JP3554464B2 - Chamber used for low concentration NOx measuring instrument - Google Patents

Chamber used for low concentration NOx measuring instrument Download PDF

Info

Publication number
JP3554464B2
JP3554464B2 JP11086497A JP11086497A JP3554464B2 JP 3554464 B2 JP3554464 B2 JP 3554464B2 JP 11086497 A JP11086497 A JP 11086497A JP 11086497 A JP11086497 A JP 11086497A JP 3554464 B2 JP3554464 B2 JP 3554464B2
Authority
JP
Japan
Prior art keywords
sensor element
catalyst
gas
chamber
nox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11086497A
Other languages
Japanese (ja)
Other versions
JPH10300704A (en
Inventor
真治 大坪
俊広 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP11086497A priority Critical patent/JP3554464B2/en
Priority to US09/063,471 priority patent/US6044689A/en
Priority to EP98303116A priority patent/EP0874236B1/en
Priority to DE69826057T priority patent/DE69826057T2/en
Publication of JPH10300704A publication Critical patent/JPH10300704A/en
Application granted granted Critical
Publication of JP3554464B2 publication Critical patent/JP3554464B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、NO/NO 分圧比を平衡状態にする触媒と、NOxを含む被測定ガスが接触することによりそのNOx成分に応じて抵抗が変化する金属酸化物からなるセンサ素子であって、この触媒を通過していない被測定ガス中に配置した第1のセンサ素子と、この触媒を通過した被測定ガス中に配置した第2のセンサ素子とからなる低濃度NOx計測器に用いるチャンバに関するものである。
【0002】
【従来の技術】
従来、焼却炉の燃焼排ガス等のNOxを含む被測定ガス中のNOx濃度を測定する方法として、例えば煙道中のNOxを含む被測定ガスをサンプリングし、サンプリングしたガスを光学式測定器を用いて計測する方法が行われている。しかし、上述した光学式の測定器は高価であり、またサンプリングが必要なため応答性が悪くなる問題があった。
【0003】
上記問題を解消するための技術として、煙道直下型半導体センサが近年使用されている。例えば、特開平6−222028号公報において、所定のペロプスカイト型酸化物からなる感応部と、この感応部の導電性を測定するための導電性測定部とを備えるNOxセンサが開示されている。
【0004】
【発明が解決しようとする課題】
しかしながら、上述した煙道直下型半導体センサにおいても、NOx以外に被測定ガス中に含まれるO およびCOのNOx測定値に対する干渉について全く対策をとっていなかった。また、感応部は、通常NOx(NO +NO)の存在する量すなわち濃度に応じて抵抗値が変化する。しかし、NO とNOの存在する量(濃度)の比、言い換えるとNO とNOの分圧の比が異なると、同じNOx量であっても感応部で測定した抵抗値が変化する問題があった。そのため、被測定ガス中のNOxのみを選択的に測定しているとは考え難く、上述した煙道直下型半導体センサは、光学式のものに比べて安価で応答性が良いものの、被測定ガス中のNOx濃度を選択的かつ高精度で測定できない問題があった。
【0005】
また、この問題を解消するために、本出願人は特開平8−278272号公報において、酸化物からなるセンサ素子の上流側に設けたNO/NO 分圧比を平衡状態にしCOを除去するための触媒と、温度調節用ヒータと、校正用のO センサとを備えるNOxセンサを開示している。しかし、このNOxセンサも測定対象が上述した従来例と同様に焼却炉の燃焼排ガスであり、本発明で目的とする大気中の低濃度のNOx濃度を測定するには、最良の構成とは言い難く、不十分な問題があった。
【0006】
さらに、本出願人は特願平9−80054号において、NO/NO 分圧比を平衡状態にする触媒と、NOxを含む被測定ガスが接触することによりそのNOx成分に応じて抵抗が変化する金属酸化物からなるセンサ素子であって、この触媒を通過していない被測定ガス中に配置した第1のセンサ素子と、この触媒を通過した被測定ガス中に配置した第2のセンサ素子とからなる低濃度NOx計測器を開示している。この低濃度NOx計測器では、チャンバ内に第1のセンサ素子、触媒、第2のセンサ素子を設ける点の開示はあるが、そのチャンバの構成については特に開示が無く、チャンバの大きさを小さくする点および測定精度を向上させる点においてチャンバの構成を最適化する要望があった。
【0007】
本発明は上述した課題を解消して、低濃度NOx計測器においてコンパクトで向上した測定精度を達成できるチャンバを提供しようとするものである。
【0008】
【課題を解決するための手段】
本発明の低濃度NOx計測器に用いるチャンバは、NO/NO 分圧比を平衡状態にする触媒と、NOxを含む被測定ガスが接触することによりそのNOx成分に応じて抵抗が変化する金属酸化物からなるセンサ素子であって、この触媒を通過していない被測定ガス中に配置した第1のセンサ素子と、この触媒を通過した被測定ガス中に配置した第2のセンサ素子とからなる低濃度NOx計測器に用いるチャンバであって、被測定ガスのガス入口およびガス出口を有するチャンバ基体内に、前記第1のセンサ素子を取り付けるための第1のセンサ素子取付部と、前記触媒を収納するための触媒収納部と、前記第2のセンサ素子を取り付けるための第2のセンサ素子取付部とを形成し、前記ガス入口と第1のセンサ素子取付部とを第1の連通孔で、前記第1のセンサ素子取付部と触媒収納部の入口側とを第2の連通孔で、前記触媒収納部の出口側と第2のセンサ素子取付部とを第3の連通孔で、前記第2のセンサ素子取付部とガス出口とを第4の連通孔でそれぞれ連結したことを特徴とするものである。
【0009】
本発明では、チャンバ基体内に、第1のセンサ素子取付部、触媒収納部、第2のセンサ素子取付部を設け、それらの間を第1〜第4の連通孔で連結した構造とすることで、第1のセンサ素子、触媒、第2のセンサ素子をチャンバ内に一体化している。そのため、大きな内部空間を有するチャンバ内に第1のセンサ素子、触媒、第2のセンサ素子を配置した場合と比較して、チャンバ全体の大きさをコンパクトにすることができる。
【0010】
また、第2の連通孔の断面積が、第1のセンサ素子取付部の断面積よりも小さくなっているため、流路の長さを長くすることができ、高温である第1のセンサ素子の温度の影響を触媒が受けにくくなる。
【0011】
【発明の実施の態様】
図1は本発明のチャンバを用いる対象となる低濃度NOx計測器の一例の構成を示す図である。なお、図1に示す例では、説明の都合上チャンバの部分を簡略化して記載している。図1に示す例において、本発明の低濃度NOx計測器1は、大気導入管2と大気導出管3とを有するチャンバ4内に、大気の流れの上流側から第1のセンサ素子6−1、触媒5および第2のセンサ素子6−2を設けるとともに、チャンバ4外に測定部7を設けて構成されている。また、8は触媒5を加熱するための電源、9−1、9−2は第1のセンサ素子6−1、第2のセンサ素子6−2を加熱するための電源である。大気導入管2には、大気の流れの上流側から、異物を除去するためのフィルタ10、ポンプ11、減圧弁12、流量計13を設け、チャンバ4内に被測定ガスとしての大気が常に一定量供給されるよう構成されている。
【0012】
測定部7は、第1のセンサ素子6−1および第2のセンサ素子6−2の各別に対応して設けた抵抗検出手段14−1、14−2、CPU15、表示部16、キャリブレーション部17とから構成される。この測定部7では、センサ素子6−1、6−2の抵抗変化を検出して、検出した触媒5の前後の第1のセンサ素子6−1および第2のセンサ素子6−2からの抵抗変化に基づき、以下に示すように所定の数式を使用して、大気中のNO濃度およびNO 濃度を各別に求めることができる。もちろん、その合計からNOx濃度を求めることもできる。
【0013】
触媒5は、NO/NO の分圧比を平衡状態にし、且つCO等の可燃性ガスを燃焼除去するために使用される。触媒5としては、貴金属または金属酸化物を使用することが好ましい。貴金属としては、白金、ロジュームまたは金を、また金属酸化物としては、酸化マンガン、酸化コバルトまたは酸化錫を使用するとさらに好ましい。触媒5の加熱は、チャンバ4に設けたヒータ21を電源8により加熱することで行っている。
【0014】
第1のセンサ素子6−1および第2のセンサ素子6−2は、NOxを含む被測定ガスが接触することによりそのNOx成分に応じて抵抗が変化する金属酸化物半導体22−1、22−2を、ヒータ23−1、23−2を内蔵したセラミック基板24−1、24−2の表面に設けて構成される。ヒータ23−1、23−2は電源9−1、9−2により加熱される。金属酸化物半導体22−1、22−2としては、SnO 単独またはSnO と好ましくはTaおよびRhからなる添加物の混合物を使用することが好ましい。第1のセンサ素子6−1および第2のセンサ素子6−2は同一の構成を有しており、第1および第2のセンサ素子6−1、6−2は上記酸化物から構成されていれば、構成、形状等の他の要件は従来から公知のものと同じものを使用することができる。
【0015】
以下、上述した構成の本発明の低濃度NOx計測器1におけるNOx濃度測定方法を以下に説明する。まず、第1および第2のセンサ素子6−1、6−2の温度Tが好ましくは500℃≦T≦800℃となるよう電源9−1、9−2で制御するとともに、触媒5の温度を触媒5が活性化する例えば380℃の温度に電源8を制御する。この状態で、NOxを含む空気が空気導入管2からチャンバ4内に供給される。供給された空気は、まず第2のセンサ素子6−1と接触して、その抵抗値を測定される。次に、触媒5を通過することで、大気中のNO/NO の分圧比が平衡状態となるとともに、大気中のCO等の可燃成分が除去される。このようにしてNO/NO の分圧比が平衡状態で可燃成分が除去された大気が、第2のセンサ素子6−2と接触して、その抵抗値を測定される。第1および第2のセンサ素子6−1、6−2で測定した触媒5通過前後の抵抗値からNO濃度及びNO 濃度を求める方法は、以下の通りである。
【0016】
触媒5を通過した空気は、NO/NO が一定で、NOx分圧はNO分圧とNO 分圧との合計であることから、以下の式(1)と式(2)を得ることができる。
NO/PNO2 =α ‥‥(1)
NO+PNO2 =PNOX ‥‥(2)
また、本出願人が先に出願した通り、抵抗値RとNO、NO 、O の各分圧との関係は、以下の式(3)となる。
【数1】

Figure 0003554464
ここで、大気中のPO2は一定であることから、、上記式(1)〜(3)の関係に基づき、第2のセンサ素子6−2の測定した抵抗値RからPNOX を求めることができる。なお、係数A〜HおよびQは、既知のNO、NO 、O 濃度のガスを使用して予め第2のセンサ素子6−2に対して求めておく。
【0017】
そして、触媒5を通過しないNO/NO の分圧比が変化する空気に対する第1のセンサ素子6−1の抵抗値Rから、PO2は一定であることから上記式(3)を利用して、第1のセンサ素子6−1におけるPNOとPNO2 との相関を求めることができる。もちろん、係数A〜HおよびQは、上記第2のセンサ素子6−2とは別に、第1のセンサ素子6−1に対して既知のNO、NO 、O 濃度のガスを使用して予め求めておく。得られた第1のセンサ素子6−1におけるPNOとPNO2 の相関関係と、第2のセンサ素子6−2における上記式(2)の関係(ここでPNOX は既知である)とを、連立して解くことにより、PNOとPNO2 を求めることができる。そして、PNOとPNO2 は一義的にNO濃度とNO 濃度に対応するため、予め求めたPNOとNO濃度の関係及びPNO2 とNO 濃度との関係から、NO濃度とNO 濃度を求めることができる。
【0018】
図2(a)、(b)は図1に示す低濃度NOx計測器1のチャンバ4の詳細な構成を示す平面図およびそのA−A線に沿った部分断面図である。上述したように、図2(a)、(b)に示す本発明のチャンバ4は、第1のセンサ素子6−1、触媒5、第2のセンサ素子6−2を一体に形成するために用いられる。図2(a)、(b)において、チャンバ4は、被測定ガスのガス入口31およびガス出口32を有するチャンバ基体33内に、第1のセンサ素子6−1を取り付けるための第1のセンサ素子取付部34と、触媒5を収納するための触媒収納部35と、第2のセンサ素子6−2を取り付けるための第2のセンサ素子取付部36とを形成して構成される。なお、第1のセンサ素子6−1および第2のセンサ素子6−2の形状は上述したように板状であるが、図2においてはその全体がカバーで覆われている。
【0019】
また、ガス入口31と第1のセンサ素子取付部34とは第1の連通孔37で連結されている。第1の連通孔37はガス入口31から水平に延びて第1のセンサ素子取付部34の側面に接続されている。第1のセンサ素子取付部34と触媒収納部35の入口側とは第2の連通孔38で連結されている。ここで第2の連通孔38は、第1のセンサ素子取付部34の断面積よりも小さくなっている。第2の連通孔38は第1のセンサ素子取付部34の底部から下方向に垂直に延びその後水平に延びて触媒収納部35の側面の入口側に接続されている。触媒収納部35の上部の出口側と第2のセンサ素子取付部36とは第3の連通孔39で連結されている。第3の連通孔39は触媒収納部35の上部の出口側から上方向に垂直に延びその後水平に延びて第2のセンサ素子取付部36の側面に接続されている。第2のセンサ素子取付部36とガス出口32とは第4の連通孔40で連結されている。第4の連通孔40は第2のセンサ素子取付部36の底部から下方向に垂直に延び水平に延びた後上方向に垂直に延びさらに水平に延びてガス出口32と接続されている。
【0020】
図2(a)、(b)に示す例では、第1のセンサ素子6−1および第2のセンサ素子6−2とも先端部にカバー41−1、41−2を設けている。上述したように、第1のセンサ素子6−1および第2のセンサ素子6−2はいずれも板状である。ここで、本例では、第1のセンサ素子6−1および第2のセンサ素子6−2は、その金属酸化物半導体がカバー41−1、41−2の側面に設けられた孔42−1、42−2と対向するよう、カバー41−1、41−2内に設けられている。また、カバー42−1、42−2のそれぞれの先端には、孔が開いている。
【0021】
図2(a)、(b)に示す例では、触媒収納部35の入口側に被測定ガスのガス整流板43を設けるとともに、チャンバ基体33の内部の6箇所に図2(a)に示すように棒状のヒータ44−1〜44−6を設けている。ガス整流板43は、第2の連通孔38から触媒収納部35に供給される被測定ガスの流れを整流し、触媒5に対して被測定ガスが均一に流れるように設けられている。これは、触媒5としてハニカム構造体に触媒を担持させた構造の触媒を使用する場合、ハニカム構造体の流路に均一に被測定ガスを流すためである。また、本例では、触媒収納部35を、チャンバ4の外表面から直径が3段階に小さくなる第1〜第3の収納部35−1〜35−3とから構成する。そして、保持部材45に保持した触媒35を直径の一番小さい第3の収納部35−3に収納し、第2の連通孔38が連通する第2の収納部35−2にガス整流板43を収納し、第1の収納部35−1に蓋部46をネジ止め可能に収納している。そのため、触媒5の着脱が可能である。第3の収納部35−3と第2の収納部35−2との段部および第2の収納部35−2と第1の収納部35−1との段部に、それぞれシール部47−1、47−2を設け、外部からガスが侵入しないよう構成している。
【0022】
また、棒状のヒータ44−1〜44−6は、チャンバ基体33を均一に加熱して触媒5の温度を一定の温度例えば上述した例では380℃に制御するために用いられる。本例では、第1のセンサ素子6−1および第2のセンサ素子6−2の温度を例えば520℃に保持する必要があるため、第1のセンサ素子6−1および第2のセンサ素子6−2はそれぞれヒータを内蔵して、上記棒状のヒータ43−1、43−6に加えてそれぞれの内蔵ヒータを用いて、温度制御を行っている。なお、48はチャンバ基体33の温度を保持するための断熱材、49はチャンバ基体33に設けた温度計挿入用の孔である。また、ここで棒状ヒータをチャンバ基体の内部に設けたが、棒状以外のヒータも当然用いられ、さらに、チャンバ基体内部にヒータを設けず、外部からの間接的な加熱も当然可能である。
【0023】
次に、図3(a)、(b)に、アンモニア又はオゾンに対してセンサ素子の抵抗変化が影響を受ける場合に好ましい例を示す。すなわち、図3(a)、(b)において、第1の連通孔37に触媒収納部35と同様に収納部1を設け、この収納部51に、アンモニア除去部52又はオゾン除去部52を、整流板43及び蓋部46と同様の構成の整流板53及び蓋部54を利用して固定している。図3(a)、(b)に示す例において、図2(a)、(b)に示す例と同一の部材には同一の符号を付し、その説明を省略する。なお、図3(a)、(b)に示す例では、図2(a)、(b)に示す例に加えてアンモニア除去部52又はオゾン除去部52をを設けているため、そのための棒状ヒータ44−7、44−8をさらに設けている。また、図3(a)、(b)の例では、収納部51が1箇所であるため、用途に応じてアンモニア除去部52又はオゾン除去部52のいずれか1つを設けるよう構成しているが、必要に応じて収納部を2箇所設け、アンモニア除去部52とオゾン除去部52の両者を備えるよう構成することもできる。
【0024】
センサ素子6−1、6−2がNOx成分に応じて抵抗変化するだけでなく、大気中に存在する微量なアンモニアガスに対しても抵抗変化する場合は、予めアンモニア除去処理をすることが好ましい。図3(a)、(b)に示す例では、このアンモニア処理のために、例えばクエン酸や蓚酸等の有機酸又はリン酸、硼酸などの無機酸の微粉末を付けたフィルターからなるアンモニア除去部52を設け、ここでアンモニアを塩として反応除去する。また、センサ素子6−1、6−2がNOx成分に応じて抵抗変化するだけでなく、大気中に存在する微量なオゾンガスに対しても抵抗変化する場合、予めオゾン除去処理をすることが好ましい。図3(a)、(b)に示す例では、このオゾン処理のために、例えばオゾン分解触媒として既知のカロライトからなるオゾン除去部52を設け、ここでオゾンは酸素として分解処理される。
【0025】
【発明の効果】
以上の説明から明らかなように、本発明によれば、チャンバ基体内に、第1のセンサ素子取付部、触媒収納部、第2のセンサ素子取付部を設け、それらの間を第1〜第4の連通孔で連結した構造とすることで、第1のセンサ素子、触媒、第2のセンサ素子をチャンバ内に一体化しているため、大きな内部空間を有するチャンバ内に第1のセンサ素子、触媒、第2のセンサ素子を配置した場合と比較して、チャンバ全体の大きさをコンパクトにすることができる。
【図面の簡単な説明】
【図1】本発明のチャンバを用いる対象となる低濃度NOx計測器の一例の構成を示す図である。
【図2】図1に示す低濃度NOx計測器のチャンバの詳細な構成の一例を示す図である。
【図3】図1に示す低濃度NOx計測器のチャンバの詳細な構成の他の例を示す図である。
【符号の説明】
1 低濃度NOx計測器、5 触媒、6−1 第1のセンサ素子、6−2ダイ2のセンサ素子、31 ガス入口、 32 ガス出口、33 チャンバ基体、34 第1のセンサ素子取付部、35 触媒収納部、36 第2のセンサ素子取付部、37 第1の連通孔、38 第2の連通孔、39 第3の連通孔、40 第4の連通孔、43 ガス整流板、44−1〜44−6 棒状のヒータ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is a catalyst for the pressure ratio NO / NO 2 minutes to equilibrate, a sensor element made of a metal oxide whose resistance varies depending on the NOx component by the measurement gas contacts including NOx, A chamber used for a low-concentration NOx measuring device comprising a first sensor element arranged in a gas to be measured not passing through the catalyst and a second sensor element arranged in a gas to be measured passing through the catalyst. Things.
[0002]
[Prior art]
Conventionally, as a method of measuring the NOx concentration in the gas to be measured containing NOx such as combustion exhaust gas of an incinerator, for example, a gas to be measured containing NOx in a flue is sampled, and the sampled gas is measured using an optical measuring instrument. A measuring method has been implemented. However, there is a problem that the above-mentioned optical measuring device is expensive and the response is deteriorated because sampling is required.
[0003]
As a technique for solving the above problem, a flue gas type semiconductor sensor has recently been used. For example, Japanese Patent Application Laid-Open No. 6-2222028 discloses a NOx sensor including a sensitive portion made of a predetermined perovskite oxide and a conductivity measuring portion for measuring the conductivity of the sensitive portion.
[0004]
[Problems to be solved by the invention]
However, even in the direct type semiconductor sensor flue as described above did not take measures at all the interference to NOx measurements of O 2 and CO contained in the measurement gas in addition to NOx. In addition, the resistance value of the sensitive part changes in accordance with the amount of NOx (NO 2 + NO), that is, the concentration of NOx (NO 2 + NO). However, if the ratio of the amounts (concentrations) of NO 2 and NO present, that is, the ratio of the partial pressures of NO 2 and NO, is different, the resistance value measured at the sensitive part changes even with the same amount of NOx. there were. For this reason, it is difficult to consider that only the NOx in the gas to be measured is selectively measured. There was a problem that the NOx concentration in the sample could not be measured selectively and with high accuracy.
[0005]
In order to solve this problem, the present applicant disclosed in Japanese Patent Application Laid-Open No. 8-278272 in order to remove CO by setting a partial pressure ratio of NO / NO 2 provided on the upstream side of a sensor element made of an oxide to an equilibrium state. Discloses a NOx sensor including a catalyst, a heater for temperature control, and an O 2 sensor for calibration. However, the measurement target of this NOx sensor is the combustion exhaust gas of an incinerator as in the above-described conventional example, and is not the best configuration for measuring the low concentration of NOx in the air intended in the present invention. There were difficult and insufficient problems.
[0006]
Furthermore, the present applicant in Japanese Patent Application No. Hei 9-80054, the resistance changes in accordance with the NOx component by a catalyst for the pressure ratio NO / NO 2 minutes to equilibrate, the measurement gas containing the NOx contacts A sensor element made of a metal oxide, wherein the first sensor element is arranged in the gas to be measured that has not passed through the catalyst, and the second sensor element is arranged in the gas to be measured that has passed through the catalyst. Discloses a low-concentration NOx measuring device. In this low-concentration NOx measuring device, there is a disclosure that a first sensor element, a catalyst, and a second sensor element are provided in a chamber, but there is no particular disclosure about the configuration of the chamber, and the size of the chamber is reduced. There has been a demand for optimizing the configuration of the chamber in terms of performing the measurement and improving the measurement accuracy.
[0007]
An object of the present invention is to solve the above-mentioned problems and to provide a compact and low-concentration NOx measuring instrument capable of achieving improved measurement accuracy.
[0008]
[Means for Solving the Problems]
Chamber used for low concentration NOx meter of the present invention, a metal oxide whose resistance varies depending on the NOx component by a catalyst for the equilibrium pressure ratio NO / NO 2 minutes, the measurement gas containing the NOx contacts A first sensor element disposed in the gas to be measured that has not passed through the catalyst, and a second sensor element disposed in the gas to be measured that has passed through the catalyst. A first sensor element mounting portion for mounting the first sensor element in a chamber base having a gas inlet and a gas outlet for a gas to be measured, the chamber being used for a low concentration NOx measuring device; Forming a catalyst storage portion for storing therein, and a second sensor element mounting portion for mounting the second sensor element, wherein the gas inlet and the first sensor element mounting portion are formed in a first communication hole; The first sensor element mounting portion and the inlet side of the catalyst storage portion are formed with a second communication hole, and the outlet side of the catalyst storage portion and the second sensor element mounting portion are formed with a third communication hole. The second sensor element mounting portion and the gas outlet are connected to each other by a fourth communication hole.
[0009]
In the present invention, the first sensor element mounting portion, the catalyst housing portion, and the second sensor element mounting portion are provided in the chamber base, and a structure in which the first sensor element mounting portion, the catalyst housing portion, and the second sensor element mounting portion are connected by the first to fourth communication holes. Thus, the first sensor element, the catalyst, and the second sensor element are integrated in the chamber. Therefore, the size of the entire chamber can be reduced as compared with the case where the first sensor element, the catalyst, and the second sensor element are arranged in a chamber having a large internal space.
[0010]
Further, since the cross-sectional area of the second communication hole is smaller than the cross-sectional area of the first sensor element mounting portion, the length of the flow path can be increased, and the first sensor element having a high temperature can be used. The catalyst is less susceptible to the influence of the temperature.
[0011]
DESCRIPTION OF THE PREFERRED EMBODIMENTS
FIG. 1 is a diagram showing the configuration of an example of a low-concentration NOx measuring instrument to which the chamber of the present invention is applied. In the example shown in FIG. 1, the chamber portion is simplified for convenience of description. In the example shown in FIG. 1, a low-concentration NOx measuring instrument 1 of the present invention includes a first sensor element 6-1 in a chamber 4 having an atmosphere inlet pipe 2 and an atmosphere outlet pipe 3 from the upstream side of the air flow. , A catalyst 5 and a second sensor element 6-2, and a measuring unit 7 provided outside the chamber 4. Reference numeral 8 denotes a power supply for heating the catalyst 5, and 9-1 and 9-2 denote power supplies for heating the first sensor element 6-1 and the second sensor element 6-2. The air introduction pipe 2 is provided with a filter 10, a pump 11, a pressure reducing valve 12, and a flow meter 13 for removing foreign matter from the upstream side of the flow of the atmosphere, and the atmosphere as the gas to be measured is always constant in the chamber 4. It is configured to be metered.
[0012]
The measuring unit 7 includes resistance detecting units 14-1 and 14-2 provided for each of the first sensor element 6-1 and the second sensor element 6-2, the CPU 15, the display unit 16, and the calibration unit. 17 is comprised. The measuring unit 7 detects a change in resistance of the sensor elements 6-1 and 6-2, and detects the resistance from the first sensor element 6-1 and the second sensor element 6-2 before and after the detected catalyst 5. Based on the change, the atmospheric NO concentration and NO 2 concentration can be separately calculated using a predetermined mathematical formula as shown below. Of course, the NOx concentration can be determined from the sum.
[0013]
The catalyst 5 is used for equilibrating the partial pressure ratio of NO / NO 2 and combusting and removing combustible gas such as CO. As the catalyst 5, it is preferable to use a noble metal or a metal oxide. More preferably, platinum, rhodium or gold is used as the noble metal, and manganese oxide, cobalt oxide or tin oxide is used as the metal oxide. The heating of the catalyst 5 is performed by heating the heater 21 provided in the chamber 4 with the power supply 8.
[0014]
The first sensor element 6-1 and the second sensor element 6-2 have metal oxide semiconductors 22-1 and 22-2 whose resistance changes in accordance with the NOx component when the gas to be measured containing NOx comes into contact. 2 is provided on the surface of ceramic substrates 24-1 and 24-2 having heaters 23-1 and 23-2 built therein. The heaters 23-1 and 23-2 are heated by power supplies 9-1 and 9-2. As the metal oxide semiconductor 22-1 and 22-2, preferably a SnO 2 alone or SnO 2 is preferred to use a mixture of additives consisting of Ta and Rh. The first sensor element 6-1 and the second sensor element 6-2 have the same configuration, and the first and second sensor elements 6-1 and 6-2 are made of the above oxide. If so, the other requirements such as the configuration and shape can be the same as those conventionally known.
[0015]
Hereinafter, a method of measuring the NOx concentration in the low-concentration NOx measuring instrument 1 of the present invention having the above-described configuration will be described below. First, the temperature T of the first and second sensor elements 6-1 and 6-2 is controlled by the power supplies 9-1 and 9-2 so that preferably 500 ° C. ≦ T ≦ 800 ° C. The power source 8 is controlled to a temperature of, for example, 380 ° C. at which the catalyst 5 is activated. In this state, air containing NOx is supplied from the air introduction pipe 2 into the chamber 4. The supplied air first contacts the second sensor element 6-1 and its resistance is measured. Next, by passing through the catalyst 5, the partial pressure ratio of NO / NO 2 in the atmosphere becomes equilibrium, and combustible components such as CO in the atmosphere are removed. The atmosphere from which the combustible components have been removed in the state where the partial pressure ratio of NO / NO 2 is in an equilibrium state comes into contact with the second sensor element 6-2, and the resistance value is measured. The method for obtaining the NO concentration and the NO 2 concentration from the resistance values before and after passing through the catalyst 5 measured by the first and second sensor elements 6-1 and 6-2 is as follows.
[0016]
Since NO / NO 2 is constant in the air passing through the catalyst 5 and the NOx partial pressure is the sum of the NO partial pressure and the NO 2 partial pressure, the following equations (1) and (2) are obtained. Can be.
P NO / P NO2 = α ‥‥ (1)
P NO + P NO2 = P NOX ‥‥ (2)
Further, as previously filed by the present applicant, the relationship between the resistance value R and the partial pressures of NO, NO 2 , and O 2 is represented by the following equation (3).
(Equation 1)
Figure 0003554464
Here, ,, from the equation that P O2 in the atmosphere is constant (1) to (3) based on the relationship, obtaining the P NOX from the measured resistance value R of the second sensor element 6-2 Can be. The coefficient A~H and Q are previously obtained in advance to the second sensor element 6-2 by using a known NO, NO 2, O 2 concentration of the gas.
[0017]
Then, the resistance value of the first sensor element 6-1 R for air partial pressure ratio of NO / NO 2 is not passed through the catalyst 5 is changed, P O2 utilizes the above equation (3) is constant , The correlation between P NO and P NO2 in the first sensor element 6-1 can be obtained. Of course, the coefficients A to H and Q can be determined by using a gas having a known NO, NO 2 , and O 2 concentration for the first sensor element 6-1 separately from the second sensor element 6-2. Obtain it in advance. The obtained correlation between P NO and P NO2 in the first sensor element 6-1 and the relation of the above equation (2) in the second sensor element 6-2 (where P NOX is known) are shown below. By solving simultaneously, P NO and P NO2 can be obtained. Then, since the P NO and P NO2 corresponding to uniquely NO concentration and NO 2 concentration, the relationship between the relationship and P NO2 and NO 2 concentration in the previously obtained P NO and NO concentrations, NO concentration and NO 2 concentration Can be requested.
[0018]
2A and 2B are a plan view showing a detailed configuration of the chamber 4 of the low-concentration NOx measuring instrument 1 shown in FIG. 1 and a partial cross-sectional view taken along line AA. As described above, the chamber 4 of the present invention shown in FIGS. 2A and 2B is used for integrally forming the first sensor element 6-1, the catalyst 5, and the second sensor element 6-2. Used. 2A and 2B, a chamber 4 is provided with a first sensor for mounting a first sensor element 6-1 in a chamber base 33 having a gas inlet 31 and a gas outlet 32 for a gas to be measured. An element mounting part 34, a catalyst storage part 35 for storing the catalyst 5, and a second sensor element mounting part 36 for mounting the second sensor element 6-2 are formed. Note that the first sensor element 6-1 and the second sensor element 6-2 are plate-shaped as described above, but are entirely covered with the cover in FIG.
[0019]
Further, the gas inlet 31 and the first sensor element mounting portion 34 are connected by a first communication hole 37. The first communication hole 37 extends horizontally from the gas inlet 31 and is connected to a side surface of the first sensor element mounting portion 34. The first sensor element mounting part 34 and the inlet side of the catalyst storage part 35 are connected by a second communication hole 38. Here, the second communication hole 38 is smaller than the cross-sectional area of the first sensor element mounting portion 34. The second communication hole 38 extends vertically downward from the bottom of the first sensor element mounting portion 34 and then extends horizontally, and is connected to the inlet side of the side surface of the catalyst housing portion 35. The upper outlet side of the catalyst storage section 35 and the second sensor element mounting section 36 are connected by a third communication hole 39. The third communication hole 39 extends vertically upward from the outlet side of the upper portion of the catalyst housing portion 35, and then extends horizontally, and is connected to the side surface of the second sensor element mounting portion 36. The second sensor element mounting portion 36 and the gas outlet 32 are connected by a fourth communication hole 40. The fourth communication hole 40 extends vertically downward from the bottom of the second sensor element mounting portion 36, extends horizontally, extends vertically upward, and further extends horizontally, and is connected to the gas outlet 32.
[0020]
In the example shown in FIGS. 2A and 2B, both the first sensor element 6-1 and the second sensor element 6-2 are provided with covers 41-1 and 41-2 at the distal ends. As described above, each of the first sensor element 6-1 and the second sensor element 6-2 has a plate shape. Here, in the present example, the first sensor element 6-1 and the second sensor element 6-2 have holes 42-1 in which the metal oxide semiconductors are provided on the side surfaces of the covers 41-1 and 41-2. , 42-2 are provided in the covers 41-1 and 41-2. Also, holes are opened at the respective ends of the covers 42-1 and 42-2.
[0021]
In the example shown in FIGS. 2A and 2B, a gas rectifying plate 43 for the gas to be measured is provided on the inlet side of the catalyst housing section 35, and the gas rectifying plate 43 is provided at six locations inside the chamber base 33 as shown in FIG. Thus, the bar-shaped heaters 44-1 to 44-6 are provided. The gas rectifying plate 43 is provided so as to rectify the flow of the gas to be measured supplied from the second communication hole 38 to the catalyst accommodating portion 35, so that the gas to be measured flows uniformly through the catalyst 5. This is because, when a catalyst having a structure in which a catalyst is supported on a honeycomb structure is used as the catalyst 5, the gas to be measured flows uniformly in the flow path of the honeycomb structure. Further, in this example, the catalyst storage section 35 is configured by first to third storage sections 35-1 to 35-3 whose diameter is reduced in three steps from the outer surface of the chamber 4. Then, the catalyst 35 held by the holding member 45 is stored in the third storage portion 35-3 having the smallest diameter, and the gas rectifying plate 43 is stored in the second storage portion 35-2 to which the second communication hole 38 communicates. Is stored, and the lid portion 46 is stored in the first storage portion 35-1 so as to be screwable. Therefore, attachment and detachment of the catalyst 5 are possible. Sealing portions 47- are provided at the steps between the third storage portion 35-3 and the second storage portion 35-2 and at the steps between the second storage portion 35-2 and the first storage portion 35-1. 1, 47-2 are provided to prevent gas from entering from outside.
[0022]
The rod-shaped heaters 44-1 to 44-6 are used to uniformly heat the chamber base 33 and control the temperature of the catalyst 5 to a constant temperature, for example, 380 ° C. in the above-described example. In this example, since it is necessary to maintain the temperature of the first sensor element 6-1 and the second sensor element 6-2 at, for example, 520 ° C., the first sensor element 6-1 and the second sensor element 6-2 Reference numeral -2 includes a built-in heater, and performs temperature control using the built-in heaters in addition to the rod-shaped heaters 43-1 and 43-6. Reference numeral 48 denotes a heat insulating material for maintaining the temperature of the chamber base 33, and reference numeral 49 denotes a hole provided in the chamber base 33 for inserting a thermometer. Although the rod-shaped heater is provided inside the chamber base here, a heater other than a rod-shaped heater is naturally used. Further, without providing a heater inside the chamber base, indirect heating from outside is naturally possible.
[0023]
Next, FIGS. 3A and 3B show preferable examples in a case where the resistance change of the sensor element is affected by ammonia or ozone. That is, in FIGS. 3A and 3B, the storage section 1 is provided in the first communication hole 37 similarly to the catalyst storage section 35, and the ammonia removal section 52 or the ozone removal section 52 is provided in the storage section 51. The rectifying plate 43 and the lid portion 46 are fixed using a rectifying plate 53 and a lid portion 54 having the same configurations as the lid portion 46. In the example shown in FIGS. 3A and 3B, the same members as those in the examples shown in FIGS. 2A and 2B are denoted by the same reference numerals, and description thereof will be omitted. In addition, in the example shown in FIGS. 3A and 3B, since the ammonia removing unit 52 or the ozone removing unit 52 is provided in addition to the example shown in FIGS. Heaters 44-7 and 44-8 are further provided. In addition, in the example of FIGS. 3A and 3B, since the number of the storage unit 51 is one, one of the ammonia removal unit 52 and the ozone removal unit 52 is provided depending on the application. However, it is also possible to provide two accommodating sections as necessary and to include both the ammonia removing section 52 and the ozone removing section 52.
[0024]
When the resistance of the sensor elements 6-1 and 6-2 changes not only in accordance with the NOx component but also in response to a small amount of ammonia gas present in the atmosphere, it is preferable to perform an ammonia removal process in advance. . In the example shown in FIGS. 3 (a) and 3 (b), for this ammonia treatment, for example, ammonia removal is performed using a filter provided with a fine powder of an organic acid such as citric acid or oxalic acid or an inorganic acid such as phosphoric acid or boric acid. A part 52 is provided where ammonia is reacted and removed as a salt. When the resistance of the sensor elements 6-1 and 6-2 changes not only in accordance with the NOx component but also in response to a minute amount of ozone gas present in the atmosphere, it is preferable to perform an ozone removal process in advance. . In the example shown in FIGS. 3A and 3B, for this ozone treatment, for example, an ozone removing unit 52 made of calolite known as an ozone decomposition catalyst is provided, where ozone is decomposed as oxygen.
[0025]
【The invention's effect】
As is apparent from the above description, according to the present invention, the first sensor element mounting portion, the catalyst housing portion, and the second sensor element mounting portion are provided in the chamber base, and the first to the first sensor element mounting portions are provided therebetween. Since the first sensor element, the catalyst, and the second sensor element are integrated in the chamber by adopting a structure in which the first sensor element is connected by the communication hole of 4, the first sensor element is provided in the chamber having a large internal space. Compared with the case where the catalyst and the second sensor element are arranged, the size of the entire chamber can be made compact.
[Brief description of the drawings]
FIG. 1 is a diagram showing the configuration of an example of a low-concentration NOx measuring device to which a chamber of the present invention is applied.
FIG. 2 is a diagram showing an example of a detailed configuration of a chamber of the low concentration NOx measuring device shown in FIG.
3 is a diagram showing another example of the detailed configuration of the chamber of the low-concentration NOx measuring device shown in FIG.
[Explanation of symbols]
Reference Signs List 1 low concentration NOx measuring device, 5 catalyst, 6-1 first sensor element, 6-2 die 2 sensor element, 31 gas inlet, 32 gas outlet, 33 chamber base, 34 first sensor element mounting part, 35 Catalyst storage section, 36 second sensor element mounting section, 37 first communication hole, 38 second communication hole, 39 third communication hole, 40 fourth communication hole, 43 gas rectifying plate, 44-1 to 44-1 44-6 Bar Heater

Claims (4)

NO/NO 分圧比を平衡状態にする触媒と、NOxを含む被測定ガスが接触することによりそのNOx成分に応じて抵抗が変化する金属酸化物からなるセンサ素子であって、この触媒を通過していない被測定ガス中に配置した第1のセンサ素子と、この触媒を通過した被測定ガス中に配置した第2のセンサ素子とからなる低濃度NOx計測器に用いるチャンバであって、被測定ガスのガス入口およびガス出口を有するチャンバ基体内に、前記第1のセンサ素子を取り付けるための第1のセンサ素子取付部と、前記触媒を収納するための触媒収納部と、前記第2のセンサ素子を取り付けるための第2のセンサ素子取付部とを形成し、前記ガス入口と第1のセンサ素子取付部とを第1の連通孔で、前記第1のセンサ素子取付部と触媒収納部の入口側とを第2の連通孔で、前記触媒収納部の出口側と第2のセンサ素子取付部とを第3の連通孔で、前記第2のセンサ素子取付部とガス出口とを第4の連通孔でそれぞれ連結したことを特徴とする低濃度NOx計測器に用いるチャンバ。A catalyst for the NO / NO ratio 2 minutes to equilibrate, a sensor element made of a metal oxide whose resistance varies depending on the NOx component by the measurement gas contacts including NOx, passes through the catalyst A chamber for use in a low-concentration NOx measuring device comprising a first sensor element arranged in a gas to be measured which has not passed through the catalyst and a second sensor element arranged in the gas to be measured which has passed through the catalyst; A first sensor element mounting portion for mounting the first sensor element in a chamber base having a gas inlet and a gas outlet for a measurement gas; a catalyst housing portion for housing the catalyst; A second sensor element mounting portion for mounting a sensor element is formed, and the gas inlet and the first sensor element mounting portion are connected by a first communication hole with the first sensor element mounting portion and the catalyst housing portion. Entering The mouth side is a second communication hole, the outlet side of the catalyst storage section and the second sensor element mounting section are a third communication hole, and the second sensor element mounting section and the gas outlet are the fourth communication hole. A chamber for use in a low-concentration NOx measuring instrument, wherein the chambers are connected to each other through communication holes. 前記触媒がセラミックハニカム構造体に貴金属または金属酸化物を担持した触媒である請求項1記載のチャンバ。The chamber according to claim 1, wherein the catalyst is a catalyst in which a noble metal or a metal oxide is supported on a ceramic honeycomb structure. 前記第2の連通孔の断面積が、前記第1のセンサ素子取付部の断面積よりも小さいことを特徴とする請求項1または2記載のチャンバ。3. The chamber according to claim 1, wherein a cross-sectional area of the second communication hole is smaller than a cross-sectional area of the first sensor element mounting portion. ヒータによりチャンバ基体を加熱することで、前記触媒を加熱するよう構成した請求項1〜3のいずれか1項に記載のチャンバ。The chamber according to any one of claims 1 to 3, wherein the catalyst is heated by heating the chamber substrate with a heater.
JP11086497A 1997-04-24 1997-04-28 Chamber used for low concentration NOx measuring instrument Expired - Lifetime JP3554464B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP11086497A JP3554464B2 (en) 1997-04-28 1997-04-28 Chamber used for low concentration NOx measuring instrument
US09/063,471 US6044689A (en) 1997-04-24 1998-04-20 Apparatus for sensing low concentration NOx, chamber used for apparatus for sensing low concentration NOx; gas sensor element and method of manufacturing the same; and ammonia removing apparatus and NOx sensor utilizing this apparatus
EP98303116A EP0874236B1 (en) 1997-04-24 1998-04-22 Apparatus and sensor for sensing low concentration NOx
DE69826057T DE69826057T2 (en) 1997-04-24 1998-04-22 Apparatus and sensor for low NOx concentrations

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11086497A JP3554464B2 (en) 1997-04-28 1997-04-28 Chamber used for low concentration NOx measuring instrument

Publications (2)

Publication Number Publication Date
JPH10300704A JPH10300704A (en) 1998-11-13
JP3554464B2 true JP3554464B2 (en) 2004-08-18

Family

ID=14546624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11086497A Expired - Lifetime JP3554464B2 (en) 1997-04-24 1997-04-28 Chamber used for low concentration NOx measuring instrument

Country Status (1)

Country Link
JP (1) JP3554464B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017043562A1 (en) * 2015-09-08 2017-03-16 京セラ株式会社 Sensor module
JP2018084525A (en) * 2016-11-25 2018-05-31 日本特殊陶業株式会社 Gas sensor
JP2019007817A (en) * 2017-06-23 2019-01-17 日本特殊陶業株式会社 Gas sensor

Also Published As

Publication number Publication date
JPH10300704A (en) 1998-11-13

Similar Documents

Publication Publication Date Title
US6044689A (en) Apparatus for sensing low concentration NOx, chamber used for apparatus for sensing low concentration NOx; gas sensor element and method of manufacturing the same; and ammonia removing apparatus and NOx sensor utilizing this apparatus
US8683845B2 (en) Carbon dioxide sensor and associated method for generating a gas measurement value
US20070289870A1 (en) Ammonia Gas Sensor With Dissimilar Electrodes
US20080274559A1 (en) Gas Sensor for Determining Ammonia
US9164080B2 (en) System and method for sensing NO
US6062064A (en) Apparatus for sensing low concentration NOx
JPH08313470A (en) Detection of methane in gas mixture
WO2000073776A3 (en) Semiconductor gas sensor, gas sensor system and method of gas analysis
JP3554464B2 (en) Chamber used for low concentration NOx measuring instrument
US6442994B1 (en) Instrument for combustible gas detection
JP6786918B2 (en) Gas sensor array, gas measuring device, and gas measuring method
JP3510447B2 (en) Gas concentration measurement method
JPH10300702A (en) Low-concentration nox measuring instrument
JP2003075385A (en) Method of cleaning resistance change type humidity sensor
Wollenstein et al. Preparation, morphology, and gas-sensing behavior of Cr/sub 2-x/Ti/sub x/O/sub 3+ z/thin films on standard silicon wafers
Hahn SnO2 thick film sensors at ultimate limits: Performance at low O2 and H2O concentrations; Size reduction by CMOS technology
McAndrew et al. Moisture analysis in process gas streams
JPH10300703A (en) Low-concentration nox measuring instrument
US20180188202A1 (en) NOx SENSOR WITH CATALYTIC FILTER AND POLARISATION
JP2003083058A (en) Cleaning method for gas sensor for detecting deterioration of accessory device for controlling exhaust emission
JP2001242114A (en) Compensation element for gas detector for fuel cell, thermal conductivity type gas detector and gas upply apparatus for fuel cell
EP4102217A1 (en) Hydrogen gas sensor assembly
JP2002048747A (en) Carbon monoxide sensor composite element, carbon monoxide concentration meter, and carbon monoxide sensor
SU783668A1 (en) Apparatus for measuring carbon dioxide concentration
Bene et al. Application of quadrupole mass spectrometer for the analysis of near-surface gas composition during DC sensor-tests

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 10

EXPY Cancellation because of completion of term