨水に要する時間を短縮することができる。
【0025】
なお、上記した実施例における捨水用流量切換弁12に代えて、図3に示す如く、捨水バルブ37a,37bを夫々出湯管路7及び分岐管路11に接続することができる。これら捨水バルブ37a,37bの具体的な構造は、例えば図2に示す流量切換弁12の一方の流入ポート13aを閉塞した構造である。
そして、この場合には、感温収縮体38a(38b)の設定温度より低い湯を捨水させることができる。その結果、捨水用の開閉弁19がなくてもよくなる。また、出湯管路7側の捨水バルブ37aにおける感温収縮体38aの設定温度と、分岐管路11側の捨水バルブ37bにおける感温収縮体38bの設定温度とを違う値に決めることもできるので、例えば分岐管路11側の捨水が終了した場合であってもサーモスタット付き混合水栓8等の温度調節部内の残り湯が原因で低い温度の湯が出湯管路7から出湯されないように制御することもできる。
【0026】
図4は第2実施例を示す管路系統図である。
本例では、前記出湯管路7の途中に温度センサ39が配置され、該温度センサ39の出力により捨水用流路切換弁12の流出ポート14に接続された自動捨水バルブ40を開閉制御する構成である。その他の構成は図1と同じである。
而して、本例においては、捨水用流量切換弁12による捨水動作を最終的に前記自動捨水バルブ40の開閉により行う構成である。このため、分岐管路11からの捨水動作が終了した後、混合水栓8等の温度調節部内の温度が冷えているときでも、温度センサ39で検知される出湯管路7内の湯温によって捨水制御するので、温度調節部内に残留している冷たい水をも確実に捨水することができる。
【0027】
図5乃至図7は第3実施例を示す図面である。
本例は、上記した実施例における流量切換弁12に代えて、外部制御可能な捨水バルブA,Bを分岐管路11及び出湯管路7に接続し、さらにこれら捨水バルブA,B夫々の流入側の湯温を検出する温度センサ41a,41bを夫々設けた構成である。具体的には、温度センサ41aは給湯配管3と分岐管路11との分岐箇所に設けられ、温度センサ41bは出湯管路7に設けられ、これら温度センサ41a,41bの検知結果によって捨水バルブA,Bの開閉を制御している。
【0028】
図6は図5において温度センサ41a,41bで検知された温度結果によって捨水バルブA,B(図面ではA,Bで表示している)の開閉を制御するための制御回路図を例示し、図7は動作タイミングを示すタイミングチャートである。
図6に示す制御回路42は、マイクロコンピュータを用いたもので、CPU43に前記温度センサ41a,41bで検知された温度を示す信号及び捨水を開始させるための開始スイッチ44の信号が入力されている。ここでの開始スイッチ44とは、便器使用者が便座に座ったのを自動検知する着座スイッチであっても、またはこのような自動スイッチとは別途設けた手動操作の捨水スイッチであってもよい。
そして、CPU43からは、捨水バルブA,Bの開閉を制御する信号が出力され、捨水バルブA,Bのバルブ開閉制御用のソレノイドを負荷とするトランジスタ45a,45bのベース端子に出力されている。
【0029】
而して、図7において、上記着座スイッチまたは手動操作の捨水スイッチからなる開始スイッチ44がオンされると(タイミングt)、CPU43は先ず捨水バルブAを開制御して、給湯配管3内の温度の低い残り湯を分岐管路11を通して捨水する。そして、温度センサ41aが所定温度(本例では35°C)を検出すると(タイミングt)、捨水バルブAを閉じ、これに代わって捨水バルブBを開ける。次に、温度センサ41bが前記所定温度を検出したら(タイミングt)、今度は捨水バルブBを閉じる。ここで、タイミングtからtの間のタイムラグは、分岐管路11からの捨水動作が終了した後に、混合水栓8に急に熱い湯が入ると出し始めの温度調節特性が安定しないが、この問題を予防するためである。
【0030】
なお、前記設定温度は任意に決定することができ、捨水バルブA,Bにおいて同じ温度にしても異なる温度に設定してもよい。また、本例では、捨水バルブA,Bを開けるタイミングtとtとはずらしているが、これは分岐管路11と出湯管路7の水抵抗を考慮したものであり、水抵抗が大きい捨水バルブBにも水が流れやすい管路構造にした場合には、これら捨水バルブA,Bを同時に開けるように制御してもよい。
【0031】
一方、開始スイッチ44として着座センサにより捨水操作する場合、温度センサ41a及び41bの検出温度が所定温度よりも下がってくると、捨水バルブA及びBは上記したように開制御され、結果として図7に示すタイミングチャートに従って自動的な開閉制御が繰り返されることになる。
ここで、温度センサ41bは、出湯温度が低い場合を検知して捨水するものであるので、捨水バルブBに代えて、温水洗浄装置のシャワーノズルから捨水させることもできる。さらに、シャワーバルブの開時間をタイマ等で設定して、一定時間だけ捨水するようにすれば、出湯管路7からる捨水タイミングを決めるために設けた温度センサ41bを省略することもできる。
【0032】
このようにして第3実施例においては、温度センサ41a,41bで検知された温度結果によって、捨水バルブA及びBは給湯配管内側の低い温度の残り湯を出湯管路側の残り湯よりも優先して捨水するという上記第1及び第2実施例の作用に加えて、分岐管路に熱い湯がきたら出湯管路の第2の捨水バルブを開けることができるので、分岐管路からの捨水動作が終了した後に混合水栓8内に急に熱い湯が入ると出し始めの温度調節特性が安定しない問題を解消することができる。
【0033】
なお、上記した実施例は、便器の温水洗浄装置に適用した場合を例示しているがこの他にガス給湯器等の湯側と水側の配管を有する装置等にも利用ざれる。
特に、ガス給湯器においては、湯側のみを優先的に捨水することによりある程度の流量を確保でき、着火が確実に行われるようになる。
【0034】
【発明の効果】
以上述べたように、本発明によれば、給湯配管内の残り湯を給水配管内の水と混合する前に捨水するので、捨水量を少なくして節水化を図ることができるとともに、捨水に要する時間を短縮することができる。また、出湯管路の湯温が低いときや、安定しない場合にも、有効に捨水することができる。
【図面の簡単な説明】
【図1】本発明に係る給湯配管の捨水機構の第1実施例を示す管路系統図である。
【図2】第1実施例における流路切換弁の構造を示す断面図である。
【図3】第1実施例の変形例の流路切換弁の構造を示す断面図である。
【図4】第2実施例を示す管路系統図である。
【図5】第3実施例を示す管路系統図である。
【図6】第3実施例の制御回路の構成を例示する回路図である。
【図7】第3実施例の動作タイミングを示すタイミングチャートである。
【図8】従来例を示す管路系統図である。
【符号の説明】
1…給湯主管 A…捨水バルブ(第1の捨水バルブ)
2…給水主管 B…捨水バルブ(第2の捨水バルブ)
3…給湯配管 41a,41b…温度センサ
4…給水配管 42…制御回路
7…出湯管路
8…サーモスタット付混合水栓(温度調節部)
11…分岐管路
12…捨水用流路切換弁
15…捨水流路
39…温度センサ
40…自動捨水バルブ
[0001]
[Industrial applications]
The present invention relates to a hot water supply pipe for introducing hot water from a hot water supply main pipe and a hot water washing apparatus installed in a Western style toilet in a high rise building such as a hotel, and a hot water supply pipe used for a gas water supply pipe. About.
[0002]
[Prior art]
Conventionally, as shown in FIG. 8, a piping structure of a hot water washing device in a high-rise building such as a hotel has a hot water supply main pipe 46 and a hot water supply main branch 47 extending vertically from a lower floor to an upper floor. The structure is such that the mixed water faucet 52 with thermostat flows into the piping 48 and the water supply piping 49 via the check valves 50 and 51, respectively.
The water and hot water flowing from the respective inlets of the mixing faucet with thermostat 52 are mixed to the temperature of the optimal temperature water by a temperature sensing part (not shown) in the mixing faucet with thermostat 52 and mixed with the optimal temperature water. The hot and cold water is depressurized by a pressure reducing valve 53 with a relief, and is passed through a safety valve 54 that closes when the temperature of the hot water rises excessively. Are branched into three flow paths. The flow paths 55 and 56 are provided with flow regulating valves 58 and 59 for adjusting the flow rate, and the flow path 57 is provided with an on-off valve 60. Reference numerals 61a to 61c indicate vacuum breakers, respectively.
[0003]
[Problems to be solved by the invention]
By the way, when performing the above-mentioned shower cleaning or charm cleaning, it is necessary to drain the remaining hot water in the pipe as initial cold water. However, in the conventional structure, the on-off valve 60 is opened and the water is drained. This is hot water after the remaining hot water in the hot water supply pipe 48 is mixed with the cold water in the hot water supply pipe 49 in the mixing faucet 52 with thermostat, and although it is originally preferable to quickly drain the remaining hot water in the hot water supply pipe 48. First, since the hot water after mixing the water supplied from the water supply pipe 49 with the remaining hot water is discarded, the temperature of the water does not easily rise, so that the amount of the water is increased, which is required for the water drainage. There was also a problem that it took a long time.
Further, when water is to be discarded, the remaining hot water in the hot water supply pipe 48 passes through a plurality of devices including a mixing faucet with thermostat 52, a pressure reducing valve 53, a safety valve 54, and an on-off valve 60. There was also a problem that cold water could not be discarded.
[0004]
[Means for Solving the Problems]
The hot water supply pipe drainage mechanism according to claim 1 of the present invention is provided with a drainage flow path switching valve having a branch pipe branching in the middle of the hot water supply pipe reaching the temperature control unit as one inflow port, A tapping line passing through a temperature control unit is connected to the other inflow port of the passage switching valve, and the passage switching valve drains the remaining hot water inside the hot water supply pipe in preference to the remaining hot water on the tapping line side. It is a mechanism to do.
[0005]
The hot water supply pipe drainage mechanism according to claim 2 of the present invention includes: a first drainage valve having a branch pipe branching in the middle of the hot water supply pipe reaching the temperature control unit as an inflow port; and the temperature control unit. And a second drain valve connected to the hot water supply pipe. The first and second water drain valves drain the remaining hot water inside the hot water supply pipe in preference to the remaining hot water on the hot water supply pipe side. The mechanism to be controlled.
[0006]
According to a third aspect of the present invention, there is provided a drainage mechanism for a hot water supply pipe, wherein a temperature sensor is disposed in the middle of the tapping line according to the first aspect, and an output of the temperature sensor causes an outflow of a drainage flow path switching valve. This is a mechanism that controls the opening and closing of the drain valve connected to the port.
[0007]
The hot water supply pipe drainage mechanism according to claim 4 of the present invention is characterized in that a first drainage valve having a branch pipe branching in the middle of the hot water supply pipe reaching the temperature control unit as an inflow port, and the temperature control unit. A second drain valve to which the passed tapping line is connected, and first and second temperature sensors for detecting the hot water temperatures on the inflow side of the first and second drain valves, respectively. Based on the detection result of the sensor, the first and second water drain valves drain the remaining hot water inside the hot water supply pipe in preference to the remaining hot water on the hot water supply pipe side, and hot water of a predetermined temperature flows out of the hot water supply pipe. Until the second drain valve is opened.
[0008]
According to a fifth aspect of the present invention, there is provided a water dispensing mechanism for a hot water supply pipe, wherein the temperature control section in the mechanism according to any one of the first to fourth aspects has a thermostat-mixed water for a hot water cleaning device which jets from a cleaning nozzle. It is a stopper.
[0009]
[Action]
In the first aspect, the hot water supply pipe is connected to the temperature control unit via the flow switching valve for draining water, so that the remaining hot water in the hot water supply pipe passes through the temperature control unit before the flow switching valve. Water is preferentially drained through. In this way, the remaining hot water in the hot water supply pipe is directly discarded without mixing with the water in the water supply pipe, so the amount of water waste can be reduced to save water and shorten the time required for water drainage. can do. Further, water can be efficiently drained without passing through a temperature control valve, a pressure reducing valve, or the like. In addition, the mixing flow rate of the thermostatic mixing faucet for a shower toilet is about 0 to 21 / min, and it is difficult to obtain a higher flow rate. In addition to the increase, the temperature stability at the time of a small flow rate is deteriorated). However, according to this mechanism, it is possible to easily discard water at a large flow rate.
[0010]
In the second aspect, the first and second drainage valves are provided in each of the branch pipe and the tapping pipe in place of the drainage flow path switching valve in the first aspect. The set temperature at which the water valve is switched between open and closed can be set not only to the same value but also to a different value, and the open / close timing of each drain valve can be arbitrarily set and controlled.
[0011]
According to the third aspect of the present invention, the water drainage operation by the water drainage flow rate switching valve can be controlled by the hot water temperature in the tapping pipeline, so that the temperature in the temperature control unit is cooled even after the water drainage operation from the branch pipeline is completed. Because of this, it is possible to discard the cold water that comes out of the tap water pipe.
[0012]
According to the fourth aspect, in addition to the operation of the third aspect, if hot water suddenly enters the temperature control section after the water draining operation from the branch pipe is completed, the temperature control characteristic at the beginning of the hot water supply is not stable. On the other hand, when hot water comes to the branch line, this problem can be prevented by opening the second drain valve of the tapping line. Then, it is confirmed that the temperature of the hot water in the tapping line detected by the second temperature sensor has reached a predetermined temperature, and the second drain valve is controlled to close.
[0013]
The hot water supply pipe drainage mechanism according to any one of claims 1 to 4 is a mechanism used for connecting a hot water washing apparatus for a toilet in a high-rise building such as a hotel.
[0014]
【Example】
Hereinafter, a drainage mechanism for a hot water supply pipe according to the present invention will be described with reference to the drawings.
1 and 2 are drawings showing a first embodiment of a hot water supply pipe drainage mechanism according to the present invention.
This hot water supply water draining mechanism is exemplified by a case where the present invention is applied to a hot water washing device installed in a Western-style toilet in a high-rise building such as a hotel.
In a hotel or the like, a hot water supply main pipe 1 and a water supply main pipe 2 extend vertically from the lower floor to the upper floor, and a hot water supply pipe 3 and a water supply pipe 4 from these main pipes 1 and 2 are used for washing hot water for a Western-style toilet in each room. It is piped to the vicinity of the device.
[0015]
A tapping line 7 extending from the water supply pipe 4 to the shower (butt washing) flow path 5 and the charm (bide wash) flow path 6 includes a mixing faucet 8 with a thermostat, a pressure reducing valve 9 with a relief, and temperature fluctuation to mitigate temperature fluctuation. It is formed via the relaxation tank 10.
[0016]
By the way, the branch pipe 11 is branched from the middle of the hot water supply pipe 3 reaching the mixing faucet 8 with thermostat, and this branch pipe 11 is connected to one inflow port 13 a of the drainage flow path switching valve 12. . To the other inflow port 13b of the flow path switching valve 12, the tapping pipe line 7 via the temperature fluctuation mitigation tank 10 is branched and connected.
The flow path switching valve 12 is a valve for draining remaining hot water remaining in the mixing faucet 8 and the piping as initial cold water, and the temperature of the remaining hot water in the hot water supply pipe 3 is lower than a predetermined temperature. At this time, the remaining hot water is allowed to flow out of the outflow port 14 to the waste water flow path 15 in preference to the hot water that is discharged through the mixing faucet 8, the pressure reducing valve 9, and the temperature fluctuation mitigation tank 10.
[0017]
Check valves 16a to 16b are provided at the inlets of the mixing faucet 8 and the flow path switching valve 12, and flow control valves 17, 18 for flow rate adjustment are provided in the shower flow path 5 and the charm flow path 6. , And an on-off valve 19 is provided in the waste water channel 15. Vacuum breakers 20a to 20c are provided in these flow paths 5, 6, and 15, respectively.
[0018]
FIG. 2 is a sectional view showing a specific structure of the flow path switching valve 12.
A main body 21 of the flow path switching valve 12 is formed of a hollow prism. A shaft 23 having a thermosensitive contraction body 22 inserted therein is screwed and fixed to a lower lid 24 at a lower portion of the main body 21. It is fixed and attached in the circumferential direction by a bracket 25. In this bracket 25, flow paths 26, 26 are formed. The shaft body 23 is further extended upward through a connecting member 27, and two valve bodies 29, 30 are attached to the upper and lower positions of the shaft body 23 with a flow path 28 communicating with the drainage side outflow port 14 interposed therebetween.
[0019]
The upper valve body 29 forms a space of an upper valve chamber 33 that communicates with the inflow port 13b between the upper lid body 31 and a valve seat 32 attached to the upper end outer edge of the flow passage 28. On the other hand, the lower valve body 30 is a lower valve that communicates with the inflow port 13a through the flow path 26 between the lower lid 24 and the valve seat 34 attached to the lower edge of the flow path 28. The space of the chamber 35 is formed.
A spring body 36 urged downward is attached between the valve seat 34 and the connecting member 27.
[0020]
In this flow path switching valve 12, until the hot water supplied through the hot water supply pipe 3 reaches a temperature close to the hot water temperature supplied to the hot water main pipe 1, the valve body 30 is biased by the spring body 36. Is separated from the valve seat 34, a flow path is formed from the inflow port 13a to the outflow port 14 through the flow paths 26 and 28. On the other hand, when the temperature of the hot water passing through this flow passage becomes close to the temperature of the hot water supplied to the hot water supply main pipe 1, the thermosensitive contraction body 22 expands against the urging force of the spring body 36, so that the valve 30 At the same time, the flow path is switched so as to be seated on the valve seat 34 to block the flow path communicating from the inflow port 13a to the outflow port 14, and at the same time to communicate from the inflow port 13b to the outflow port 14 through the flow path 28.
[0021]
In the water disposing mechanism having the above-described structure, the water and hot water flowing into the mixing faucet with thermostat 8 are mixed into the appropriate temperature water of 38 ± 2 ° C. by the temperature sensing part in the mixing faucet with thermostat 8, The hot and cold water mixed with the water is depressurized by the pressure reducing valve 9, reaches the tapping line 7 through the temperature fluctuation mitigation tank 10, and is supplied to the shower nozzle / cylinder (not shown) of the shower toilet through the flow path 5 or 6. Then, it is squirted as ass washing or bidet washing.
[0022]
On the other hand, when the mixing faucet with thermostat 8 or the flow control valves 17 and 18 are closed, the pressure in the nozzle cylinder decreases, and the shower nozzle is housed in the cylinder by the force of the return spring in the cylinder. At this time, the remaining hot water remaining in the hot water supply pipe 3, the mixing faucet 8, and the like is dead as water.
[0023]
In such a state, when washing with hot water again, the on-off valve 19 for draining water is opened in order to discard the low-temperature remaining hot water remaining in the mixing faucet 8, the hot water supply pipe 3 and the like. If the temperature of the remaining hot water remaining in the hot water supply pipe 3 is low when the on-off valve 19 is opened, the inflow port 13a and the outflow port 14 of the flow path switching valve 12 communicate with each other as described above. The remaining hot water remaining in the pipe 3 is directly discarded through the flow path switching valve 12 without passing through the mixing faucet 8.
[0024]
Then, when the temperature of the remaining hot water rises to a predetermined temperature, the communication between the inflow port 13a and the outflow port 14 is cut off in the flow path switching valve 12 as described above, and instead, the inflow port 13b and the outflow port 14 are connected. The residual water remaining in the mixing faucet 8, the pressure reducing valve 9, the temperature fluctuation mitigation tank 10 and the like is discarded through the flow path switching valve 12.
Since the remaining hot water in the hot water supply pipe 3 is not mixed with the water in the water supply pipe 4 in the mixing faucet 8 and is discarded, the amount of water discarded can be reduced to save water. And the time required for water drainage can be reduced.
[0025]
In addition, instead of the drainage flow switching valve 12 in the above-described embodiment, as shown in FIG. 3, drainage valves 37a and 37b can be connected to the tapping line 7 and the branch line 11, respectively. The specific structure of the drain valves 37a, 37b is, for example, a structure in which one of the inflow ports 13a of the flow switching valve 12 shown in FIG. 2 is closed.
In this case, hot water lower than the set temperature of the temperature-sensitive shrinkable body 38a (38b) can be discarded. As a result, there is no need to provide the on-off valve 19 for discarding water. In addition, the set temperature of the temperature-sensitive shrinkable body 38a in the water drain valve 37a on the tapping pipe line 7 and the set temperature of the temperature-sensitive shrinkable body 38b in the water drain valve 37b on the branch pipe line 11 may be set to different values. For example, even if the drainage of the branch pipe 11 is completed, low-temperature hot water is not discharged from the tap water pipe 7 due to remaining hot water in the temperature control unit such as the mixing faucet 8 with a thermostat. Can also be controlled.
[0026]
FIG. 4 is a pipeline diagram showing the second embodiment.
In the present embodiment, a temperature sensor 39 is disposed in the middle of the tapping line 7, and an automatic drainage valve 40 connected to the outflow port 14 of the drainage flow switching valve 12 is controlled to open and close by the output of the temperature sensor 39. Configuration. Other configurations are the same as those in FIG.
Thus, in the present embodiment, the drainage operation by the drainage flow switching valve 12 is finally performed by opening and closing the automatic drainage valve 40. For this reason, even when the temperature in the temperature control unit such as the mixing faucet 8 is low after the water draining operation from the branch pipe 11 is completed, the temperature of the hot water in the tapping pipe 7 detected by the temperature sensor 39 is low. Since the water is controlled to be drained, cold water remaining in the temperature control section can be reliably drained.
[0027]
5 to 7 show a third embodiment.
In this embodiment, instead of the flow rate switching valve 12 in the above-described embodiment, externally controllable drainage valves A and B are connected to the branch line 11 and the tapping line 7, respectively. The temperature sensors 41a and 41b for detecting the temperature of the hot water on the inflow side are provided respectively. Specifically, the temperature sensor 41a is provided at a branch point between the hot water supply pipe 3 and the branch pipe 11, and the temperature sensor 41b is provided in the tapping pipe 7, and a water drain valve is provided based on detection results of the temperature sensors 41a and 41b. The opening and closing of A and B are controlled.
[0028]
FIG. 6 illustrates a control circuit diagram for controlling the opening and closing of the drain valves A and B (denoted by A and B in the drawing) based on the temperature results detected by the temperature sensors 41a and 41b in FIG. FIG. 7 is a timing chart showing operation timing.
The control circuit 42 shown in FIG. 6 uses a microcomputer, and receives a signal indicating a temperature detected by the temperature sensors 41a and 41b and a signal of a start switch 44 for starting water drainage. I have. Here, the start switch 44 may be a seat switch that automatically detects that the toilet user is sitting on the toilet seat, or a manually operated water drain switch separately provided from such an automatic switch. Good.
Then, a signal for controlling the opening and closing of the drain valves A and B is output from the CPU 43, and is output to the base terminals of the transistors 45a and 45b which are loaded with solenoids for controlling the valve opening and closing of the drain valves A and B. I have.
[0029]
Thus, in FIG. 7, when the start switch 44 composed of the seating switch or the manually operated drainage switch is turned on (timing t 1 ), the CPU 43 first controls the opening of the drainage valve A and the hot water supply pipe 3. The remaining hot water having a low temperature is drained through the branch pipe line 11. When the temperature sensor 41a detects a predetermined temperature (35 ° C. in this example) (timing t 2 ), the water drain valve A is closed, and the water drain valve B is opened instead. Next, when the temperature sensor 41b detects the predetermined temperature (timing t 3 ), the water drain valve B is closed. Here, a time lag between t 3 from the timing t 2, after the water discard operation from branch pipe 11 has been completed, the temperature regulating properties of starting out with sudden fall is hot water in the mixing valve 8 is not stable However, this is to prevent this problem.
[0030]
The set temperature can be arbitrarily determined, and may be set to the same temperature or different temperatures in the water drain valves A and B. Further, in this embodiment, water discard valve A, but it is shifted from the timings t 1 and t 2 to open the B, which is obtained by considering the water resistance of the branch pipe 11 and the hot water pipe 7, the water resistance If the pipe structure is such that the water easily flows through the drain valve B having a large water flow, the drain valves A and B may be controlled to be opened simultaneously.
[0031]
On the other hand, in the case where the start switch 44 is operated to drain water by a seating sensor, when the detected temperatures of the temperature sensors 41a and 41b fall below a predetermined temperature, the drainage valves A and B are opened and controlled as described above, and as a result, Automatic opening and closing control is repeated according to the timing chart shown in FIG.
Here, since the temperature sensor 41b detects low tap water temperature and discards water, the water can be discarded from the shower nozzle of the hot water cleaning device instead of the water discarding valve B. Furthermore, if the opening time of the shower valve is set by a timer or the like and water is discarded for a certain period of time, the temperature sensor 41b provided for determining the timing of water drainage from the tapping line 7 can be omitted. .
[0032]
In this way, in the third embodiment, the drainage valves A and B give priority to the low-temperature remaining hot water inside the hot water supply pipe over the remaining hot water on the hot water supply pipe side according to the temperature results detected by the temperature sensors 41a and 41b. In addition to the operation of the first and second embodiments described above, when the hot water comes to the branch line, the second water drain valve of the tapping line can be opened. If the hot water suddenly enters the mixing faucet 8 after the water draining operation is completed, it is possible to solve the problem that the temperature control characteristics at the beginning of the hot water supply become unstable.
[0033]
Although the above-described embodiment illustrates an example in which the present invention is applied to a hot water washing device for a toilet, it is also applicable to an apparatus having a hot water side and a water side pipe such as a gas water heater.
In particular, in the gas water heater, a certain flow rate can be secured by preferentially discarding only the hot water side, and ignition can be reliably performed.
[0034]
【The invention's effect】
As described above, according to the present invention, the remaining hot water in the hot water supply pipe is discarded before being mixed with the water in the water supply pipe. The time required for water can be reduced. Further, even when the temperature of the hot water in the tapping line is low or unstable, the water can be effectively drained.
[Brief description of the drawings]
FIG. 1 is a pipeline system diagram showing a first embodiment of a hot water supply pipe drainage mechanism according to the present invention.
FIG. 2 is a sectional view showing a structure of a flow path switching valve in the first embodiment.
FIG. 3 is a cross-sectional view illustrating a structure of a flow path switching valve according to a modification of the first embodiment.
FIG. 4 is a pipeline system diagram showing a second embodiment.
FIG. 5 is a pipeline diagram showing a third embodiment.
FIG. 6 is a circuit diagram illustrating the configuration of a control circuit according to a third embodiment;
FIG. 7 is a timing chart showing the operation timing of the third embodiment.
FIG. 8 is a pipeline system diagram showing a conventional example.
[Explanation of symbols]
1. Hot water supply main pipe A: Water drain valve (first water drain valve)
2: Main water supply pipe B: Water drain valve (second water drain valve)
3 hot water supply pipes 41a, 41b temperature sensor 4 water supply pipe 42 control circuit 7 hot water supply pipe 8 mixed faucet with thermostat (temperature control unit)
DESCRIPTION OF SYMBOLS 11 ... Branch line 12 ... Waste water flow path switching valve 15 ... Waste water flow path 39 ... Temperature sensor 40 ... Automatic water discharge valve

Claims (5)

温度調節部に至る給湯配管の途中を分岐した分岐管路を一方の流入ポートとする捨水用流路切換弁が設けられ、該流路切換弁の他方の流入ポートには温度調節部を経た出湯管路が接続され、前記流路切換弁は給湯配管内側の残り湯を出湯管路側の残り湯よりも優先して捨水することを特徴とする給湯配管の捨水機構。A drainage flow path switching valve is provided with a branch pipe branching in the middle of the hot water supply pipe reaching the temperature control section as one inflow port, and the other inflow port of the flow path switching valve has passed through the temperature control section. A hot water supply pipe draining mechanism, wherein the hot water supply pipe is connected, and the flow path switching valve drains the remaining hot water inside the hot water supply pipe prior to the remaining hot water on the hot water supply pipe side. 温度調節部に至る給湯配管の途中を分岐した分岐管路を流入ポートとする第1の捨水バルブと、前記温度調節部を経た出湯管路が接続される第2の捨水バルブとが設けられ、これら第1及び第2の捨水バルブは給湯配管内側の残り湯を出湯管路側の残り湯よりも優先して捨水制御されることを特徴とする給湯配管の捨水機構。A first water drain valve having a branch pipe branching in the middle of the hot water supply pipe to the temperature control section as an inflow port, and a second water drain valve connected to a tap water pipe passing through the temperature control section are provided. The first and second drain valves are configured to control the remaining hot water inside the hot water supply pipe with priority over the remaining hot water on the hot water supply pipe side. 前記出湯管路の途中に温度センサが配置され、該温度センサの出力により捨水用流路切換弁の流出ポートに接続された捨水バルブが開閉制御されることを特徴とする請求項1記載の給湯配管の捨水機構。The temperature sensor is arranged in the middle of the tapping line, and the output of the temperature sensor controls opening and closing of a water drain valve connected to an outflow port of the water drain passage switching valve. Hot water supply pipe drainage mechanism. 温度調節部に至る給湯配管の途中を分岐した分岐管路を流入ポートとする第1の捨水バルブと、前記温度調節部を経た出湯管路が接続される第2の捨水バルブと、前記第1及び第2の捨水バルブの流入側の湯温を検出する第1及び第2の温度センサがそれぞれ設けられ、これら温度センサの検知結果によって、第1及び第2の捨水バルブは給湯配管内側の残り湯を出湯管路側の残り湯よりも優先して捨水するとともに、出湯管路から所定温度の湯が流出されるまで第2の捨水バルブを開制御することを特徴とする給湯配管の捨水機構。A first water drain valve having a branch pipe branching in the middle of the hot water supply pipe reaching the temperature control unit as an inflow port, a second water drain valve connected to a tap water pipe passing through the temperature control unit, First and second temperature sensors for detecting the temperature of the hot water on the inflow side of the first and second drain valves are provided, respectively, and the first and second drain valves are supplied with hot water according to the detection results of these temperature sensors. The remaining hot water inside the pipe is drained with priority over the remaining hot water on the tapping line side, and the second drain valve is controlled to open until hot water of a predetermined temperature flows out of the tapping line. Water supply pipe drainage mechanism. 前記温度調節部が洗浄ノズルより噴出する温水洗浄装置用のサーモスタット付混合水栓であることを特徴とする請求項1乃至4の内のいずれかに記載の給湯配管の捨水機構。The water supply mechanism according to any one of claims 1 to 4, wherein the temperature control unit is a thermostatically-equipped mixing faucet for a hot water washing device ejected from a washing nozzle.
JP19172694A 1994-07-11 1994-07-11 Hot water supply water drainage mechanism Expired - Fee Related JP3554869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19172694A JP3554869B2 (en) 1994-07-11 1994-07-11 Hot water supply water drainage mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19172694A JP3554869B2 (en) 1994-07-11 1994-07-11 Hot water supply water drainage mechanism

Publications (2)

Publication Number Publication Date
JPH0828896A JPH0828896A (en) 1996-02-02
JP3554869B2 true JP3554869B2 (en) 2004-08-18

Family

ID=16279474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19172694A Expired - Fee Related JP3554869B2 (en) 1994-07-11 1994-07-11 Hot water supply water drainage mechanism

Country Status (1)

Country Link
JP (1) JP3554869B2 (en)

Also Published As

Publication number Publication date
JPH0828896A (en) 1996-02-02

Similar Documents

Publication Publication Date Title
KR910016303A (en) Shower device
JP3554869B2 (en) Hot water supply water drainage mechanism
JP2002250564A (en) Main pipe stop system electric water heater and flow passage switching valve
JP2003130469A (en) Method for discharging expanded water from main stop system water heater
JP3562344B2 (en) How to control the faucet
JP2001227035A (en) Control method of hot water cleaning device
JP4482922B2 (en) Hot water heater
JPH06154120A (en) Shower apparatus
JP2827308B2 (en) Handwasher with water heater
JP2506893B2 (en) Toilet bowl equipment
JPH0343535Y2 (en)
JP2565575Y2 (en) Shower equipment
KR100620579B1 (en) Control method of purifier
JP3470883B2 (en) Indoor stopcock with antifreeze water supply and automatic drainage mechanism
JP3891058B2 (en) Equipment for pouring water into equipment
JPH0514110Y2 (en)
KR100286137B1 (en) Control method for preventing malfunction when switching from gas boiler heating to hot water
JP4060132B2 (en) Local cleaning equipment
JP4463614B2 (en) Sanitary washing device
JPH1089717A (en) Hot water supply system
KR100286138B1 (en) Control method to prevent malfunction when switching from hot water of gas boiler to heating
JPH0277812A (en) Hot water and cold water mixing device
JP2000136554A (en) Shower unit
JPH0828954A (en) Hot water supplying apparatus
JP2003024232A (en) Shower apparatus

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040422

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080521

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees