JP3553690B2 - How to coagulate tofu - Google Patents
How to coagulate tofu Download PDFInfo
- Publication number
- JP3553690B2 JP3553690B2 JP14488795A JP14488795A JP3553690B2 JP 3553690 B2 JP3553690 B2 JP 3553690B2 JP 14488795 A JP14488795 A JP 14488795A JP 14488795 A JP14488795 A JP 14488795A JP 3553690 B2 JP3553690 B2 JP 3553690B2
- Authority
- JP
- Japan
- Prior art keywords
- tofu
- coagulability
- coagulant
- water
- soymilk
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Beans For Foods Or Fodder (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、豆腐の凝固方法に係り、特に豆乳にニガリ、すまし粉、グルコノデルタラクトン(以下GDLと呼す)等の凝固剤を添加して豆乳を凝固することにより豆腐を製造する豆腐の凝固方法に関する。
【0002】
【従来の技術】
豆腐は、豆乳にニガリ等の凝固剤を添加して豆乳を凝固させて製造するが、豆腐の製造方法として「腰掛け法」や「2度寄せ法」と称されている製造方法等が知られている。
この腰掛け法は木綿豆腐の製造に使用され、先ず、大豆から生搾り法により抽出してオカラを何度も洗い込んで得たタンパク質濃度の低い豆乳に、薄い水ニガリを数回に分けて少量づつ添加しながら豆乳を手作業で緩やかに攪拌する。これにより、容器内のタンパク質が細かい綿状や雪状に凝固して、容器の底に柔らかなブロック状の凝固が徐々に発生する。この場合、タンパク質の凝固状態は目視で確認される。次に、ブロック状に凝固したタンパク質を、木綿布を敷いた水切り穴付きの型箱に移し変えて、凝固したタンパク質の表面に重りを乗せて凝固したタンパク質を加圧成形する。これにより、箱型の水切り穴から水分が除去されて木綿豆腐が製造される。
【0003】
一方、2度寄せ法は絹ごし豆腐の製造に使用され、先ず、容器内の豆乳に所定量の凝固剤をまとめて同時に添加すると共に豆乳を攪拌して容器内のタンパク質を柔らかい状態に凝固する。次に、柔らかに凝固したタンパク質を容器から、絹ごし型箱に一気に流し込んで凝固したタンパク質を豆乳中に均一に分散(2度目の撹拌)させる。この状態でタンパク質をさらに凝固させて絹ごし豆腐が製造される。
【0004】
【発明が解決しようとする課題】
しかしながら、腰掛け法で製造された木綿豆腐は、タンパク質の濃度が3%以下と低いので、凝固したタンパク質組織の密度が低くなり、凝固物中に保水できる水分量が少なくなる(即ち保水力が小さくなる)という問題がある。従って、凝固したタンパク質を重りで加圧成形する際に、多量の水分が排出されて成型後の豆腐の肌が悪くなるという問題がある。また、多量の水分と共に、凝固していない水溶性の大豆うま味成分が抜け出して豆腐の味が低下するために、加圧成形等における製造最終段階にあっては非常に高い熟練度を必要とするという問題がある。尚、この大豆うま味成分は、製造された豆腐を水晒し状態にした場合にも、豆腐から水中に徐々に溶出する。また、大豆の品質や浸漬・煮沸等の製造条件の微妙な変動により製品品質が不安定になりやすいため、経験や感など製造者の熟練に依存するところが大きかった。
【0005】
一方、2度寄せ法の場合、容器内にタンパクのソフトなブロックが凝固されかけたときに、絹ごし型箱に一気に流し込こんで2度目の撹拌を行うが、このときタンパクのソフトなブロックを破壊させないために、的確な凝固操作の調整が必要になる。そして、凝固操作の調整が的確に行われないと、例えば、タンパクのソフトなブロックが破壊され、この状態で熟成硬化しても破壊された粒子はそのままなので、離水が多く、もろくなり、さらに極端にざらついた食感になり、絹ごし豆腐の味が低下するという問題がある。このように、2度寄せ法においても、その攪拌タイミングなどの操作が難しく、熟練度を要するものであった。
【0006】
従って、本発明の目的は上記従来技術が有する問題を解消し、保水力を大きくして大豆うま味の抜けを防止し、豆腐の肌をよくし、ざらついた食感をなくすことができ、かつ熟練度を必要としない豆腐の凝固方法を提供することを目的としたものである。
【0007】
【課題を解決するための手段】
本発明の上記目的は、豆乳に凝固性の異なる複数の凝固剤を添加して豆腐を凝固させるとき、タンパク質濃度が3%以上の豆乳に、まず凝固性の小さい凝固剤を添加して攪拌を行った後、凝固性のより大きい凝固剤を添加して攪拌を行う操作を少なくとも1回行うことにより、凝固性の小さい凝固剤から凝固性の大きい凝固剤の順での少なくとも2回の凝固剤の添加と、それに続く攪拌とを行い、かつ、前記凝固性の異なる複数の凝固剤を水溶液または水分散液として用いることを特徴とする豆腐の凝固方法により達成される。
【0008】
【作用】
本発明によれば、タンパク質濃度が3%以上の豆乳に、凝固性の異なる複数の凝固剤を、凝固性の小さい凝固剤から凝固性の大きい凝固剤へと順に添加して豆腐を凝固製造する。このようにすると、タンパク質の濃度が3%以上の豆乳を使用することによって、凝固したタンパク質組織が緻密になり保水力が大きく維持でき、うま味成分の保持力が上がる。
また、先ず凝固性の小さい凝固剤でタンパク質をソフトに凝固させて豆乳に粘りを与え、次に凝固性の大きい凝固剤を添加することにより、凝固性の大きい凝固剤の凝固粒子の沈降を防止して容器内のタンパク質を均一に凝固させることが可能となり、これにより、製造された豆腐の組織を均一にすることができる。
【0009】
【実施例】
以下に本発明を実施例により更に具体的に説明する。ここに示す成分、割合、操作順序等は本発明の精神から逸脱しない範囲において変更しうるものであることは本業界に携わるものにとっては容易に理解されることである。
【0010】
本発明の方法に使用する豆乳は、タンパク質濃度が3wt%以上のものであれば特に限定されない。タンパク質濃度が3wt%以上の豆乳とは、一般にブリックス比重計で6%以上の濃度を示すものであり、通常大豆に10〜3倍量の水を使用して作られるものである。タンパク質濃度の低い豆乳を使用すると、豆腐のタンパク質凝固組織が粗くなるため、組織中に水分を保持することが難しく離水しやすくなる。この離水に伴って豆腐のうま味成分が流出し易いため、味気なく、強度的にも脆い豆腐になってしまう。
【0011】
本発明で使用される凝固剤とは、豆乳を固める作用を有するものであれば特に限定されないが、具体例としては、ニガリ(塩化マグネシウム)、スマシ粉(硫酸カルシウム)、グルコノデルタラクトン(GLD)、塩化カルシウム、酸、天然ニガリ、海水、食塩等が挙げられ、中でもニガリ(塩化マグネシウム)、スマシ粉(硫酸カルシウム)、グルコノデルタラクトン(GLD)が凝固剤の品質が安定しているという点で好ましい。
なお凝固性の大小(強弱ともいう)とは、単位量の凝固剤で単位量の豆乳を豆腐にまで凝固するための反応速度をいうものである。
上記具体例として示した凝固剤の中から、主なものの凝固性の強さを表1及び2に示す。
【0012】
【表1】
【0013】
【表2】
【0014】
豆腐の凝固に頻繁に使用される凝固剤としては、ニガリが最も凝固性が強く、次いでスマシ粉、GDLと続くことが分かる。
また本発明でいう凝固性の異なる凝固剤とは、上記のように単品としての種類が異なるものは当然であるが、同じ単品でも凝固性が異なる場合もある。その例を以下に示す。a)水溶液または水分散液等で使用する場合、その濃度又は分散量が異なると、凝固性も異なってくる。例えば、表1に示すように、ニガリや塩化カルシウム等では、溶水量が多いほど強くと凝固性が強くなり、少ないほど弱くなる傾向にある。b)凝固温度が異なると凝固性も異なってくることが、表2により示されている。これは、温度が高いほど、凝固反応が活発になるものと考えられる。同一単体の凝固剤のみを使用した場合でも、その添加時の温度を何段階かに分けることにより、本発明でいう凝固性の異なる凝固剤を使用したということがいえる。c)2種以上の単品の凝固剤を配合した場合、配合に使われる単品成分が同じでも、配合割合が異なれば凝固性も異なるので、上記配合割合が異なるものは、本発明でいう凝固性の異なる凝固剤に含まれるものである。
【0015】
〔実施例1〕
図1に示すように、深箱2に入った、タンパク質濃度11.0wt%の60℃に温度調節した豆乳1 10リットルに、スマシ粉(平均粒径30μm)20gを200mlの水に溶いたものを添加して、図2に示すような包丁3操作で攪拌後に、50w/w%の水ニガリ20gを添加、同様に攪拌した。その後、60℃で30分間放置・熟成して、豆乳1を凝固させた。さらに15℃の水で一晩水晒しを行った。
〔比較例1〕
62.1℃に温度調節した豆乳1に、スマシ粉(平均粒径30μm)20gと50w/w%の水ニガリ20gとを混合したものを添加・攪拌して、62.1℃で30分間放置・熟成して豆乳1を凝固させた以外は、実施例1と同様に行った。
【0017】
〔比較例2〕
61.0℃に温度調節した豆乳1に、50w/w%の水ニガリ60gを添加・攪拌後、61.0℃で30分間放置・熟成して豆乳1を凝固させた以外は、実施例1と同様に行った。
〔比較例3〕
77.1℃に温度調節した豆乳1に、スマシ粉(平均粒径30μm)30gを添加・攪拌後、77.1℃で20分間放置・熟成して豆乳1を凝固させた以外は、実施例1と同様に行った。
上記の実施例1および比較例1〜3の方法により作った豆腐の特性を表3に示す。なお、モニター試験の点数については、5人のモニターがそれぞれ個人的に良いと感じた場合にはプラス側10段階、悪いと感じた場合にはマイナス側10段階に点数をつけさせ、各モニター5人の合計点を求め、最終的には、全モニターの平均値を算出した。
【0018】
【表3】
【0019】
実施例1で作られた豆腐は、肉眼観察により、その表面が滑らかで光沢がある肌の良いものであった。モニター試験においてもその外観は、実施例1では3.5という高い評価点数であった。味の点においても、適度な甘味があり、モニター試験では、実施例1で2.0という比較的高い評価点数であった。
これに対して比較例1〜3では、外観、食味のいずれかにおいて優れているものはあるが、外観、食味の双方を満足するものはなかった。
【0020】
〔実施例2〕
3種類の凝固剤を用いた実施例である。
深箱に入った、70℃に温度調節したタンパク質濃度11wt%の豆乳14リットルに、GDL粉末14gを100mlの水に溶いた液を添加して、包丁で十分に攪拌した。数秒後に、スマシ粉(平均粒径30μm)14gを100mlの水に溶いたものを添加し、包丁でやや強めに攪拌した。更に数秒後に、50w/w%の水ニガリ28gを添加後、直ちに包丁で数秒間ソフトに攪拌した。その後、69.0℃で30分間熟成して豆乳を凝固させ、さらに15℃の水で一晩の水晒しを行った。
〔比較例4〕
深箱に入った、70℃に温度調節したタンパク質濃度11wt%の豆乳14リットルに、GDL粉末とスマシ粉(平均粒計30μm)とニガリ粉末をそれぞれ14gづつ混合して214mlの水に解いたものを添加して、包丁で十分に攪拌した。その後、69.0℃で30分間熟成して豆乳を凝固させ、さらに15℃の水で一晩の水晒しを行った。
【0021】
実施例2で作られた豆腐は、肉眼観察により、その表面が滑らかで光沢がある肌の良いものであった。これに対して比較例4で作られた豆腐は、その表面が粗く、気泡の痕の様な小さな穴(「す」ともいう)があることも観察された。表4のモニター試験の結果からも、実施例2の豆腐は3.5点と高く、比較例4の豆腐は−3.5点と極端に低かった。
さらに、食味の官能試験を行った。実施例2で作られた豆腐は、滑らかで柔らかく、豆腐の程よい甘味があった。これに対して比較例4で作られた豆腐は、ざらつきがあり、甘味も薄かった。モニター試験の結果からも、実施例2の豆腐は3.6点と高く、比較例4の豆腐は−1.8点と低かった。
【0022】
〔実施例3〕
凝固温度の範囲がそれぞれ異なる各凝固剤を用いた実施例である。
深箱に入った、70℃に温度調節したタンパク質濃度12wt%の豆乳14リットルに、室温下で、GDL粉末14gを1400mlの水に溶いたものを添加して包丁で十分に攪拌した。豆乳の温度が65℃になった時点で、スマシ粉(平均粒径30μm)14gを1400mlの水に溶いたものを添加し、包丁で攪拌した。更に豆乳の温度が60℃になった時点で、50w/w%の水ニガリ28gを添加後、直ちに包丁で3秒間攪拌した。その後、60.2℃で30分間放置・熟成して豆乳を凝固させ、さらに15℃の水で一晩の水晒しを行った。
この実施例の凝固方法は、1)始めに、凝固温度域が比較的高くて(70℃)凝固性の低い凝固剤GDLを、加熱した豆乳に室温下で添加する、2)豆乳が溶き水によって冷やされた時点で、凝固温度域が65℃でGDLよりも凝固性の高いスマシ粉を水に溶いて添加する、3)更に豆乳が溶き水によって冷やされた時点で、凝固温度域が60℃でスマシ粉よりも凝固性の高いニガリを添加するようにしたものである。このような方法では、豆乳の室温下放置による温度の低下に合わせて、その温度に適した凝固性を持つ凝固剤が、凝固性の小さい順に添加されることになるため、作業性が容易になる。
この実施例の凝固方法で得られた豆腐は、実施例1〜2の方法で得られた豆腐と同様に、外観の表面が滑らかで光沢がある肌のよいものであり、食味の官能試験では、滑らかで柔らかく、豆腐の程よい甘味があった。
【0023】
〔実施例4〕
凝固性の異なる2種類の配合凝固剤を用いた実施例である。
深箱に入った、70℃に温度調節したタンパク質濃度11wt%の豆乳14リットルに、GDL6gおよびスマシ粉14gを200mlの水に溶いた凝固剤Aを添加して、包丁で十分に攪拌した。数秒後に、GDL8gおよびニガリ14gを14mlの水に溶いた凝固剤Bを添加して、包丁で十分に攪拌した。その後、69.0℃で30分間放置・熟成して豆乳を凝固させ、さらに15℃の水で一晩の水晒しを行った。
この実施例の凝固方法で得られた豆腐は、実施例1〜3の方法で得られた豆腐と同様に、外観の表面が滑らかで光沢がある肌のよいものであり、食味の官能試験では、滑らかで柔らかく、豆腐の程よい甘味があった。
実施例2〜4および比較例4の方法により作った豆腐の特性を表4に示す。
【0024】
【表4】
【0025】
【発明の効果】
以上述べたように、本発明による豆腐の凝固方法によれば、タンパク質濃度が3%以上の豆乳に、凝固性の異なる複数の凝固剤を、凝固性の小さい凝固剤から凝固性の大きい凝固剤へと順に添加して豆腐を凝固製造する。このように、タンパク質の濃度が3%以上の豆乳を使用するので、凝固したタンパク質組織が緻密になり保水力が大きくなる。
また、先ず凝固性の小さい凝固剤でタンパク質をソフトに凝固させて豆乳に粘りを与え、次に凝固性の大きい凝固剤を添加することにより、凝固性の大きい凝固剤の凝固粒子の沈降を防止して容器内のタンパク質を均一に凝固する。これにより、製造された豆腐の組織が均一なものとなる。このように、保水力が大きくなると共に豆腐の組織を均一にすることにより、大豆うま味の抜けを防止し、また豆腐の肌をよくし、さらにざらついた食感をなくすことができる。
さらに本発明の方法は、熟練した技術を要さず、大豆の品質や製造条件の変動による影響も受けにくいため、機械を使用する生産システムにも容易に適用することができる。本発明の方法が機械化されて行われることにより、保水性がよく組織が均一な豆腐、即ち外観及び食味の双方において優れた豆腐を、効率よく生産することができる。
【図面の簡単な説明】
【図1】本発明による豆腐の凝固方法おいて豆乳の撹拌を説明した斜視図である。
【図2】本発明による豆腐の凝固方法おいて豆乳の撹拌を説明した平面図である。
【符号の説明】
1 豆乳
2 深箱
3 包丁[0001]
[Industrial applications]
The present invention relates to a method for coagulating tofu, and particularly to a method for producing tofu by coagulating soy milk by adding a coagulant such as bittern, sashimi powder, glucono delta lactone (hereinafter referred to as GDL) to soy milk. To a coagulation method.
[0002]
[Prior art]
Tofu is produced by adding a coagulant such as bittern to soy milk and coagulating the soy milk. As a method for producing tofu, there are known methods called "stool method" and "double-pushing method". ing.
This stool method is used in the production of cotton tofu.First, a small amount of water bittern is added to soy milk with low protein concentration, which is extracted from soybeans by the raw squeezing method and washed with okara many times, and then divided into small portions. Gently agitate the soy milk by hand while adding one by one. As a result, the protein in the container solidifies into fine cotton or snow, and soft block-like solidification gradually occurs at the bottom of the container. In this case, the coagulation state of the protein is visually confirmed. Next, the block-coagulated protein is transferred to a mold box with a drain hole covered with a cotton cloth, and a weight is placed on the surface of the coagulated protein to form the coagulated protein under pressure. As a result, water is removed from the box-shaped drain hole, and cotton tofu is produced.
[0003]
On the other hand, the double-pushing method is used for the production of silken tofu. First, a predetermined amount of a coagulant is added to soymilk in a container at the same time, and the soymilk is stirred to coagulate the protein in the container in a soft state. Next, the softly coagulated protein is poured from the container into the silk-type box at a stretch to uniformly disperse the coagulated protein in the soymilk (second stirring). In this state, the protein is further coagulated to produce silken tofu.
[0004]
[Problems to be solved by the invention]
However, since cotton tofu produced by the stool method has a low protein concentration of 3% or less, the density of the coagulated protein tissue is low, and the amount of water that can be retained in the coagulated material is small (that is, the water retention power is small). Problem). Therefore, when the coagulated protein is subjected to pressure molding with a weight, there is a problem that a large amount of water is discharged and the skin of the tofu after molding deteriorates. In addition, with a large amount of water, a water-soluble soybean umami component that has not coagulated escapes and the taste of tofu is reduced, so that a very high level of skill is required in the final stage of production such as pressure molding. There is a problem. The soybean umami component gradually elutes from the tofu into water even when the produced tofu is exposed to water. Further, the quality of the soybeans and subtle fluctuations in the production conditions such as immersion and boiling tend to make the product quality unstable, so that the dependence on the skill of the manufacturer, such as experience and feeling, has been large.
[0005]
On the other hand, in the case of the double-pulling method, when a soft block of protein starts to coagulate in the container, it is poured into the silk-type box at a stretch and agitated for a second time. Precise coagulation operation adjustments are required to prevent destruction. If the coagulation operation is not properly adjusted, for example, a soft block of protein will be destroyed, and even in this state, even if it is aged and hardened, the destroyed particles will remain as they are. There is a problem that the texture becomes rough and the taste of silky tofu is reduced. As described above, even in the double approach method, the operation such as the stirring timing is difficult, and skill is required.
[0006]
Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art, increase the water retention capacity, prevent the soybean umami from falling out, improve the skin of the tofu, eliminate the rough texture, and have the skill. It is an object of the present invention to provide a method of coagulating tofu that does not require a degree.
[0007]
[Means for Solving the Problems]
The above object of the present invention is to coagulate tofu by adding a plurality of coagulants having different coagulability to soymilk, first adding a coagulant having a small coagulability to soymilk having a protein concentration of 3% or more and stirring the mixture. After the addition, the operation of adding a coagulant having a larger coagulability and performing stirring is performed at least once, so that at least two coagulants in the order of a coagulant having a smaller coagulability and a coagulant having a larger coagulability are performed. , Followed by agitation, and using a plurality of coagulants having different coagulation properties as an aqueous solution or aqueous dispersion to achieve a tofu coagulation method.
[0008]
[Action]
According to the present invention, tofu having a protein concentration of 3% or more, a plurality of coagulants having different coagulability are added in order from a coagulant having a small coagulability to a coagulant having a large coagulability to coagulate and produce tofu. . In this way, by using soymilk having a protein concentration of 3% or more, the coagulated protein tissue becomes dense, the water retention capacity can be largely maintained, and the retention of umami components increases.
In addition, first coagulation of the protein softly with a coagulant with a small coagulability gives the soy milk stickiness, and then addition of a coagulant with a large coagulability prevents sedimentation of coagulated particles of the coagulant with a large coagulability As a result, it becomes possible to uniformly coagulate the protein in the container, thereby making the texture of the produced tofu uniform.
[0009]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. It is easily understood by those skilled in the art that the components, ratios, operation orders, and the like shown here can be changed without departing from the spirit of the present invention.
[0010]
The soymilk used in the method of the present invention is not particularly limited as long as the protein concentration is 3 wt% or more. The soymilk having a protein concentration of 3 wt% or more generally indicates a concentration of 6% or more as measured by a Brix hydrometer, and is usually produced using soybean with 10 to 3 times the amount of water. If soy milk having a low protein concentration is used, the protein coagulated tissue of the tofu becomes coarse, so that it is difficult to retain moisture in the tissue and it is easy to separate water. The umami component of the tofu easily flows out with this water separation, so that the tofu becomes fragile and brittle in strength.
[0011]
The coagulant used in the present invention is not particularly limited as long as it has an action of solidifying soy milk. Specific examples include bittern (magnesium chloride), smash powder (calcium sulfate), and gluconodeltalactone (GLD ), Calcium chloride, acid, natural bittern, seawater, salt, etc., among which bittern (magnesium chloride), smash powder (calcium sulfate), and glucono delta lactone (GLD) have stable coagulant quality. It is preferred in that respect.
In addition, the magnitude of the coagulability (also referred to as strength) refers to a reaction rate for coagulating a unit amount of soy milk to tofu with a unit amount of a coagulant.
Tables 1 and 2 show the coagulability of the main coagulants shown in the above specific examples.
[0012]
[Table 1]
[0013]
[Table 2]
[0014]
As a coagulant frequently used for coagulating tofu, bittern has the strongest coagulability, followed by smash powder and GDL.
The coagulants having different coagulation properties referred to in the present invention are, of course, different in type as a single product as described above, but the coagulation properties may be different even in the same single product. An example is shown below. a) When used in an aqueous solution or aqueous dispersion, if the concentration or the amount of dispersion is different, the coagulability will also be different. For example, as shown in Table 1, in the case of bittern and calcium chloride, the larger the amount of water, the stronger the coagulability, and the smaller the amount, the weaker the coagulability. b ) Table 2 shows that different solidification temperatures result in different solidification properties. It is considered that the higher the temperature, the more the coagulation reaction becomes active. Even when only the same single coagulant is used, it can be said that the coagulants having different coagulation properties in the present invention were used by dividing the temperature at the time of addition into several stages. c ) When two or more individual coagulants are blended, the coagulability differs if the blending ratio is different, even if the single components used in the blending are the same. Of different coagulants.
[0015]
[Example 1]
As shown in FIG. 1, in a
[Comparative Example 1]
A mixture of 20 g of smash powder (average particle size: 30 μm) and 20 g of 50% w / w water bittern was added to
[0017]
[Comparative Example 2 ]
Example 1 Except that 60 g of 50% w / w water bittern was added to
[Comparative Example 3 ]
Example 3 Except that 30 g of smash powder (average particle size: 30 μm) was added to
The properties of tofu made by the method of Comparative Example 1 to 3 and Example 1 Contact the shown in Table 3. In addition, as for the score of the monitor test, if each of the five monitors felt personally good, they were given 10 points on the plus side, and if they felt bad, they were given 10 points on the minus side. The total score of the people was obtained, and finally the average value of all monitors was calculated.
[0018]
[Table 3]
[0019]
The tofu produced in Example 1 had good surface with smooth and glossy skin by visual observation. In the monitor test, the appearance was 3. Say 5 was a high evaluation score. In terms of taste, it has a moderate sweetness. 0 say was a relatively high evaluation score.
On the other hand, in Comparative Examples 1 to 3 , some of them were excellent in either appearance or taste, but none of them satisfied both appearance and taste.
[0020]
[Example 2 ]
This is an example using three types of coagulants.
A solution prepared by dissolving 14 g of GDL powder in 100 ml of water was added to 14 liters of soymilk having a protein concentration of 11 wt% in a deep box and temperature-controlled to 70 ° C., and the mixture was sufficiently stirred with a kitchen knife. Several seconds later, a solution prepared by dissolving 14 g of smash powder (average particle size: 30 μm) in 100 ml of water was added, and the mixture was stirred with a kitchen knife. After a few seconds, 28 g of 50% w / w water bittern was added, and the mixture was immediately softly stirred with a kitchen knife for several seconds. Thereafter, the soymilk was coagulated by aging at 69.0 ° C. for 30 minutes, and further exposed to water at 15 ° C. overnight.
[Comparative Example 4 ]
14 g of GDL powder, smash powder (average particle size: 30 μm) and bittern powder were mixed in 14 liters of soymilk with a protein concentration of 11 wt% in a deep box and temperature adjusted to 70 ° C., and dissolved in 214 ml of water. Was added and stirred thoroughly with a kitchen knife. Thereafter, the soymilk was coagulated by aging at 69.0 ° C. for 30 minutes, and further exposed to water at 15 ° C. overnight.
[0021]
The tofu produced in Example 2 had good surface with smooth and glossy skin by visual observation. On the other hand, it was also observed that the tofu prepared in Comparative Example 4 had a rough surface and small holes (also referred to as "su") like marks of air bubbles. From the results of the monitor test in Table 4, the tofu of Example 2 was as high as 3.5 points, and the tofu of Comparative Example 4 was as extremely low as -3.5 points.
Further, a taste sensory test was conducted. The tofu made in Example 2 was smooth and soft, and had moderate sweetness of the tofu. On the other hand, the tofu made in Comparative Example 4 had roughness and a low sweetness. From the results of the monitor test, the tofu of Example 2 was as high as 3.6 points, and the tofu of Comparative Example 4 was as low as -1.8 points.
[0022]
[Example 3 ]
This is an example using each coagulant having a different coagulation temperature range.
At room temperature, 14 g of GDL powder dissolved in 1400 ml of water was added to 14 liters of soy milk having a protein concentration of 12 wt%, which was placed in a deep box, and stirred sufficiently with a kitchen knife. When the temperature of the soymilk reached 65 ° C., a solution prepared by dissolving 14 g of smash powder (average particle size: 30 μm) in 1400 ml of water was added and stirred with a kitchen knife. When the temperature of the soymilk reached 60 ° C., 28 g of 50% w / w water bittern was added, and the mixture was immediately stirred with a kitchen knife for 3 seconds. Then, the soymilk was coagulated by leaving it to stand at 60.2 ° C. for 30 minutes and then ripened, and further exposed to water at 15 ° C. overnight.
The coagulation method of this embodiment is as follows: 1) First, a coagulant GDL having a relatively high coagulation temperature range (70 ° C.) and a low coagulability is added to heated soymilk at room temperature. At the time of cooling, smash powder having a coagulation temperature range of 65 ° C. and having a higher coagulation property than GDL is dissolved in water and added. 3) When the soymilk is further cooled by the melted water, the coagulation temperature range is increased to 60%. In this method, bittern having a higher coagulability than smash powder at ℃ is added. In such a method, a coagulant having a coagulability suitable for the temperature is added in the order of small coagulability in accordance with a decrease in the temperature due to leaving the soymilk at room temperature, so that the workability is easily improved. Become.
The tofu obtained by the coagulation method of this example has a good appearance with a smooth and glossy skin, similar to the tofu obtained by the method of Examples 1 and 2 , and in the sensory test of taste, It was smooth, soft and had a moderate sweetness of tofu.
[0023]
[Example 4 ]
It is an example using two types of compounding coagulants having different coagulation properties.
To 14 liters of soymilk with a protein concentration of 11 wt%, which was temperature-controlled at 70 ° C. and contained in a deep box, coagulant A in which 6 g of GDL and 14 g of smash powder were dissolved in 200 ml of water was added, and the mixture was sufficiently stirred with a kitchen knife. Several seconds later, coagulant B in which 8 g of GDL and 14 g of bittern were dissolved in 14 ml of water was added, and the mixture was sufficiently stirred with a kitchen knife. Thereafter, the soymilk was coagulated by leaving it to stand at 69.0 ° C. for 30 minutes and then ripened, and further exposed to water at 15 ° C. overnight.
The tofu obtained by the coagulation method of this example has a good appearance with smooth and glossy skin, similar to the tofu obtained by the method of Examples 1 to 3. It was smooth, soft and had a moderate sweetness of tofu.
Table 4 shows the characteristics of the tofu prepared by the methods of Examples 2 to 4 and Comparative Example 4 .
[0024]
[Table 4]
[0025]
【The invention's effect】
As described above, according to the method for coagulating tofu according to the present invention, a plurality of coagulants having different coagulability are added to soy milk having a protein concentration of 3% or more from a coagulant having a low coagulability to a coagulant having a high coagulability. The tofu is added in order to coagulate the tofu. As described above, since the soymilk having a protein concentration of 3% or more is used, the coagulated protein tissue becomes dense and the water retention capacity increases.
In addition, first coagulation of the protein softly with a coagulant with a small coagulability gives the soy milk stickiness, and then addition of a coagulant with a large coagulability prevents sedimentation of coagulated particles of the coagulant with a large coagulability To uniformly coagulate the protein in the container. Thereby, the texture of the produced tofu becomes uniform. In this way, by increasing the water retention capacity and making the tofu structure uniform, it is possible to prevent soybean umami from falling off, to improve the skin of the tofu, and to eliminate a rough texture.
Furthermore, the method of the present invention does not require skilled techniques and is not easily affected by fluctuations in soybean quality or manufacturing conditions, so that it can be easily applied to a production system using machines. By carrying out the method of the present invention mechanized, tofu having good water retention and uniform texture, that is, tofu excellent in both appearance and taste can be efficiently produced.
[Brief description of the drawings]
FIG. 1 is a perspective view illustrating stirring of soymilk in a method for coagulating tofu according to the present invention.
FIG. 2 is a plan view illustrating the stirring of soymilk in the method for coagulating tofu according to the present invention.
[Explanation of symbols]
1
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14488795A JP3553690B2 (en) | 1995-06-12 | 1995-06-12 | How to coagulate tofu |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14488795A JP3553690B2 (en) | 1995-06-12 | 1995-06-12 | How to coagulate tofu |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08336368A JPH08336368A (en) | 1996-12-24 |
JP3553690B2 true JP3553690B2 (en) | 2004-08-11 |
Family
ID=15372679
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14488795A Expired - Lifetime JP3553690B2 (en) | 1995-06-12 | 1995-06-12 | How to coagulate tofu |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3553690B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8739685B2 (en) | 2009-12-28 | 2014-06-03 | Takai Tofu & Soymilk Equipment Co. | Tofu coagulant producing apparatus and soymilk coagulation machine comprising the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220141441A (en) * | 2021-04-13 | 2022-10-20 | 김홍배 | Home instant tofu manufacturing device and the method of manufacturing the tofu using the same as |
-
1995
- 1995-06-12 JP JP14488795A patent/JP3553690B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8739685B2 (en) | 2009-12-28 | 2014-06-03 | Takai Tofu & Soymilk Equipment Co. | Tofu coagulant producing apparatus and soymilk coagulation machine comprising the same |
Also Published As
Publication number | Publication date |
---|---|
JPH08336368A (en) | 1996-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hou et al. | Yield and textural properties of soft tofu as affected by coagulation method | |
JP3553690B2 (en) | How to coagulate tofu | |
JPH0461617B2 (en) | ||
US4117174A (en) | Method for producing tofu-like food | |
JP3457015B2 (en) | Production method of fried food | |
CN1105516C (en) | Method for manufacturing aseptic coagulated food product | |
US7090877B2 (en) | Cottony bean curds and method of manufacturing the cottony bean curd | |
KR890003247B1 (en) | Process for preparing bean-curd charged into a container | |
JPH08131112A (en) | Whole grain soybean curd and its production | |
JPS6143973A (en) | Granular tofu(bean curd) | |
JP4319743B2 (en) | Tofu-like food and production method thereof | |
JPH072102B2 (en) | Method for manufacturing deep-fried dough | |
JP7508099B2 (en) | Fried tofu manufacturing method | |
JPS5959169A (en) | Preparation of high-quality tofu(bean curd) | |
JPS62195261A (en) | Preparation of bean curd | |
JPS63167765A (en) | Production of marine fish paste product | |
KR20060107245A (en) | Method for preparing whole soybean curd | |
JP3429489B2 (en) | How to make processed soy foods | |
JP3394032B2 (en) | How to make processed soy foods | |
JP2000004819A (en) | Production of food with feel of palate similar to that of non-dewaterd rough-textured soybean curd | |
JPH06121652A (en) | Preparation of fried bean curd | |
JPH0195738A (en) | Powdery coagulant composition for tofu | |
JPS62190056A (en) | Granular tofu (bean curd) | |
JP2006280221A (en) | Bean curds and method for producing the same | |
JPH11196805A (en) | Production of bean curd and bean curd |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040421 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040430 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090514 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130514 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160514 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term |