JP3553660B2 - Manufacturing method of modified wood - Google Patents

Manufacturing method of modified wood Download PDF

Info

Publication number
JP3553660B2
JP3553660B2 JP24720394A JP24720394A JP3553660B2 JP 3553660 B2 JP3553660 B2 JP 3553660B2 JP 24720394 A JP24720394 A JP 24720394A JP 24720394 A JP24720394 A JP 24720394A JP 3553660 B2 JP3553660 B2 JP 3553660B2
Authority
JP
Japan
Prior art keywords
wood
cyclic ester
ester compound
compound
modified wood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24720394A
Other languages
Japanese (ja)
Other versions
JPH0880508A (en
Inventor
加恵 上野
祐二 岩塚
秀夫 月東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aica Kogyo Co Ltd
Original Assignee
Aica Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aica Kogyo Co Ltd filed Critical Aica Kogyo Co Ltd
Priority to JP24720394A priority Critical patent/JP3553660B2/en
Publication of JPH0880508A publication Critical patent/JPH0880508A/en
Application granted granted Critical
Publication of JP3553660B2 publication Critical patent/JP3553660B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical And Physical Treatments For Wood And The Like (AREA)

Description

【0001】
【産業上の利用分野】
本発明は木材あるいは木質系材料の寸法安定化、耐久化、及び外観の向上化に関する。
【0002】
【従来の技術】
従来より木材にメタクリル酸エステル、スチレン等のビニル系モノマ−及びプレポリマ−並びに不飽和ポリエステル類を含浸し木材中で重合、硬化させて得られる木材プラスチック複合体はWPCと称せられ、寸法安定性や強度、耐久性、耐摩耗性を向上させた材料として、その性能が広く認識されている。
【0003】
【発明が解決しようとする課題】
しかしながら、これらのWPCは十分な寸法安定性を付与するためには木材へ十分な注入を行なわなければならないため、処理剤のコストがかかるばかりか、含浸率の増加にともない木材の素材感が失われやすいという欠点があった。
【0004】
また、かかる問題点を解決するために、低含浸率、低コストで環状エステル化合物と木材の複合化等も試みられており、優れた寸法安定性が得られている。しかしながら環状エステル化合物単独では、木材が十分膨潤するものの軟質化して表面硬度が低下し傷が発生しやすく強度的な改善効果はあまりなかった。
【0005】
【課題を解決するための手段】本発明は上記の問題を解決するために検討されたもので、請求項1に記載の発明は、アクリル系化合物と環状エステル系化合物を混合した薬液を木材あるいは木質系材料に含浸し、硬化させる改質木材の製法において、上記環状エステル系化合物は、環状構造中に窒素を含まない構造であることを特徴とする改質木材の製法である。また、請求項2に記載の発明は、請求項1に記載の改質木材の製法において、前記環状エステル系化合物は、β−プロピオラクトン、δ−バレロラクトン、ε−カプロラクトン、クマリン、テトリン酸、フタリド、及び、これらの誘導体の中から1種又は2種以上選択された化合物であることを特徴とする改質木材の製法である。請求項3の発明は、前記アクリル系化合物と、前記環状エステル系化合物を1:5〜5:1の割合で混合した薬液を、不揮発分で10〜30%の含浸率で木材あるいは木質系材料に含浸し、硬化させることを特徴とする請求項1または2に記載の改質木材の製法である。請求項4の発明は、前記アクリル系化合物をメチルメタクリレートとし、前記環状エステル系化合物をε−カプロラクトンとしたことを特徴とする請求項3に記載の改質木材の製法である。本発明は、上記により木材の特性を損なわずに外観を向上させ、寸法安定性、強度に優れた改質木材の製法を提供するものである。以下、本発明について説明する。
【0006】
本発明に用いるアクリル系化合物としてはアクリル酸、メタクリル酸、アクリル酸エステル、メタクリル酸エステル、不飽和ポリエステル、スチレン、スチレン誘導体の中から1種又は2種以上を選択し、重合開始剤、例えば過硫酸化物、過酸化水素、過酸化物、アゾ系重合開始剤、酸化還元型のレドックス重合開始剤等、更に必要に応じてアミン、金属セッケン等の重合促進剤を添加したものが適用できる。
【0007】
アクリル酸エステルについてはアルキルアクリレ−ト、ヒドロキシアルキルアクリレ−ト、ジエチレングリコ−ルアクリレ−ト、ポリエチレングリコ−ルアクリレ−ト、グリシジルアクリレ−ト、エチレングリコ−ルジアクリレ−ト、エトキシアルキルアクリレ−ト等が例示され、また、メタクリル酸エステルについてはアルキルメタクリレ−ト、ヒドロキシアルキルメタクリレ−ト、グリシジルメタクリレ−ト、エチレングリコ−ルメタクリレ−ト、エチレングリコ−ルジメタクリレ−ト、ポリエチレングリコ−ルメタクリレ−ト、ポリエチレングリコ−ルジメタクリレ−トアルキル:エチル、メチル、ペンチル等)が例示される。スチレン誘導体としてはα−メチルスチレン、p−メチル−α−メチルスチレン等が例示される。好適には浸透性がよく重合しやすいメチルメタクリレ−トを用いるのが望ましい。
【0008】
環状エステル系化合物としては、β−プロピオラクトン、δ−バレロラクトン、ε−カプロラクトン、クマリン、テトリン酸、フタリド等の化合物や、これらの誘導体の中から一種又は2種以上を選択し、反応を迅速かつ効率よく進めるために、必要に応じてアルカリ金属、アルカリ金属の水素化物、水酸化物、炭酸塩、アルキル金属脂肪族アミン、酸、金属ハロゲン化物を添加したものが適用できる。好適にはコスト的に有利で反応性に富むε−カプロラクトンを用いるのが望ましい。
【0009】
アクリル系化合物と環状エステル系化合物は重量比で1:99〜99:1の割合で混合するのが望ましく、環状エステル系化合物が多く1:99を超える場合は強度不足となりやすく、アクリル系化合物が多く99:1を超える場合は環境の変化に追従しづらくなり寸法変化が大きくなり割れを生じやすいものとなる。抗湿能、曲げ強さ、外観性(特に透明感、肌触り)に優れるのは1:5〜5:1の範囲である。
【0010】
薬液は木材への付着量をコントロールするために各処理液に相溶性のある種々の溶媒を添加して希釈して用いることが可能で、この場合、溶媒としては薬液との反応性が低いほど好ましく、具体例として、ヘキサン、ヘプタンなどの脂肪族炭化水素、トルエン、キシレンなどの芳香族炭化水素、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類、酢酸エチル、酢酸ブチルなどのエステル類、アセトン、メチルエチルケトンなどのケトン類、さらには水やアルコール類などが挙げられるが、特にこれらに限定するものではない。
【0011】
薬液は木材の組織内部まで浸透させるという観点から注入法を用いるのが望ましく、例えば、浸漬法、減圧注入、加圧注入、あるいはこれらの注入法を組み合わた方法などが適用できる。薬液の含浸率は木材の素材感を損うことなく寸法安定性、強度を向上させるため不揮発分で10〜30%とするのが望ましい。ここで含浸率は薬液の付着量を元の木材の重量で除し100を乗じたもので式1で表される。
【0012】
【式1】
W=[(W−W)/W]×100(%)
W :含浸率
:含浸、乾燥後の木材の重量
:元の木材の重量
【0013】
上記の薬液で処理した木材は、熱風加熱、赤外線加熱、遠赤外線加熱等の加熱処理や、放射線、紫外線等で硬化させることが可能であり、加熱温度や加熱時間等はアクリル系化合物や環状エステル系化合物が充分に硬化し、木材が損傷しない程度であればよく、加熱処理の条件は薬液の組成、硬化剤によって多少異なるが、概ね、80〜140℃、0.1〜8時間とするのが望ましい。さらに、平板プレスや連続プレスなどを用いて加熱と同時に加圧しても差し支えなく、この場合は、硬化が促進され強度的にも優れたものとなる。加圧する際の圧力の条件としても、硬化を促進し、木材が損傷しない程度とするのが望ましく、5〜20kgf/cmの条件が適する。
【0014】
本発明に適用できる木材や木質系材料としては、製材品、スライス単板、集成材、パ−ティクルボ−ドなどが挙げられ、具体的には、アカガシ、カバ、ブナ、ラワン、ポプラ、カポ−ル、ナラ、ケヤキ、エノキなどの広葉樹材、スギ、マツ、カラマツ、ヒノキなどの針葉樹材、ゴムノキ集成材、LVL(Laminated Veneer Lumber)等、また、形状的には板状、柱状など例示しうるが、これらに限定するものものではない。
【0015】
【作用】
木材にアクリル系化合物と環状エステル系化合物を主成分とする薬液を含浸し、硬化させる事によって通常の低含浸WPCの欠点を補い、木材との親和性の良い環状エステル化合物によって寸法変化を効果的に抑え、アクリル系化合物の重合に伴う木材中での収縮を緩和し、割れにくいものとなる。
【0016】
以下、実施例、比較例を示し詳細に説明する。
【実施例】
実施例1
アクリル系化合物としてメチルメタクリレ−ト(シロップ状)250g、重合開始剤として過酸化ベンゾイル2.5g、環状エステル化合物としてε−カプロラクトン250g、溶媒としてトルエン500gを混合して薬液(A)を得た。次いで厚さ5mm、気乾比重0.37〜0.42、繊維方向長さ300mm、接線方向100mmのスギに薬液(A)を減圧加圧法により含浸率が不揮発分で20%となるように含浸し、120℃の熱風乾燥器中で3時間加熱し、実施例1の改質木材を得た。
【0017】
実施例2
アクリル系化合物としてポリエチレングリコ−ルモノメタクリレ−ト300gと2−ヒドロキシエチルメタクリレ−ト300g、重合開始剤として過酸化ベンゾイル6.0gと、環状エステル化合物としてε−カプロラクトン200g、触媒として塩酸2.0g、溶媒として蒸留水200gとを混合して薬液(B)を得た。次いで実施例1と同様のスギに減圧法により薬液(B)を含浸率が不揮発分で20%となるように含浸し、120℃の熱風乾燥器中で3時間加熱し、実施例2の改質木材を得た。
【0018】
実施例3
アクリル系化合物としてグリシジルメタクリレ−ト300gとスチレン300g、重合開始剤としてメチルエチルケトンパ−オキサイド6.0g、触媒としてオクテン酸コバルト6.0g、環状エステル化合物としてε−カプロラクトン200gとを混合し薬液(C)を得た。次いで実施例1と同様のスギに減圧加圧法により薬液(C)を含浸率が不揮発分で20%となるように含浸し、風乾後ホットプレスを用いて60℃、圧力5kgf/cmで30分加熱圧締し、実施例3の改質木材を得た。
【0019】
実施例4
アクリル系化合物としてメチルメタクリレ−ト(シロップ状)250g、重合開始剤として過酸化ベンゾイル2.5gと、環状エステル化合物としてδ−バレロラクトン250g、溶媒としてトルエン500gとを混合し薬液(D)を得た。次いで実施例1と同様のスギに減圧加圧法により薬液(D)を含浸率が不揮発分で20%となるように含浸し、120℃の熱風乾燥器中で3時間加熱し、実施例4の改質木材を得た。
【0020】
比較例1
環状エステル化合物を用いることなく、アクリル系化合物としてメチルメタクリレ−ト(シロップ状)500gとスチレン500g、重合開始剤として過酸化ベンゾイル2.0gとを混合して処理剤(a)を得た。次いで実施例1と同様のスギに減圧加圧法により処理剤(a)を含浸率が不揮発分で20%となるように含浸し、120℃の熱風乾燥器中で3時間加熱し、比較例1の処理木材を得た。
【0021】
比較例2
環状エステル化合物を用いることなく、アクリル系化合物としてメチルメタクリレ−ト(シロップ状)300gと不飽和ポリエステル500gとスチレン200g、重合開始剤として過酸化ベンゾイル6.0g、触媒としてオクチル酸コバルト6.0gを混合し処理剤(b)を得た。次いで実施例1と同様のスギに減圧加圧法により処理剤(b)を含浸率が不揮発分で20%となるように含浸し、風乾後ホットプレスを用いて60℃、圧力5kgf/cmで30分加熱圧締し、比較例2の処理木材を得た。
【0022】
比較例3
環状エステル化合物を用いることなく、アクリル系化合物としてポリエチレングリコ−ルモノメタクリレ−ト400gと2−ヒドロキシエチルメタクリレ−ト600g、重合開始剤としてメチルエチルケトンパ−オキサイド10gを混合して処理剤(c)を得た。次いで実施例1と同様のスギに減圧加圧法により処理剤(c)を含浸率が不揮発分で20%となるように含浸し、120℃の熱風乾燥器中で3時間加熱し、比較例3の処理木材を得た。
【0023】
比較例4
アクリル系化合物を用いることなく、環状エステル化合物としてε−カプロラクトン300g、触媒として塩酸6g、溶媒として水700gとを混合し、処理剤(d)を得た後、実施例1と同様のスギに減圧加圧法により処理剤(d)を含浸率が不揮発分で20%となるように含浸した。次いで120℃の熱風乾燥器中で3時間加熱し、比較例4の処理木材を得た。
【0024】
実施例1〜実施例4の改質木材、及び比較例1〜比較例4の処理木材について寸法安定性、吸湿性、曲げ強さ、割れについて評価した。寸法安定性、吸湿性については試験体を40℃−30%RH、40℃−90%RHの恒温恒湿槽に平衡になるまで静置し、抗膨潤能(ASE)、抗吸湿性(MEE)を測定した。曲げ強さについてJISZ2113に基づき試験を行った。割れについてはJAS寒熱繰返しA試験に基づき、80℃の恒温器中に2時間放置した後、−20℃の恒温器中に2時間放置する工程を5サイクル繰返し、室温に達するまで放置し外観を確認し、割れなきを〇、割れありを×とした。評価結果を表1に示す。
【0025】
【表1】

Figure 0003553660
【0026】
【発明の効果】
アクリル系化合物と環状エステル系化合物を主成分とする薬液を木材に注入し、硬化させて得られる改質木材は、従来のWPCに比べ含浸率が低いにもかかわらず割れにくく、寸法安定性、強度物性に優れたものとなる。
【0027】
更に薬液の含浸率が10〜30%と低いために木質の肌触りや外観が向上したものとなる。[0001]
[Industrial applications]
The present invention relates to dimensional stabilization, durability, and appearance improvement of wood or wood-based materials.
[0002]
[Prior art]
Conventionally, wood-plastic composites obtained by impregnating wood with vinyl-based monomers and prepolymers such as methacrylates and styrene, and unsaturated polyesters, and polymerizing and curing the wood are called WPCs. As a material with improved strength, durability and abrasion resistance, its performance is widely recognized.
[0003]
[Problems to be solved by the invention]
However, since these WPCs must be sufficiently injected into wood to provide sufficient dimensional stability, not only is the cost of the treatment agent high, but also the wood texture is lost as the impregnation rate increases. There was a drawback that it was easily damaged.
[0004]
Further, in order to solve such problems, attempts have been made to combine a cyclic ester compound with wood at a low impregnation rate and at low cost, and excellent dimensional stability has been obtained. However, when the cyclic ester compound alone is used, although the wood swells sufficiently, it softens and the surface hardness is reduced, so that scratches are likely to occur and there is not much effect of improving the strength.
[0005]
DISCLOSURE OF THE INVENTION The present invention has been studied in order to solve the above-mentioned problems, and the present invention according to claim 1 is directed to a method of mixing a chemical solution obtained by mixing an acrylic compound and a cyclic ester compound with wood or wood. A method for producing modified wood in which a wood-based material is impregnated and hardened, wherein the cyclic ester-based compound has a structure that does not contain nitrogen in a cyclic structure. Further, according to a second aspect of the present invention, in the method for producing a modified wood according to the first aspect, the cyclic ester compound is β-propiolactone, δ-valerolactone, ε-caprolactone, coumarin, tetolinic acid. , Phthalide, and one or more compounds selected from these derivatives. The invention according to claim 3 is a wood or wood-based material obtained by mixing the acrylic compound and the cyclic ester compound in a ratio of 1: 5 to 5: 1 with a non-volatile content of 10 to 30%. The method for producing modified wood according to claim 1, wherein the modified wood is impregnated and cured. The invention according to claim 4 is the method for producing modified wood according to claim 3, wherein the acrylic compound is methyl methacrylate, and the cyclic ester compound is ε-caprolactone. An object of the present invention is to provide a method for producing a modified wood which is improved in appearance as described above without impairing the properties of the wood, and has excellent dimensional stability and strength. Hereinafter, the present invention will be described.
[0006]
As the acrylic compound used in the present invention, one or more kinds are selected from acrylic acid, methacrylic acid, acrylic acid ester, methacrylic acid ester, unsaturated polyester, styrene, and styrene derivative, and a polymerization initiator, for example, Those to which a polymerization accelerator such as an amine or a metal soap is further added, if necessary, such as a sulfated oxide, hydrogen peroxide, a peroxide, an azo-based polymerization initiator, and a redox polymerization initiator of a redox type can be applied.
[0007]
For acrylates, alkyl acrylate, hydroxyalkyl acrylate, diethylene glycol acrylate, polyethylene glycol acrylate, glycidyl acrylate, ethylene glycol diacrylate, ethoxyalkyl acrylate And methacrylic acid esters such as alkyl methacrylate, hydroxyalkyl methacrylate, glycidyl methacrylate, ethylene glycol methacrylate, ethylene glycol dimethacrylate, and polyethylene glycol methacrylate. , Polyethylene glycol dimethacrylate alkyl: ethyl, methyl, pentyl, etc.). Examples of the styrene derivative include α-methylstyrene and p-methyl-α-methylstyrene. Preferably, it is desirable to use methyl methacrylate having good permeability and easy to polymerize.
[0008]
The cyclic ester compounds, beta-propiolactone, .delta.-valerolactone, .epsilon.-caprolactone, coumarin, Tetorin acid, and compounds such as off Tarido, select more than one or two among these derivatives, the reaction In order to carry out the reaction quickly and efficiently, it is possible to apply an alkali metal, a hydride of an alkali metal, a hydroxide, a carbonate, an alkyl metal aliphatic amine, an acid, and a metal halide as necessary. It is preferable to use ε-caprolactone which is cost-effective and highly reactive.
[0009]
It is desirable that the acrylic compound and the cyclic ester compound are mixed at a weight ratio of 1:99 to 99: 1, and when the amount of the cyclic ester compound is more than 1:99, the strength tends to be insufficient, and the acrylic compound tends to be insufficient. If the ratio is more than 99: 1, it is difficult to follow changes in the environment, the dimensional change becomes large, and cracks easily occur. It is in the range of 1: 5 to 5: 1 that is excellent in moisture resistance, bending strength, and appearance (especially, transparency and touch).
[0010]
The chemical solution can be diluted by adding various solvents compatible with each processing solution in order to control the amount of adhesion to wood, and in this case, the lower the reactivity with the chemical solution as the solvent, Preferably, as specific examples, aliphatic hydrocarbons such as hexane and heptane, aromatic hydrocarbons such as toluene and xylene, diethyl ether, diisopropyl ether, tetrahydrofuran, ethers such as dioxane, ethyl acetate, esters such as butyl acetate, Examples include ketones such as acetone and methyl ethyl ketone, as well as water and alcohols, but are not particularly limited thereto.
[0011]
It is desirable to use an injection method from the viewpoint of penetrating the chemical solution into the interior of the wood tissue. For example, a dipping method, reduced pressure injection, pressure injection, or a method combining these injection methods can be applied. The impregnation rate of the chemical is desirably 10 to 30% in terms of nonvolatile content in order to improve dimensional stability and strength without impairing the feel of wood. Here, the impregnation rate is represented by the formula 1 which is obtained by dividing the amount of the chemical solution adhered by the weight of the original wood and multiplying by 100.
[0012]
(Equation 1)
W = [(W 2 −W 1 ) / W 1 ] × 100 (%)
W: impregnation ratio W 2 : weight of wood after impregnation and drying W 1 : weight of original wood
Wood treated with the above chemicals can be cured by heat treatment such as hot-air heating, infrared heating, far-infrared heating, radiation, ultraviolet light, etc., and the heating temperature and heating time are controlled by acrylic compounds and cyclic esters. It is sufficient that the system compound is sufficiently cured and the wood is not damaged, and the conditions of the heat treatment are slightly different depending on the composition of the chemical solution and the curing agent, but are generally 80 to 140 ° C. and 0.1 to 8 hours. Is desirable. Furthermore, it is permissible to apply pressure simultaneously with heating using a flat plate press, a continuous press, or the like. In this case, curing is promoted and strength is excellent. The pressure condition at the time of pressurization is desirably set to such an extent as to promote hardening and not to damage the wood, and a condition of 5 to 20 kgf / cm 2 is suitable.
[0014]
Wood and wood-based materials applicable to the present invention include sawn timber, sliced veneers, laminated wood, particle boards, and the like. Specifically, red oak, hippopotamus, beech, beech, rawan, poplar, capo Hardwood, such as cedar, pine, larch, and cypress, softwood, such as cedar, pine, larch, and hinoki, rubber tree laminated wood, LVL (Laminated Vener Number), and the like. However, the present invention is not limited to these.
[0015]
[Action]
Wood is impregnated with a chemical solution containing an acrylic compound and a cyclic ester compound as main components, and cured to compensate for the drawbacks of ordinary low-impregnation WPC. And the shrinkage in wood due to the polymerization of the acrylic compound is alleviated, making it difficult to break.
[0016]
Hereinafter, examples and comparative examples will be described in detail.
【Example】
Example 1
A liquid solution (A) was obtained by mixing 250 g of methyl methacrylate (syrup) as an acrylic compound, 2.5 g of benzoyl peroxide as a polymerization initiator, 250 g of ε-caprolactone as a cyclic ester compound, and 500 g of toluene as a solvent. . Then, a cedar having a thickness of 5 mm, an air-dry specific gravity of 0.37 to 0.42, a length in the fiber direction of 300 mm, and a tangential direction of 100 mm is impregnated with the chemical solution (A) by a reduced pressure method so that the impregnation rate becomes 20% of non-volatile content. Then, it was heated in a hot air dryer at 120 ° C. for 3 hours to obtain the modified wood of Example 1.
[0017]
Example 2
300 g of polyethylene glycol monomethacrylate and 300 g of 2-hydroxyethyl methacrylate as an acrylic compound, 6.0 g of benzoyl peroxide as a polymerization initiator, 200 g of ε-caprolactone as a cyclic ester compound, and hydrochloric acid as a catalyst. 0 g and 200 g of distilled water as a solvent were mixed to obtain a drug solution (B). Next, the same cedar as in Example 1 was impregnated with the chemical solution (B) by a decompression method so that the impregnation rate became 20% as a non-volatile content, and the mixture was heated in a hot-air dryer at 120 ° C. for 3 hours. Quality wood was obtained.
[0018]
Example 3
A mixture of 300 g of glycidyl methacrylate and 300 g of styrene as an acrylic compound, 6.0 g of methyl ethyl ketone peroxide as a polymerization initiator, 6.0 g of cobalt octenoate as a catalyst, and 200 g of ε-caprolactone as a cyclic ester compound was mixed with a chemical solution (C ) Got. Next, the same cedar as in Example 1 was impregnated with the chemical solution (C) by a reduced pressure method so that the impregnation ratio became 20% in terms of non-volatile content, air-dried, and then hot-pressed at 60 ° C. under a pressure of 5 kgf / cm 2 for 30 minutes. The heated wood was pressed for a minute to obtain the modified wood of Example 3.
[0019]
Example 4
250 g of methyl methacrylate (syrup) as an acrylic compound, 2.5 g of benzoyl peroxide as a polymerization initiator, 250 g of δ-valerolactone as a cyclic ester compound, and 500 g of toluene as a solvent were mixed to give a drug solution (D). Obtained. Then, the same cedar as in Example 1 was impregnated with the chemical solution (D) by a reduced pressure method so that the impregnation rate became 20% in terms of nonvolatile content, and the mixture was heated in a hot air drier at 120 ° C. for 3 hours. Modified wood was obtained.
[0020]
Comparative Example 1
Without using a cyclic ester compound, 500 g of methyl methacrylate (syrup) as an acrylic compound, 500 g of styrene, and 2.0 g of benzoyl peroxide as a polymerization initiator were mixed to obtain a treating agent (a). Next, the same cedar as in Example 1 was impregnated with the treating agent (a) by a reduced pressure method so that the impregnation ratio became 20% in terms of non-volatile content, and heated in a hot air drier at 120 ° C. for 3 hours. The processed wood was obtained.
[0021]
Comparative Example 2
Without using a cyclic ester compound, 300 g of methyl methacrylate (syrup), 500 g of unsaturated polyester and 200 g of styrene as an acrylic compound, 6.0 g of benzoyl peroxide as a polymerization initiator, and 6.0 g of cobalt octylate as a catalyst. Was mixed to obtain a treating agent (b). Next, the same cedar as in Example 1 was impregnated with the treating agent (b) by a reduced pressure method so that the impregnation ratio became 20% in terms of non-volatile content, air-dried, and then hot pressed at 60 ° C. and a pressure of 5 kgf / cm 2 . It was heated and pressed for 30 minutes to obtain treated wood of Comparative Example 2.
[0022]
Comparative Example 3
Without using a cyclic ester compound, 400 g of polyethylene glycol monomethacrylate and 600 g of 2-hydroxyethyl methacrylate as acrylic compounds, and 10 g of methyl ethyl ketone peroxide as a polymerization initiator were mixed and treated as a treatment agent (c). Got. Next, the same cedar as in Example 1 was impregnated with the treating agent (c) by a reduced pressure method so that the impregnation ratio became 20% in terms of non-volatile content, and heated in a hot air drier at 120 ° C. for 3 hours. The processed wood was obtained.
[0023]
Comparative Example 4
Without using an acrylic compound, 300 g of ε-caprolactone as a cyclic ester compound, 6 g of hydrochloric acid as a catalyst, and 700 g of water as a solvent were mixed to obtain a treating agent (d). The treating agent (d) was impregnated by a pressure method so that the impregnation ratio was 20% as a non-volatile content. Subsequently, it was heated in a hot air dryer at 120 ° C. for 3 hours to obtain a treated wood of Comparative Example 4.
[0024]
The modified woods of Examples 1 to 4 and the treated woods of Comparative Examples 1 to 4 were evaluated for dimensional stability, hygroscopicity, bending strength, and cracking. For dimensional stability and hygroscopicity, the test specimen was allowed to stand in a constant temperature and humidity chamber at 40 ° C. to 30% RH and 40 ° C. to 90% RH until equilibrium was reached, and the anti-swelling ability (ASE) and anti-hygroscopicity (MEE) were measured. ) Was measured. A test was conducted on the bending strength based on JISZ2113. As for cracks, based on the JAS cold repetition A test, the process of leaving the product in a thermostat at 80 ° C for 2 hours and then leaving it in a thermostat at -20 ° C for 2 hours was repeated 5 cycles, and the product was left standing until it reached room temperature and the appearance was observed. It was confirmed, and “〇” indicates no crack, and “X” indicates crack. Table 1 shows the evaluation results.
[0025]
[Table 1]
Figure 0003553660
[0026]
【The invention's effect】
A modified wood obtained by injecting a chemical solution containing an acrylic compound and a cyclic ester compound as main components into wood and curing the wood is less likely to crack despite its lower impregnation rate than conventional WPC, and has dimensional stability, Excellent in strength physical properties.
[0027]
Further, since the impregnation rate of the chemical solution is as low as 10 to 30%, the feel and appearance of the wooden material are improved.

Claims (4)

アクリル系化合物と、環状エステル系化合物を混合した薬液を木材あるいは木質系材料に含浸し、硬化させる改質木材の製法において、上記環状エステル系化合物は、環状構造中に窒素を含まない環状エステル系化合物であることを特徴とする改質木材の製法。In a method of producing a modified wood in which an acrylic compound and a chemical solution obtained by mixing a cyclic ester compound are impregnated into wood or wood material and cured , the cyclic ester compound is a cyclic ester compound containing no nitrogen in the cyclic structure. A method for producing modified wood, which is a compound . 前記環状エステル化合物は、β−プロピオラクトン、δ−バレロラクトン、ε−カプロラクトン、クマリン、テトリン酸、フタリド、及び、これらの誘導体の中から1種又は2種以上選択された化合物であることを特徴とする請求項1に記載の改質木材の製法。The cyclic ester compound is β-propiolactone, δ-valerolactone, ε-caprolactone, coumarin, tetolinic acid, phthalide, and one or more compounds selected from these derivatives. The method for producing modified wood according to claim 1, characterized in that: 前記アクリル系化合物と、前記環状エステル系化合物を1:5〜5:1の割合で混合した薬液を、不揮発分で10〜30%の含浸率で木材あるいは木質系材料に含浸し、硬化させることを特徴とする請求項1または2に記載の改質木材の製法。Impregnating and hardening a chemical solution in which the acrylic compound and the cyclic ester compound are mixed at a ratio of 1: 5 to 5: 1 with a non-volatile content of 10 to 30% in a wood or wood-based material. The method for producing modified wood according to claim 1 or 2, wherein: 前記アクリル系化合物をメチルメタクリレートとし、前記環状エステル系化合物をε−カプロラクトンとしたことを特徴とする請求項3に記載の改質木材の製法。The method for producing modified wood according to claim 3, wherein the acrylic compound is methyl methacrylate, and the cyclic ester compound is ε-caprolactone.
JP24720394A 1994-09-13 1994-09-13 Manufacturing method of modified wood Expired - Fee Related JP3553660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24720394A JP3553660B2 (en) 1994-09-13 1994-09-13 Manufacturing method of modified wood

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24720394A JP3553660B2 (en) 1994-09-13 1994-09-13 Manufacturing method of modified wood

Publications (2)

Publication Number Publication Date
JPH0880508A JPH0880508A (en) 1996-03-26
JP3553660B2 true JP3553660B2 (en) 2004-08-11

Family

ID=17159989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24720394A Expired - Fee Related JP3553660B2 (en) 1994-09-13 1994-09-13 Manufacturing method of modified wood

Country Status (1)

Country Link
JP (1) JP3553660B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006205492A (en) * 2005-01-27 2006-08-10 Eidai Co Ltd Woody fiber board and its production method
CN111775253A (en) * 2020-07-17 2020-10-16 安徽三和工艺品有限公司 Preparation method of impregnating resin for wickerwork

Also Published As

Publication number Publication date
JPH0880508A (en) 1996-03-26

Similar Documents

Publication Publication Date Title
US5605767A (en) Hardened and fire retardant wood products
Pelit et al. Effects of thermomechanical densification and heat treatment on density and Brinell hardness of Scots pine (Pinus sylvestris L.) and Eastern beech (Fagus orientalis L.)
Unsal et al. Effect of thermal compression treatment on the surface hardness, vertical density propile and thickness swelling of eucalyptus wood boards by hot-pressing
Dündar et al. Effect of heat treament on the physical and mechanical properties of compression and opposite wood of Black Pine
EP1513661B1 (en) Method to reduce surface cracking of coated hardwood composite flooring
US5770319A (en) Densification of lignocellulosic material
JP3553660B2 (en) Manufacturing method of modified wood
JP7241768B2 (en) Process for producing acetylated softwood, acetylated softwood wood elements, panels, and medium density fiberboard
US4883719A (en) Method of surface impregnation of wood articles and wood articles made therewith
EP0502640A1 (en) Densification of lignocellulosic material
JP2002178311A (en) Method for manufacturing resin reinforced woody decorative laminate
JP5217615B2 (en) Method for producing water-based flame retardant wood / plastics composite
KR100543652B1 (en) Dimensional stability method of wood product
JPH06143205A (en) Manufacture of fungiproof wooden material
JP2595270B2 (en) Modified wood material and method for producing the same
JPH0584201B2 (en)
JPH03108501A (en) Manufacture of ligneous material introduced and treated with synthetic resin
JPH06106507A (en) Production of wood composite material
JP2997393B2 (en) Method of manufacturing reinforced wood veneer
Ding Study of physical and mechanical properties of hardened hybrid poplar wood
CN117015460A (en) Method for producing a wood-polymer composite
JP2691600B2 (en) Method of manufacturing wood composite material
JPS63107502A (en) Improved woody material
JPH0655508A (en) Manufacture of fungus resistant wooden material
Abdel‐Mohdy et al. Effect of fluorenated monomer treatment on some physical and mechanical properties of wood: ‘Treatment of natural wood with a water repellent copolymer’. Part 1

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040430

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees