JP3552824B2 - Method and apparatus for measuring solid density in solid-liquid mixed fluid - Google Patents
Method and apparatus for measuring solid density in solid-liquid mixed fluid Download PDFInfo
- Publication number
- JP3552824B2 JP3552824B2 JP34607995A JP34607995A JP3552824B2 JP 3552824 B2 JP3552824 B2 JP 3552824B2 JP 34607995 A JP34607995 A JP 34607995A JP 34607995 A JP34607995 A JP 34607995A JP 3552824 B2 JP3552824 B2 JP 3552824B2
- Authority
- JP
- Japan
- Prior art keywords
- solid
- mixed fluid
- liquid mixed
- density
- radio wave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Excavating Of Shafts Or Tunnels (AREA)
- Measuring Volume Flow (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、泥水シールド工法などに利用される土砂と水との混合流体中に含まれる土砂の密度などの測定に利用される固液混合流体の固体濃度や流量の測定方法及び装置に関するものである。
【0002】
【従来の技術】
シールド掘進機によるトンネル掘削工事では、掘削機の先端部分で削り取った土砂を掘削中のトンネル内から外部に排出して投棄する必要がある。この削り取った土砂をトンネル外部に排出する方法としては、削り取った土砂をトロッコ等でトンネル外部に排出する泥土圧シールド掘削工法と、給水管を通してトンネルの後方から供給した泥水に削り取った土砂を混ぜて後方の地上に送り返し、ここで土砂を泥水から分離して投棄するという泥水シールド掘削工法とが従来から知られている。作業の自動化による省力化という点では、後者の泥水シールド掘削工法の適用が望ましい。
【0003】
泥水シールド工法について、図6の泥水の給排水系統図を参照しながら説明する。図6の給排水系統図を参照すれば、地上部分には、地中のトンネル内に送り出す泥水の密度と粘度とを調整するための調整槽61が設置されている。密度と粘度とが調整された調整槽61内の泥水は、給水ポンプ65による加圧を受け、給水管66中を地中のシールド掘削機67内に送られ、先端部のカッター68を通してこのカッター68と「キリハ」(切端)との間に形成された切削中の土砂と泥水とによって満たされた空間内に吐出される。
【0004】
この切端に向けて吐出される泥水の密度や粘度が小さすぎると、この泥水が切端の内部に容易に浸透してしまい、切端の崩落が発生する。逆に、泥水の密度や粘度が大きすぎると、給排水系の負担が過大になる。そこで、カッター68から吐出される泥水の密度や粘度を所望の値に保つように、地上に設置した調整槽61中の泥水の密度と粘度とが調整される。具体的には、泥水の密度が清水槽74から供給される清水の量と貯泥槽63から供給される粘度の量などによって調整されると共に、この泥水の粘度が増粘剤貯蔵槽62から供給されるCMCなどの適宜な増粘剤の量によって調整される。
【0005】
泥水シールド掘進機の先端部から切端に向けて吐出された泥水は、カッター68の先端部のビットによって切取られた土砂の固結体が混合されることにより密度が増した泥水となり、カッター68を通して排水管72内に流入し、排水ポンプ73による加圧を受けて排水管77内を地上に運ばれる。地上に運ばれた土砂は振動ふるい装置78にかけられ、ある程度大きな粒径の固結体は泥水から分離され、土砂として投棄される。分離不能な小径の土砂を含む泥水は、排水管79を通して調整槽61に戻される。
【0006】
上述のように、泥水シールド工法においては、泥水の密度の測定と管理が重要になると共に、泥水中の土砂の沈殿を防ぐために流量をある程度大きな値に保つ必要があり、この点で流量の測定と管理も重要になる。この泥水の密度と流量を測定するために、カッター68の手前の給水管と排水管のそれぞれの側に電磁流量計79,74と、γ線密度計70,75が設置される。
【0007】
【発明が解決しようとする課題】
上記泥水シールド工法では、γ線密度計を使用して泥水の密度を測定している。しかしながら、このγ線密度計には、γ線の漏れを防止するために高い信頼性を備えた高価な放射線遮蔽機構が必要になったり、被爆などに防止するために作業中の安全管理が複雑になったりするという問題がある。
従って、本発明の一つの目的は、γ線など安全管理に手間がかかる放射線を使用しない固液混合流体中の固体の密度や流量の測定方法及び装置を提供することにある。
【0008】
【課題を解決するための手段】
本発明に係わる固液混合流体の固体密度の測定方法によれば、固液混合流体が流れる管路内に電波を放射し、この管路内を流れる固液混合流体中を伝播した電波を受信し、この受信レベルの大小によって固液混合流体中の固体の密度を測定するように構成されている。
【0009】
【発明の実施の形態】
本発明の実施の形態によれば、電波の透過率を利用する固体の密度の測定装置はシールド掘進機内や、その直ぐ後方のトンネル内など掘削現場に比較的近い箇所の管路の途中に設置され、測定結果が短時間のうちに掘削現場にフィードバックされることにより安定なフィードバック系が形成される。掘削現場では、泥水中の土砂の密度の測定装置によって測定された土砂の密度がほぼ一定になるように、カッターのビットの伸縮長やカッターの回転速度などの掘削条件や給排水の条件が変更される。
【0010】
【実施例】
図3は本発明の一実施例に係わるシールド掘進機の泥水中の土砂密度の測定装置の構成を示すブロック図であり、T1〜T4は送信アンテナ、R1〜R4は受信アンテナ、11はデータプロセッサ、12は送信器、13は送信スイッチ回路、14は受信スイッチ回路、15は受信器、16はタイミング制御回路、17は表示・記録回路である。
【0011】
図1は、上記土砂密度の測定装置のうち送信アンテナと受信アンテナ部分を泥水が流れる管路との関係と共に示す図であり、(A)は(B)中のAーA’断面図、(B)は(A)中のBーB’断面図である。
【0012】
泥水シールド工法による掘進機内の送水管や排水管を構成する鋼管SPの途中に、強化プラスチックを素材とする円筒形状の電気絶縁性の管路PPが接合されている。絶縁管路PPの外周面に沿って、4個の送信アンテナT1,T2,T3,T4が接着剤層を介在させながらこの外周面上に固定される。送信アンテナT1〜T4のそれぞれに絶縁管PPの中心軸を介在させながら対向するように、4個の受信アンテナR1,R2,R3,R4が接着層を介在させながら外周面上に固定されている。隣接する送信アンテナT1〜T4と、受信アンテナR1〜R4とは、フェライトなどの電波吸収体を素材とする遮蔽体SHによって、絶縁管路PPの外部では互いに電気的に遮蔽されている。
【0013】
送信アンテナT1〜T4と、受信アンテナR1〜R4のそれぞれは、同一の構造を有している。すなわち、送信アンテナT1で代表して図2(A)の平面図とそのBーB’断面図である同図(B)に示すように、4弗化エチレン(TFE)などを素材する誘電体基板21の上に、銅などの金属を素材とする2等辺三角形の金属平板22a,22bがそれぞれの頂点を対向させながら貼着されたダブレットアンテナの構造を呈している。誘電体基板21は、絶縁管PPの外周面上に間隙を形成することなく接着固定されるように、この外周面と同一の曲率半径で湾曲している。送信アンテナT1で代表される各アンテナは、それぞれの誘電体基板の短辺側を図1の絶縁管PPの円周方向に沿って配列させながらその外周面上に固定される。
【0014】
金属平板22a,22bのそれぞれは、誘電体基板21内に形成された開口内を通過するフィーダ(給電線)を介して、図3の送信スイッチ回路13に接続される。このダブレットアンテナの更なる詳細については、必要に応じて、本出願人が先に出願した実用新案登録願の明細書(実公平 3ー14807 号公報、実公平 4ー11375 号公報)などを参照されたい。
【0015】
図3を参照すれば、データプロセッサ11は、送信スイッチ回路13と受信スイッチ回路14にスイッチ選択指令を発することにより、送信器12を送信アンテナT1に接続すると共に、受信器15を受信アンテナR1に接続する。データプロセッサ11は、この送受信アンテナの接続が終了すると、タイミング制御回路16を起動する。
【0016】
起動されたタイミング制御回路16は、図4の波形図に例示するような一定周期Tの送信タイミング信号を送信器12に繰り返し供給すると共に、この送信タイミング信号から一定値τずつ遅延時間が累積的に増加してゆくストローブパルスを受信器15に供給する。送信器12からは、図4の波形図に例示するように送信タイミング・パルスに同期して、ピークレベルが一定で半値幅3nsec 程度の鋭い送信パルスが出力される。この送信パルスは、送信アンテナT1から絶縁管路PP内に放射され、泥水中を伝播した送信パルスは、受信アンテナR1に受信される。
【0017】
受信アンテナR1の受信パルスは、受信スイッチ回路14を通して受信器15に供給され、タイミング制御回路16から供給されるストローブパルスに同期してサンプリングされ、次の受信パルスが出現するまでの期間、すなわち送信タイミング信号の周期Tに等しい期間にわたってホールドされる。この結果、受信パルスは、その時間軸がT/τ倍だけ伸長されながら受信されることになる。このサンプルホールド方式に基づく時間軸伸長を利用したパルスレーダの動作の更なる詳細については、必要に応じて、本出願人が先に特許出願した「接岸速度計」と題する特許出願の明細書( 特公平7ー78537 号公報) などを参照されたい。
【0018】
データプロセッサ11は、送信アンテナT1と受信アンテナR1の対を用いた所定回数にわたるパルスの送受信が終了すると、受信器15から時間軸が伸長された受信パルスを受取る。引き続き、データプロセッサ11は、送信スイッチ回路13と受信スイッチ回路14にスイッチ選択の変更指令を発することにより、送信器12を送信アンテナT1からT2に接続変更すると共に、受信器15を受信アンテナR1からR2に接続変更したのち、タイミング制御回路16を起動する。
【0019】
起動されたタイミング制御回路16は、送信アンテナT1と受信アンテナR1を用いた行ったパルスの送受信の場合と同様に、送信タイミング・パルスとストローブパルスのそれぞれを送信器12と受信器15に供給する。送信器12から一定周期で出力される送信パルスは、送信アンテナT2から絶縁管路PP内に放射され、泥水中を伝播した送信パルスは、受信アンテナR2に受信され、ストローブパルスに同期してサンプルホールドされる。
【0020】
データプロセッサ11は、送信アンテナT2と受信アンテナR2の対を用いた所定回数にわたるパルスの送受信が終了すると、受信器15から時間軸が伸長された受信パルスを受取り、送信器12を送信アンテナT2からT3に接続変更すると共に、受信器15を受信アンテナR2からR3に接続変更したのち、タイミング制御回路16を起動する。以下同様にして、送信アンテナ4と受信アンテナR4とを用いてパルスの送受信とサンプルホールドに基づく受信パルスの時間軸の伸長が行われる。
【0021】
データプロセッサ11は、受信器15から受取った受信パルスの振幅vを検出する。この受信パルスの振幅vの検出に際しては、4対の送受信アンテナを用いることにより、互いに 90 o と、180 o と、270 o の角度を保って交差する4種類の伝播経路について得られた4種類の受信パルスの振幅について平均値を算定する。この結果、受信パルスの振幅vに関して4種類の伝播経路についての空間的な平均化処理が行われる。データプロセッサ11は、このような受信パルスの振幅の平均値から電波の透過率Kを算定し、この算定した電波の透過率Kから泥水中の土砂の空間密度ρ(Kg/m3 )を算定する。以下、電波の透過率Kと土砂の空間密度ρとの関係について説明する。
【0022】
図1に示した送受信アンテナの対において、送信アンテナT1から放射される電波の振幅をEt、受信アンテナR1に受信される電波の振幅をErとし、電波の透過率Kを次式で近似する。
K= 20 log ( Er / Et )
=A+B+C+D+L ・・・・(1)
【0023】
ただし、
A:送信アンテナT1から泥水の表面まで伝播する際に送信アンテナと絶縁管路PPとの界面及び絶縁管路と泥水との界面で反射されることによって生ずる反射損失
B:泥水中の粗い粒子で散乱されることによって生じる散乱損失
C:泥水中の微小な粒子に吸収されることによって生じる吸収損失
D:泥水の表面から受信アンテナR1まで伝播する際に泥水の表面と絶縁管路PPとの界面及び絶縁管路PPと泥水との界面で反射されることによって生ずる反射損失
L:送信アンテナから放射された電波が拡散することによって生ずる拡散損失
【0024】
拡散損失Lについては、電波の波長をλ、絶縁管路PPの直径をdとし、次式で近似する。
L=20 log (λ2 / 4 πd2 ) ・・・・(2)
電波の波長λが 1.0 m、絶縁管路の直径dが0.1 m の場合には、拡散損失Lは−18dBとなる。また、本発明者の経験に基づけば、絶縁管路の直径dが0.1 m の場合には、各損失項は次のような範囲の値であると予想される。
A≒C≒−20dB、−20dB≦B≦0dB、−10dB≦D≦−3 dB
【0025】
なお、水の複素誘電率をε1 、土砂の固結体の複素誘電率のε2 、半径をaとすれば、レイリー散乱の散乱断面積σは次式で与えられる。
ただし、 ABS ( ) は ( ) 中の数値の絶対値を表す記号、λは電波の波長である。
【0026】
電波の周波数をfとすれば、(3)式から、次式が得られる。
σ∝a6 f4 ・・・・(4)
電波の伝播経路内に存在する粗い粒子の直径が全てaで、これが全部でn個存在するものとすれば、散乱損失が次式で近似される。
B∝nσ∝na6 f4 ・・・・(5)
【0027】
また、粗い粒子の空間密度ρ(Kg/m3)は、次式で近似される。
ρ∝na3 ・・・・(6)
(6)式を(5)式に代入することにより、次式を得る。
B∝ρa3 f4 ・・・・(7)
粗い粒子の直径が全て同一で、電波の周波数が一定の場合には、電波の粗い粒子による散乱損失は、次式で与えられる。
B∝ρ ・・・・(8)
【0028】
Etを 10 voltとした場合、真水については、B=0dB、D=−3dBと近似すれば、K=−61dBとなり、これからEr≒9mvを得る。散乱を生じさせる粗い粒子が存在せず、吸収を生じさせる微小な粒子のみが高密度で存在する泥水についてはB=0dB、D=−10dBと近似すれば、K=−68dBとなり、これからEr≒4 mvを得る。散乱を生じさせる粗い粒子と吸収を生じさせる微小な粒子とが共に高密度で存在する泥水については、B=−20dB、D=−10dBと近似すれば、K=−88dBとなり、これからEr≒0.4 mvを得る。
【0029】
従って、電波の透過率K、すなわち、送信パルスの振幅を一定値に固定した場合の受信パルスの振幅vを検出することにより、パルスの伝播経路の泥水中に存在する粗い粒子の密度が検出できる。図5は、土砂の空間密度ρ(Kg/m3)と受信パルスの振幅vの関係の一例を示している。
【0030】
土砂の流量W(Kg/min)は、受信パルスの振幅vに基づいて検出した土砂の空間密度ρ(Kg/m3)から次式に従って算定される。
W=ρ・πd2 ・S・γ (Kg/min) ・・・・(3)
ただし、
πd2 :絶縁管路PPの断面積(m2 )
S :水流の速度(m/min)
γ :水流に対する土砂の流速の比、すなわち、すべりの係数γ(0<γ<1)
【0031】
なお、上記すべりγは、好適には、土砂の密度の増加と共に小さな値に変更される。また、泥水の速度は、給水側の泥水の流速で近似してもよいし、掘削機の先端を折り返した適宜な出口側の箇所で電磁流量計や差圧式流量計で実測した値を用いてもよい。
【0032】
(3)式から算定される土砂の流量Wと、受信パルスの振幅から算定される土砂の空間密度ρとの関係は、掘削作業の初期に実験的に対応付けておく。すなわち、投棄対象の土砂を水から分離する地上の作業現場で土砂の流量を実測し、この実測値が(3)式から算定される土砂の流量に一致するように、図5の曲線の較正を予め行っておく。この較正に際しては、掘進機のカッターのビットの突出量や突出角度、掘削機の推進力、泥水の速度などを変化させて泥水中の土砂の密度を意図的に変化させる。
【0033】
以上、検出精度を高めるため、サンプルホールドに基づく時間軸伸長を伴うパルスレーダの場合を例示した。しかしながら、多少の精度の低下が許容できる場合には、時間軸伸長を行わない通常のパルスレーダを適用できる。
【0034】
また、パルスレーダの場合を例示したが、これに限定されず、受信電波のレベルを測定できるものでありさえすれば、正弦波をバースト状あるいは連続的に送受信するようなものであってもよい。
【0035】
また、絶縁管路の外周面にそって4対の送受信アンテナを配置する構成を例示したが、この対数としては、3対、2対、1対などこれよりも少ない個数、あるいは4対よりも多い適宜な個数を選択できる。
【0036】
更に、送受信アンテナとして、広帯域という利点を有するダブレットアンテナを使用する構成を例示したが、これに替えて、他の適宜な形態の広帯域の送受信アンテナを使用することもできる。
【0037】
また、シールド掘進機の泥水中の土砂流量を測定する場合を例にとって、本発明の測定方法と装置とを説明した。しかしながら、本発明に係わる固液混合流体の固体流量の測定方法と装置は、製造プラント内や廃液処理場内などの管路中を流れる種々の固液混合流体の固液流体の測定などにも適用できる。
【0038】
【発明の効果】
以上詳細に説明したように、本発明に係わる固液混合流体の固体密度の測定方法と装置は、管路内を流れる固液混合流体中に電波を伝播させ、この伝播損失を測定することによって固体の密度を測定する構成であるから、γ線など取扱いに十分な注意が必要な放射線を使用することなく、固体の密度や流量を的確に検出できるという効果が奏される。
【図面の簡単な説明】
【図1】本発明の一実施例に係わる泥水シールド掘進機の泥水中の土砂の密度の測定装置のうちの送受信アンテナの部分を測定対象の泥水が流れる管路と共に示す断面図である。
【図2】上記実施例の測定装置の送受信アンテナの構造を例示する平面図(A)と断面図(B)である。
【図3】上記実施例の測定装置の全体の構成を示すブロック図である。
【図4】上記実施例の測定装置の動作を説明するための波形図である。
【図5】上記実施例の測定装置によって測定される泥水中の土砂の密度と受信パルスの振幅との関係の一例を示す概念図である。
【図6】泥水シールド工法の給排水系統の典型な一例を示す系統図である。
【符号の説明】
T1〜T4 送信アンテナ
R1〜R4 受信アンテナ
SH 電波遮蔽体
SP 鋼管
PP 絶縁管
11 データプロセッサ
12 送信器
13 送信スイッチ回路
14 受信スイッチ回路
15 受信器
16 タイミング制御回路
21 誘電体基板
22a,22b 金属平板[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for measuring the solid concentration and flow rate of a solid-liquid mixed fluid used for measuring the density of soil and the like contained in a mixed fluid of earth and sand used in a muddy water shield method and the like. is there.
[0002]
[Prior art]
In tunnel excavation work using a shield machine, it is necessary to discharge the earth and sand shaved off at the tip of the excavator from the inside of the tunnel being excavated to the outside and dump it. As a method of discharging the shaved soil to the outside of the tunnel, a mud pressure shield excavation method of discharging the shaved soil to the outside of the tunnel with a trolley, etc. Conventionally, a mud shield excavation method of sending back to the ground on the back, separating sediment from mud and discarding it, has been known. In terms of labor saving by automating the work, it is desirable to apply the latter mud shield shield excavation method.
[0003]
The muddy water shield method will be described with reference to the muddy water supply / drainage system diagram in FIG. Referring to the water supply / drainage system diagram of FIG. 6, an
[0004]
If the density or viscosity of the mud discharged toward the cut end is too small, the mud easily penetrates into the cut end, and the cut end collapses. Conversely, if the density and viscosity of the muddy water are too high, the burden on the water supply and drainage system will be excessive. Therefore, the density and viscosity of the mud in the adjusting
[0005]
The muddy water discharged from the tip of the mud shield excavator toward the cut end becomes muddy of increased density due to the mixing of the solidified material of the earth and sand cut by the bit at the tip of the
[0006]
As described above, in the mud shield method, it is important to measure and control the density of the mud, and it is necessary to maintain the flow to a certain large value in order to prevent sedimentation of the mud in the mud. And management also becomes important. In order to measure the density and flow rate of the muddy water,
[0007]
[Problems to be solved by the invention]
In the above muddy water shield construction method, the density of muddy water is measured using a γ-ray density meter. However, this gamma ray densitometer requires an expensive radiation shielding mechanism with high reliability to prevent leakage of gamma rays, and complicated safety management during operation to prevent exposure to radiation. Problem.
Therefore, one object of the present invention is to provide a method and an apparatus for measuring the density and flow rate of solids in a solid-liquid mixed fluid that do not use radiation that requires time-consuming safety management such as γ-rays.
[0008]
[Means for Solving the Problems]
According to the method for measuring the solid density of a solid-liquid mixed fluid according to the present invention, a radio wave is radiated into a pipe through which the solid-liquid mixed fluid flows, and a radio wave transmitted through the solid-liquid mixed fluid flowing through the pipe is received. The density of the solid in the solid-liquid mixed fluid is measured based on the level of the reception level.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
According to the embodiment of the present invention, a solid density measuring device utilizing radio wave transmittance is installed in a shield excavator, or in a tunnel at a location relatively close to an excavation site, such as in a tunnel immediately behind the excavator. The measurement result is fed back to the excavation site within a short time, so that a stable feedback system is formed. At the excavation site, excavation conditions such as the extension length of the cutter bit and the rotation speed of the cutter, and the conditions of water supply and drainage are changed so that the sediment density measured by the sediment density measurement device in the muddy water becomes almost constant. You.
[0010]
【Example】
FIG. 3 is a block diagram showing a configuration of a measuring apparatus for measuring the sediment density in muddy water of a shield machine according to an embodiment of the present invention, wherein T1 to T4 are transmitting antennas, R1 to R4 are receiving antennas, and 11 is a data processor. , 12 is a transmitter, 13 is a transmission switch circuit, 14 is a reception switch circuit, 15 is a receiver, 16 is a timing control circuit, and 17 is a display / recording circuit.
[0011]
FIGS. 1A and 1B are views showing a transmitting antenna and a receiving antenna portion of the above-mentioned earth and sand density measuring device together with a relationship between a conduit through which muddy water flows, and FIG. 1A is a cross-sectional view taken along the line AA ′ in FIG. (B) is a sectional view taken along the line BB 'in (A).
[0012]
A cylindrical electrically insulating conduit PP made of reinforced plastic is joined in the middle of a steel pipe SP constituting a water pipe and a drain pipe in the excavator by the muddy water shield method. Along the outer peripheral surface of the insulating pipeline PP, four transmitting antennas T1, T2, T3, and T4 are fixed on the outer peripheral surface with an adhesive layer interposed. Four receiving antennas R1, R2, R3, and R4 are fixed on the outer peripheral surface with an adhesive layer interposed therebetween so as to face each of the transmitting antennas T1 to T4 with the central axis of the insulating tube PP interposed therebetween. . The adjacent transmitting antennas T1 to T4 and the receiving antennas R1 to R4 are electrically shielded from each other outside the insulating conduit PP by a shield SH made of a radio wave absorber such as ferrite.
[0013]
Each of the transmitting antennas T1 to T4 and the receiving antennas R1 to R4 has the same structure. That is, as shown in the plan view of FIG. 2A and the cross-sectional view taken along the line BB 'of FIG. 2B, which is representative of the transmitting antenna T1, a dielectric material such as tetrafluoroethylene (TFE) is used. A doublet antenna structure is shown in which isosceles triangular metal
[0014]
Each of the metal
[0015]
Referring to FIG. 3, the data processor 11 connects the
[0016]
The activated
[0017]
The reception pulse of the reception antenna R1 is supplied to the
[0018]
When the transmission and reception of the pulses for a predetermined number of times using the pair of the transmission antenna T1 and the reception antenna R1 are completed, the data processor 11 receives the reception pulse with the time axis extended from the
[0019]
The activated
[0020]
When the transmission and reception of the pulse for a predetermined number of times using the pair of the transmitting antenna T2 and the receiving antenna R2 is completed, the data processor 11 receives the received pulse whose time axis has been extended from the
[0021]
The data processor 11 detects the amplitude v of the received pulse received from the
[0022]
In the pair of transmitting and receiving antennas shown in FIG. 1, the amplitude of the radio wave radiated from the transmitting antenna T1 is Et, the amplitude of the radio wave received by the receiving antenna R1 is Er, and the transmittance K of the radio wave is approximated by the following equation.
K = 20 log (Er / Et)
= A + B + C + D + L (1)
[0023]
However,
A: Reflection loss caused by reflection at the interface between the transmitting antenna and the insulating pipe PP and the interface between the insulating pipe and the mud when propagating from the transmitting antenna T1 to the surface of muddy water B: Coarse particles in muddy water Scattering loss caused by being scattered C: Absorption loss caused by being absorbed by minute particles in the muddy water D: Interface between the surface of the muddy water and the insulating conduit PP when propagating from the surface of the muddy water to the receiving antenna R1 And a reflection loss L caused by reflection at the interface between the insulating pipe PP and the muddy water: a diffusion loss caused by diffusion of a radio wave radiated from the transmitting antenna.
The diffusion loss L is approximated by the following equation, where λ is the wavelength of the radio wave and d is the diameter of the insulating conduit PP.
L = 20 log (λ 2 / 4πd 2 ) (2)
When the wavelength λ of the radio wave is 1.0 m and the diameter d of the insulating conduit is 0.1 m, the diffusion loss L is −18 dB. Further, based on the experience of the present inventor, when the diameter d of the insulating conduit is 0.1 m, each loss term is expected to have a value in the following range.
A ≒ C ≒ -20dB, -20dB≤B≤0dB, -10dB≤D≤-3dB
[0025]
Assuming that the complex permittivity of water is ε 1 , the complex permittivity of soil and sand is ε 2 , and the radius is a, the scattering cross section σ of Rayleigh scattering is given by the following equation.
However, ABS () is a symbol representing the absolute value of the numerical value in (), and λ is the wavelength of the radio wave.
[0026]
Assuming that the frequency of the radio wave is f, the following equation is obtained from the equation (3).
σ∝a 6 f 4 (4)
Assuming that the diameters of the coarse particles existing in the propagation path of the radio wave are all a and that there are n in total, the scattering loss is approximated by the following equation.
B∝nσ∝na 6 f 4 (5)
[0027]
The spatial density ρ (Kg / m 3 ) of coarse particles is approximated by the following equation.
ρ∝na 3 (6)
By substituting equation (6) into equation (5), the following equation is obtained.
B∝ρa 3 f 4 (7)
If the diameters of the coarse particles are all the same and the frequency of the radio wave is constant, the scattering loss due to the coarse particles of the radio wave is given by the following equation.
B∝ρ (8)
[0028]
When Et is set to 10 volt, for fresh water, if approximating B = 0 dB and D = −3 dB, K = −61 dB, and Er ≒ 9 mv is obtained from this. For muddy water in which coarse particles that cause scattering do not exist and only fine particles that cause absorption exist at a high density, if B = 0 dB and D = −10 dB, K = −68 dB, and Er ≒ Obtain 4 mv. For muddy water in which coarse particles causing scattering and fine particles causing absorption are both present at a high density, K = −88 dB if B = −20 dB and D = −10 dB, and Er ≒ 0 .4 mv.
[0029]
Therefore, by detecting the transmittance K of the radio wave, that is, the amplitude v of the reception pulse when the amplitude of the transmission pulse is fixed to a constant value, the density of the coarse particles existing in the muddy water in the pulse propagation path can be detected. . FIG. 5 shows an example of the relationship between the spatial density ρ (Kg / m 3 ) of the earth and sand and the amplitude v of the received pulse.
[0030]
The soil flow rate W (Kg / min) is calculated from the spatial density ρ (Kg / m 3 ) of the soil detected based on the amplitude v of the received pulse according to the following equation.
W = ρ · πd 2 · S · γ (Kg / min) (3)
However,
πd 2 : cross-sectional area (m 2 ) of insulating pipeline PP
S: Speed of water flow (m / min)
γ: ratio of the velocity of the earth and sand to the water flow, that is, the coefficient of slip γ (0 <γ <1)
[0031]
The slip γ is preferably changed to a small value as the density of the earth and sand increases. Further, the muddy water speed may be approximated by the flow rate of the muddy water on the water supply side, or by using a value actually measured with an electromagnetic flowmeter or a differential pressure flowmeter at an appropriate outlet side where the tip of the excavator is turned back. Is also good.
[0032]
The relationship between the flow rate W of the earth and sand calculated from the equation (3) and the spatial density ρ of the earth and sand calculated from the amplitude of the received pulse is experimentally associated at the beginning of the excavation work. That is, the flow rate of the earth and sand is actually measured at a work site on the ground where the soil to be dumped is separated from the water, and the curve of FIG. 5 is calibrated so that the measured value matches the flow rate of the earth and sand calculated from the equation (3). Is performed in advance. At the time of this calibration, the density of the sediment in the mud is intentionally changed by changing the protruding amount and the protruding angle of the bit of the cutter of the excavator, the propulsive force of the excavator, the speed of the mud, and the like.
[0033]
In the above, in order to enhance the detection accuracy, the case of the pulse radar with the time axis extension based on the sample hold has been exemplified. However, if a slight decrease in accuracy can be tolerated, a normal pulse radar that does not perform time-axis expansion can be applied.
[0034]
Further, although the case of the pulse radar has been exemplified, the present invention is not limited to this, and a sine wave may be transmitted or received in a burst or continuously as long as the level of the received radio wave can be measured. .
[0035]
In addition, the configuration in which four pairs of transmitting and receiving antennas are arranged along the outer peripheral surface of the insulating conduit is illustrated, but the number of logs may be smaller than this, such as three pairs, two pairs, one pair, or more than four pairs. A large appropriate number can be selected.
[0036]
Furthermore, although a configuration using a doublet antenna having an advantage of a wide band as the transmission / reception antenna has been exemplified, other suitable forms of a wide band transmission / reception antenna may be used instead.
[0037]
In addition, the measurement method and apparatus of the present invention have been described by taking, as an example, the case where the flow rate of sediment in muddy water of a shield machine is measured. However, the method and apparatus for measuring the solid flow rate of a solid-liquid mixed fluid according to the present invention are also applicable to the measurement of various types of solid-liquid mixed fluids flowing in pipelines such as in manufacturing plants and wastewater treatment plants. it can.
[0038]
【The invention's effect】
As described in detail above, the method and apparatus for measuring the solid density of a solid-liquid mixed fluid according to the present invention is to propagate a radio wave in a solid-liquid mixed fluid flowing in a pipeline and measure this propagation loss. Since the configuration measures the density of the solid, it is possible to accurately detect the density and the flow rate of the solid without using radiation such as γ-ray which requires careful attention.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a transmitting / receiving antenna portion of a muddy water density measuring apparatus of a muddy shield machine according to one embodiment of the present invention, together with a pipeline through which muddy water to be measured flows.
FIG. 2 is a plan view (A) and a cross-sectional view (B) illustrating the structure of a transmitting and receiving antenna of the measuring apparatus of the embodiment.
FIG. 3 is a block diagram showing the overall configuration of the measuring apparatus of the embodiment.
FIG. 4 is a waveform chart for explaining the operation of the measuring apparatus of the embodiment.
FIG. 5 is a conceptual diagram showing an example of the relationship between the density of earth and sand in muddy water measured by the measuring device of the embodiment and the amplitude of a received pulse.
FIG. 6 is a system diagram showing a typical example of a water supply and drainage system of a muddy water shield method.
[Explanation of symbols]
T1 to T4 Transmitting antennas R1 to R4 Receiving antenna SH Radio wave shield SP Steel pipe PP Insulating pipe 11
Claims (7)
前記固体の流量は、前記算定した空間密度と前記固液混合液体の流速とにすべりに相当する1以下の係数を乗算することによって算定されることを特徴とする固液混合流体中の固体流量の測定方法。In claim 2,
The flow rate of the solid is calculated by multiplying the calculated space density and the flow rate of the solid-liquid mixed liquid by a coefficient equal to or less than 1 corresponding to slip. Measurement method.
前記すべりに相当する1以下の係数は、前記固体の空間密度の増加と共に減少せしめられることを特徴とする固液混合流体中の固体流量の測定方法。In claim 2 or 3,
A method of measuring a solid flow rate in a solid-liquid mixed fluid, wherein a coefficient equal to or less than 1 corresponding to the slip is reduced as the spatial density of the solid increases.
前記レイリー散乱によって生じた減衰量に着目した受信電波の振幅から前記固液混合流体中の固体の空間密度を検出する検出手段と
を備えたことを特徴とする固液混合流体中の固体密度の測定装置。Radio wave transmitting and receiving means for radiating radio waves into a conduit through which a solid-liquid mixed fluid in which a granular solid and a liquid are mixed and receiving radio waves propagated while being subjected to Rayleigh scattering by the solids in the solid- liquid mixed fluid. ,
Detecting means for detecting the spatial density of the solid in the solid-liquid mixed fluid from the amplitude of the received radio wave focusing on the amount of attenuation caused by the Rayleigh scattering; and measuring device.
前記電波の送受信手段は、前記管路の外周面に沿って複数対設置されたことを特徴とする固液混合流体中の固体密度の測定装置。In claim 5,
An apparatus for measuring the density of a solid in a solid-liquid mixed fluid, wherein a plurality of pairs of the transmission / reception means for the radio waves are provided along the outer peripheral surface of the pipeline.
前記固液混合流体は、泥水シールド工法の掘進機の先端部分で削り取られた土砂を固体として含む泥水であり、前記空間密度の算定値に基づいて検出された土砂の密度をほぼ一定値に保つように、掘削その他の状態が変更されることを特徴とする固液混合流体中の固体密度の測定装置。7. The solid-liquid mixed fluid according to claim 5, wherein the solid-liquid mixed fluid is mud containing, as a solid, earth and sand shaved off at a tip end portion of the excavator of the mud shield construction method, and the density of the earth and sand detected based on the calculated value of the space density. Characterized in that excavation and other conditions are changed so as to maintain a substantially constant value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34607995A JP3552824B2 (en) | 1995-12-11 | 1995-12-11 | Method and apparatus for measuring solid density in solid-liquid mixed fluid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34607995A JP3552824B2 (en) | 1995-12-11 | 1995-12-11 | Method and apparatus for measuring solid density in solid-liquid mixed fluid |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09159595A JPH09159595A (en) | 1997-06-20 |
JP3552824B2 true JP3552824B2 (en) | 2004-08-11 |
Family
ID=18381002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34607995A Expired - Fee Related JP3552824B2 (en) | 1995-12-11 | 1995-12-11 | Method and apparatus for measuring solid density in solid-liquid mixed fluid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3552824B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5057749B2 (en) * | 2006-11-21 | 2012-10-24 | 明星電気株式会社 | Method and apparatus for measuring sediment concentration in running water |
NL2028468B1 (en) * | 2021-06-16 | 2022-12-21 | Ihc Holland Ie Bv | System for measuring of a concentration parameter of a flow of a solid/liquid mixture |
-
1995
- 1995-12-11 JP JP34607995A patent/JP3552824B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09159595A (en) | 1997-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6487916B1 (en) | Ultrasonic flow metering system | |
US7607358B2 (en) | Flow rate determination of a gas-liquid fluid mixture | |
US20070282539A1 (en) | Fluid Motion and Composition Analysis Device and Method | |
CN103154721A (en) | Apparatus and method for noninvasive particle detection using Doppler spectroscopy | |
EP2089694B1 (en) | System and method for measuring a concentration parameter of a solid/liquid mixture in a conveyor pipe | |
KR20170093242A (en) | Measurement methods and systems | |
JP3552824B2 (en) | Method and apparatus for measuring solid density in solid-liquid mixed fluid | |
JP3514569B2 (en) | Mud shield excavator | |
EP1536212A2 (en) | Clamp-on type acoustic doppler current profiler | |
JPH06201534A (en) | Device and method for detecting blocked position inside pipe and method for controlling amount of unloaded oil | |
JP2001221751A (en) | Size measuring device for solid in solid-liquid mixed fluid and method | |
Vermeyen | A Laboratory Evaluation of Unidata's Starflow Doppler Flowmeter and MGD Technologies' Acoustic Doppler Flow Meter | |
JP2694856B2 (en) | Muddy water type shield excavator | |
JPH01146098A (en) | Shielding machine | |
Szebeszczyk | Application of clamp-on ultrasonic flowmeter for industrial flow measurements | |
JP2675129B2 (en) | Measuring device for crushing range in jet injection method | |
JPH02112757A (en) | Instrument for measuring concentration of particulate matter in piping | |
WO1991009284A1 (en) | Ultrasonic mass flow meter | |
JPH08270382A (en) | Facing stability control device in muddy water type shield machine | |
JP3131551B2 (en) | Face stabilization method of muddy water shield method | |
JPH0786306B2 (en) | Muddy water shield machine | |
JPS60157065A (en) | Soil monitoring device for shield drilling machine | |
JPH03271495A (en) | Monitor device in muddy water type shield chamber | |
DE10034474C1 (en) | Liquid or gas characteristics measuring method using ultrasound has conical wavefront directed through pipe with detection of waves after propagation through the liquid or gas | |
Arakaki et al. | Non-intrusive mass flow measurements in pneumatic transport |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040420 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040427 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090514 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100514 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100514 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110514 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120514 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130514 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130514 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |