JP3552604B2 - Treatment method of residual aluminum ash - Google Patents

Treatment method of residual aluminum ash Download PDF

Info

Publication number
JP3552604B2
JP3552604B2 JP24592699A JP24592699A JP3552604B2 JP 3552604 B2 JP3552604 B2 JP 3552604B2 JP 24592699 A JP24592699 A JP 24592699A JP 24592699 A JP24592699 A JP 24592699A JP 3552604 B2 JP3552604 B2 JP 3552604B2
Authority
JP
Japan
Prior art keywords
aluminum
residual ash
aluminum dross
water
dross residual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24592699A
Other languages
Japanese (ja)
Other versions
JP2001072461A (en
Inventor
寛 渡邉
雅春 杉山
彰 森田
定宣 石川
正敏 南波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP24592699A priority Critical patent/JP3552604B2/en
Publication of JP2001072461A publication Critical patent/JP2001072461A/en
Application granted granted Critical
Publication of JP3552604B2 publication Critical patent/JP3552604B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、アルミニウム(以下「アルミ」と略称する)又はアルミ合金からなるアルミ原材料を溶解するアルミ溶解工程で不可避的に発生するアルミドロスより金属状のアルミ又はアルミ合金を回収した後のアルミドロス残灰について、このアルミドロス残灰中に含まれる環境上又は利用上問題となる有害不純物を除去し、悪臭の発生や爆発の危険性もなく、有用資源化することができる処理方法に関する。
【0002】
【従来の技術】
アルミ又はアルミ合金からなるアルミ製品は、その耐蝕性、軽量性、導電性、伝熱性等において優れた特性を有し、このために車両、船舶、機械、電気、建築、日用品、飲料用缶等の極めて多くの分野で広範囲に利用されており、また、その形態も鋳塊品、圧延品、押出品、鍛造品等の種々の製品として極めて多岐に及んでいる。
【0003】
そして、このようなアルミ製品の製造は、一般的には、アルミ新地金、アルミ母合金、工場内で生じる製品のアルミ切れ端(工場内リターン材)、二次アルミ塊、二次アルミ母合金塊、回収アルミスクラップ等のアルミ原材料を溶解して基本的な形態のスラブ、ビレット、アルミ塊、アルミ合金塊等のアルミ鋳塊品を製造し、次いで、このアルミ鋳塊品に圧延、押出、鍛造等の加工を施して所望の形状に形成し、このうち多くは、表面の清浄化や、表面に耐蝕性や意匠性を付与する等の目的で、陽極酸化処理等の表面処理を施し、所望のアルミ製品とされている。
【0004】
このため、アルミ原材料からアルミ鋳塊品を製造するにはこのアルミ原材料を溶解するアルミ溶解工程が不可欠であり、アルミ又はアルミ合金が元来酸化され易い金属であることから、このアルミ溶解工程で溶湯表面が酸化される。そこで、この溶湯表面の酸化を防止するために、通常フラックスが使用されているが、この溶湯表面の酸化を完全に防止することは困難であり、溶湯表面にアルミ酸化物を主成分とする、いわゆるアルミドロスが不可避的に発生する。
【0005】
そして、このアルミドロスについては、通常それが80重量%にも及ぶアルミを含んでいるので、溶湯表面上から掻き出されたアルミドロスを回転羽根式等のしぼり機を用いて、あるいは加圧下に溶融金属アルミを絞り出して回収している。また、この一次回収処理した後、冷却、固化したアルミドロスを再度溶解処理し、同様に金属アルミを可及的に回収している。
【0006】
このようにしてアルミドロスから溶融金属アルミを可及的に回収した後の残滓、すなわちアルミドロス残灰は、主としてアルミ酸化物からなるものであるが、依然として、水と反応して水素を発生する金属アルミ(合金も含む)や、水と反応して炭化水素を発生する炭化アルミ、また、水と反応してアンモニアを発生し、悪臭等の公害の原因になる窒化アルミ(AlN)を含んでいる。
【0007】
このため、このアルミドロス残灰については、これまでに、無公害化処理したり、あるいは、アルミナ源として再利用することが種々検討されている。
しかしながら、このアルミドロス残灰に含まれている不純物の窒化アルミは、通常5〜15重量%にも達し、放置ないし保管中でも空気中の水分と反応してアンモニアを発生し、安全性や環境上の問題を引き起こすが、中性ないしは還元性雰囲気中では、高温でもかなり安定であり、例えば化学工業原料、窯業原料、金属製精錬用造滓剤等としての有用資源化の障害となっている。
【0008】
このような窒化アルミ等の有害不純物を含むアルミドロス残灰の処理方法としては、従来から各種の方法が知られている。
例えば、焼成による処理方法では、アルミドロス残灰を、水蒸気の雰囲気下においてロータリーキルン(回転式焼成炉)に投入し、バーナーにより700〜1000℃の温度で加熱することにより窒化アルミ等の有害不純物を分解し、アルミドロス残灰から窒素成分や塩素成分を除去する方法(特開平7−51652号公報)や、アルミドロス残灰を、パン型造粒機によって水を加えながらペレットとし、これを回転式焼成炉にて800〜1000℃の温度で焼成することにより窒化アルミを除去する方法(特開昭53−123398号公報)等が提案されており、これらの方法は、アルミドロス残灰中に含まれる窒化アルミ等の不純物を分解し、生成した水和物を焼成することによってアルミナ組成物を得る方法である。
【0009】
しかしながら、ロータリーキルン等の回転式焼成炉においては、その一端側にアルミドロス残灰を投入する投入口が配設されると共に他端側に焼成物の排出口が配設され、また、バーナーは排出口付近に配設されると共に投入口付近に排気ダクトが設けられ、ロータリーキルン内ではアルミドロス残灰と燃焼ガスとの流れが互いに向かい合う向流式となっている。このため、ロータリーキルン内の温度は、排出口側で高く、また、投入口側で低くなっており、排出口側で700〜1000℃に加熱しても投入口側では200℃以下の低温になっている場合があり、水和反応により発生するガス、すなわち、アンモニア、水素をはじめとする可燃性ガス、爆発性ガス、臭気の強いガスがそのまま燃焼されずに排気ダクトに導かれることになる。
【0010】
このように発生するガスは、ロータリーキルン等の焼成装置内、あるいは排ガス処理設備内において、上記種々のガスと空気との混合比が変化していく際に爆鳴気の組成を通過することがあり、その場合に焼成装置内や排ガス処理設備内において、予期せぬ不意の小爆発を起こすことが懸念されている。
【0011】
また、たとえ、上記のような爆発に対して充分に対応できる設備を施したとしても、排ガス中にはアンモニア等の悪臭を有するガスが残留し、大気中に悪臭をもたらすため、この臭気を有するガスを処理するための除去装置が必要不可欠となる。
【0012】
更に、上記ロータリーキルン等の回転式焼成炉を使用する方法では、ロータリーキルン内に投入されたアルミドロス残灰は徐々に昇温されるので、目的の焼成温度に達するまでに時間を要し、また、焼成温度に達した後に高温に保持される時間も短いため、得られる焼成物としては、ロータリーキルン内においての転動によって圧密された塊が生成し易く、特に予め造粒されたアルミドロス残灰を焼成した際には更に強固な塊が生成され、回収される焼成物中には窒化アルミ等の不純物が分解されずに多く残ることになる。
【0013】
そこで、このような問題を解決するために、処理するアルミドロス残灰の量を減らす、また、焼成温度を高くする等の対策がとられているが、回収される焼成物の品質が充分満足できるものには至っていない。
【0014】
更にまた、別の方法として、アルミドロス残灰に水を加えることなく、電気アーク炉等の加熱炉内で酸化性ガスを供給しながら加熱処理する方法(特開平9−310129号公報)や、アルミドロス残灰に水を加えることなく、酸化雰囲気を維持しながらロータリーキルン等の回転炉で加熱する方法(特開平6−135761号公報)等も知られている。
【0015】
しかしながら、上記の方法では、窒化アルミ等を完全に分解するには1400℃もの高温が必要であり、このように高温で加熱すると、酸化処理のための反応に必要な量の数倍も過剰に炉内に導入された余剰空気が加熱され、余剰空気は熱膨張によってその体積が急激に増大する。そのため、炉の環境を良好に保つための膨大な排風量の排気設備が必要になると共に、この設備を高温耐熱にすることが必要となり、設備費が高価にならざるを得ない。また、アルミドロス残灰をこのような高温で焼成すると、得られる焼成物は半溶融状態となってクリンカーが生成されるため、粉体状の製品が必要とされる場合には、別途粉砕を行う等の処理が必要となる。
【0016】
【発明が解決しようとする課題】
そこで、本発明者らは、アルミ製品の製造工程で発生する処理の困難なアルミドロス残灰を処理する際に、アルミドロス残灰中に含まれる窒化アルミ等の不純物に起因して発生するアンモニア等による悪臭を抑制し、また、アンモニアや水素ガス等に起因して起こる爆発を防止することができるアルミドロス残灰の処理方法について鋭意検討した結果、アルミドロス残灰に水を添加して混練し、得られた混練物を焼成炉内に装入して650℃以上の高温に急激に晒すと共に焼成処理の開始から終了まで650℃以上の高温に維持することにより、アルミドロス残灰に含まれる窒化アルミ等の不純物の分解が効率良く進み、また、発生するアンモニアや水素等の可燃性ガスをすみやかに燃焼することができ、その結果、アンモニアや水素ガス等に起因して起こる爆発もなく、また、悪臭も残ることなく、アルミドロス残灰を処理することができ、しかも、得られる焼成物は多孔質で解砕し易い塊状物となることを見出し、本発明を完成した。
【0017】
従って、本発明の目的は、アルミドロス残灰の処理工程において、窒化アルミ等の不純物に起因して発生するアンモニア等の悪臭を抑制し、、また、アンモニアや水素ガス等に起因して起こる爆発を防止しながらアルミドロス残灰から有害不純物を除去することができ、しかも、得られる焼成物は多孔質で解砕し易い塊状物となることができるアルミドロス残灰の処理方法を提供することにある。
【0018】
【課題を解決するための手段】
すなわち、本発明は、アルミドロス残灰に水を添加して混練し、得られた混練物を焼成炉内に装入し、この焼成炉内では混練物を650℃以上の高温に急激に晒すと共に焼成処理の開始から終了まで650℃以上の高温に維持するアルミドロス残灰の処理方法である。
【0019】
本発明において処理の対象となるアルミドロス残灰は、それがアルミやアルミ合金からなるアルミ原材料を溶解するアルミ溶解工程で副生するものであれば特に制限されるものではなく、具体的には、例えば、アルミ新地金、アルミ母合金、工場内で生じる製品のアルミ切れ端(工場内リターン材)、二次アルミ塊、二次アルミ母合金塊、自動車部品やアルミ缶等の回収アルミスクラップ等のアルミ原材料を溶解して基本的な形態のスラブ、ビレット、アルミ塊、アルミ合金塊等のアルミ鋳塊品を製造する際のアルミ溶解工程で副生するアルミドロスから得られるアルミドロス残灰である。このようなアルミドロス残灰の組成は、概ね、金属アルミ8〜15重量%、酸化アルミ(Al)50〜60重量%、窒化アルミ(AlN)5〜15重量%、炭化アルミ(Al)0〜2重量%等である。
【0020】
本発明では、先ず、上記アルミドロス残灰に水を添加して混練し、混練物とする。この場合、水の添加量については、通常、アルミドロス残灰と水との重量比(水/アルミドロス残灰)が0.25〜1、好ましくは0.33〜0.67の範囲となるように水を添加すればよい。このアルミドロス残灰と水との重量比(水/アルミドロス残灰)が0.25より少ないと、アルミドロス残灰に水を添加して混練する際に混練が不均一になったり、あるいは混練ができなくなり、また、アルミドロス残灰に含まれる窒化アルミの分解が充分に行われずに多量の窒化アルミが残留するため焼成による分解への負荷が増し、結果的に分解が不充分となる。一方、アルミドロス残灰と水との重量比(水/アルミドロス残灰)が1より多いと、得られる混練物が、焼成装置内において速やかに温度上昇することができず、窒化アルミ等の不純物を分解することができない。また、余剰な水分を気化させるために多量のエネルギーが必要となるため好ましくない。
【0021】
なお、このように混練して得られた混練物は、通常、平均直径10〜150mmの棒状になって押し出され、焼成炉内に導入されるが、その混練物が100mmφ程度の塊状であっても特に問題はない。
また、アルミドロス残灰と水との混練については、例えば、パドルミキサー、ニーダーミキサー、二重円型混合機等の回転式混練機やスクリューミキサー等の連続式混練機を用いて均一に混合しておくのがよい。
【0022】
次に、本発明では、上記のようにして得られた混練物を焼成炉内に装入し、この混練物を650℃以上、好ましくは700℃以上の高温に急激に晒すことにより急激に温度上昇せしめ、更に、この急激に温度上昇した混練物を、そのまま650℃以上、好ましくは700℃以上の高温の状態に維持して、焼成処理の開始から終了まで650℃以上の高温に維持する。この焼成処理の開始から終了までの温度は、650℃以上であればよく、特に上限はないが、1100℃を超えて高温に維持するのは不経済であり、1100℃程度まで、より好ましくは1000℃程度までとするのがよい。なお、焼成時間は、通常30分程度である。
【0023】
このように、上記混練物を、焼成炉内において650℃以上の高温に急激に晒して急激に温度上昇させると、アルミドロス残灰に含まれた水分の一部が一気に沸騰蒸発して混練物の内部で体積膨張するため、塊状である混練物は解砕されて小さな団粒状の焼成物となり、更に、この団粒状の焼成物からガスが抜け出てそのガスの抜けた通路が形骸として残るため、極めて多孔質な焼成物が得られる。この結果、空気中の酸素との接触の機会が飛躍的に増し、円滑な気固反応が起こる。
【0024】
また、急激に温度上昇した混練物をそのまま焼成処理が終了するまで650℃以上の高温に維持することにより、水と反応しないで焼成物内に残留した窒化アルミ等の不純物が空気と活発に接触することができるため、これら不純物の分解が効率よく行われ、その結果、品質の良い焼成物が得られる。
【0025】
なお、上記混練物が、焼成炉内において急激に晒される温度が650℃より低い場合は、混練物は急激に温度上昇されず、混練物に含まれた水分は一気に沸騰蒸発することはなく、混練物は解砕されない。その結果、多孔質な焼成物は得られず、また、窒化アルミ等の未分解物が多く残る。
また、温度上昇した混練物を650℃以上の温度に維持できない場合は、水と反応しないで残留した窒化アルミ等の不純物の分解が不充分となる。
【0026】
本発明で使用される焼成炉としては、焼成炉内において混練物を投入直後に650℃以上の高温に急激に晒すことができると共に、焼成処理の開始から終了まで650℃以上の高温に維持することが可能であれば、特に限定されるものではなく、回転式ロータリーキルン、回転アーム付焼成炉等を用いることができる。
【0027】
ちなみに、ロータリーキルンは、一般的に、焼成炉内において、投入される混練物の流れと火炎部の燃焼ガスの流れとが向流式であるため、混練物を焼成炉内に投入直後に高温に急激に晒すことはできないが、このような場合、焼成炉内において、混練物の投入部側に火炎部を配設することにより、混練物を投入直後に650℃以上の高温に急激に晒すことが可能であり、更に、焼成炉内の温度を全体的に650℃以上に維持することが可能であれば、そのように改良して使用することができる。
【0028】
本発明において、焼成炉は、回転アーム式平板焼成炉が好適に用いられ、特に混練物の投入口付近に火炎部を有していて、混練物が焼成炉内に投入される際に、この火炎部で直接火炎に晒されながら投入される形式のものが好ましく、また、上記火炎部の火炎温度は、800℃以上、好ましくは900℃以上であるのがよい。このように、混練物が、800℃以上の火炎温度を有する火炎部で直接火炎に晒されながら焼成炉内に投入されると、この混練物は急激に温度上昇され、更に、混練物から発生するアンモニアや水素等の可燃性ガスを瞬時に酸化燃焼させることができる。この火炎部の温度が800℃未満であると、アンモニアや水素等の可燃性ガスの燃焼が不充分になる等の不都合が生じるため好ましくない。
【0029】
また、本発明において、混練物が焼成炉内に装入される際の装入速度に関しては、火炎部であるバーナーの容量や、混練物の焼成炉内での滞留時間、あるいは、アルミドロス残灰の組成等により異なるが、炉内温度を650℃以上に保持でき、投入された混練物が炉内に滞留する時間の範囲内の装入速度であればよい。
【0030】
なお、本発明では、アルミドロス残灰に水を添加して混練するに際し、酸性水を添加することにより、混練中やその混練物の保管中における窒化アルミの分解が抑制され、これによりアンモニアの生成が抑えられる。また、生成したアンモニアが中和されて塩基性水の発生が抑えられ、これにより金属アルミの分解も抑制される。
【0031】
上記酸性水は、通常、pHがほぼ4以下の水であればよいが、好ましくは有機酸又は無機酸によりpHが1〜4、より好ましくは1〜2に調製された水である。この酸性水のpHが「4」よりも大きな値になるとアルミドロス残灰に含有されている窒化アルミの分解を抑制しにくくなり、また、その分解により生成するアンモニアを中和する能力が低下する。このような窒化アルミの分解の抑制効果とアンモニアの中和効果がより確実に得られる観点からは、そのpHは「2」以下であるとよい。反対に、そのpHが「1」よりも小さな値になるとアルミドロス残灰に含まれる金属アルミの分解を促進し、水素ガスの発生を助長してしまう問題があるほか、酸の使用量が飛躍的に増えて経済的にも不利となる。
【0032】
酸性水のpHを調製するための酸は、硫酸、塩酸、硝酸等の無機酸であってもよいが、排ガス処理の負荷軽減や機器の防腐等の観点から、好ましくは有機酸である。また、有機酸は、水との溶解性が良好である等の観点から、酢酸、グルコン酸又はクエン酸であることが好ましい。
【0033】
なお、本発明方法により得られる焼成物は、多孔質で解砕し易い塊状物であり、その粒径は30mm以下の細かいものである。このため、得られた焼成物は、粉体が要求されるタイル、レンガ等の窯業品に利用できる。
【0034】
本発明によれば、アルミドロス残灰を処理する際に、従来法とは異なり、650℃以上の比較的低い温度で短時間に、アンモニア等の悪臭を抑制し、また、アンモニアや水素ガス等に起因して起こる爆発を防止しつつ、アルミドロス残灰から窒化アルミ等の有害不純物を効率的に除去することができる。しかも、得られる焼成物は多孔質で解砕し易い塊状物であるため、タイル、レンガ等の窯業品のアルミナ代替としてや、鉄鋼の造滓剤等に利用することが可能である。
【0035】
【発明の実施の形態】
以下、実施例及び比較例に基づいて、本発明について具体的に説明する。
【0036】
実施例1
アルミドロス残灰に水を、重量比(水/アルミドロス残灰)0.5の割合で、また、グルコン酸をアルミドロス残灰に対して0.5重量%の割合になるように添加し、コンクリートミキサーを用いて3分程度混練して混練物を得た。
【0037】
回転アーム式平板焼成炉(大和三光製作所製:商品名ヴォルテックス炉)の雰囲気温度を650℃に維持し、上記の混練物200kgを、約180kg/hrの割合で焼成炉に連続的に投入し、焼成して焼成物を得た。なお、この回転アーム式平板焼成炉は、混練物の投入口付近に火炎温度800℃以上の火炎部を有し、混練物はこの火炎部で直接火炎に晒されながら炉内に投入された。また、ヴォルテックス炉の排ガスの排風量は、200Nm/分である。
【0038】
このように焼成して得られた焼成物について、焼成物中の窒化アルミ及び金属アルミの濃度と、経時的な焼成時の排ガス中のアンモニア濃度を測定した。
結果を表1に示す。
【0039】
実施例2
回転アーム式平板焼成炉の雰囲気温度を800℃に維持した以外は、実施例1と同様にして測定を行った。結果を表1に示す。
【0040】
比較例1
回転アーム式平板焼成炉の雰囲気温度を500℃に維持した以外は、実施例1同様にして測定を行った。結果を表1に示す。
【0041】
比較例2〜4
アルミドロス残灰と水とを、重量比(水/アルミドロス残灰)0.6〜0.7の割合で、また、グルコン酸をアルミドロス残灰に対して0.5重量%の割合になるように添加し、コンクリートミキサーを用いて3分程度混練して混練物を得た。
【0042】
ロータリーキルン(栗田鉄工所製)の出口温度を500℃、650及び800℃として、上記の水と混練されたアルミドロス残灰300kgを、約400kg/hrの割合で焼成炉に連続的に投入し、焼成し、実施例1と同様な測定を行った。なお、ロータリーキルンは、その構造上、入口の温度も測定した。また、ロータリーキルンの排ガスの排風量は、250Nm/分であった。結果を表1に示す。
【0043】
【表1】

Figure 0003552604
【0044】
【発明の効果】
本発明によれば、アルミドロス残灰の処理工程において、窒化アルミ等の不純物に起因して発生するアンモニア等の悪臭を抑制し、また、アンモニアや水素ガス等に起因して起こる爆発を防止しながらアルミドロス残灰から有害不純物を除去することができ、しかも、得られる焼成物は多孔質で解砕し易い塊状物となることができ、アルミドロス残灰の有用資源化の観点から極めて実用価値の高いものである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an aluminum dross obtained by recovering metallic aluminum or an aluminum alloy from aluminum dross inevitably generated in an aluminum melting step of melting an aluminum raw material made of aluminum (hereinafter abbreviated as “aluminum”) or an aluminum alloy. The present invention relates to a treatment method capable of removing harmful impurities contained in aluminum dross residual ash which are problematic in terms of environment or use, and has no danger of generating offensive odor or explosion, thereby turning it into a useful resource.
[0002]
[Prior art]
Aluminum products made of aluminum or aluminum alloy have excellent properties such as corrosion resistance, light weight, conductivity, heat conductivity, etc., and therefore, vehicles, ships, machinery, electricity, construction, daily necessities, beverage cans, etc. Are widely used in an extremely large number of fields, and their forms are extremely diverse as various products such as ingots, rolled products, extruded products, and forged products.
[0003]
The production of such aluminum products is generally performed using new aluminum ingots, aluminum master alloys, aluminum scraps of products generated in the factory (return material in the factory), secondary aluminum ingots, and secondary aluminum mother alloy ingots. Dissolve aluminum raw materials such as recovered aluminum scrap to produce aluminum ingots such as slabs, billets, aluminum ingots, and aluminum alloy ingots in a basic form, and then roll, extrude, and forge these ingots In order to clean the surface, or to impart corrosion resistance or design to the surface, many of them are subjected to a surface treatment such as anodic oxidation treatment. Aluminum products.
[0004]
For this reason, in order to manufacture an aluminum ingot from an aluminum raw material, an aluminum melting process for melting the aluminum raw material is indispensable. Since aluminum or an aluminum alloy is originally a metal that is easily oxidized, the aluminum melting process is difficult. The melt surface is oxidized. Therefore, in order to prevent the oxidation of the surface of the molten metal, a flux is usually used, but it is difficult to completely prevent the oxidation of the surface of the molten metal, and the surface of the molten metal is mainly composed of aluminum oxide. So-called aluminum dross inevitably occurs.
[0005]
The aluminum dross usually contains as much as 80% by weight of aluminum, so the aluminum dross scraped from the surface of the molten metal is squeezed using a rotary blade-type squeezing machine or under pressure. The molten aluminum is squeezed out and collected. Further, after the primary recovery treatment, the cooled and solidified aluminum dross is again subjected to a melting treatment, and similarly, metallic aluminum is recovered as much as possible.
[0006]
The residue obtained after recovering the molten metal aluminum from the aluminum dross as much as possible, that is, the aluminum dross residue ash is mainly composed of aluminum oxide, but still reacts with water to generate hydrogen. Includes metal aluminum (including alloys), aluminum carbide that reacts with water to produce hydrocarbons, and aluminum nitride (AlN) that reacts with water to produce ammonia and cause pollution such as offensive odors I have.
[0007]
For this reason, various studies have been made so far on the aluminum dross residual ash to make it pollution-free or to reuse it as an alumina source.
However, the aluminum nitride as an impurity contained in the aluminum dross residual ash usually reaches 5 to 15% by weight, reacts with moisture in the air even during standing or storage, and generates ammonia, thereby increasing safety and environmental concerns. However, in a neutral or reducing atmosphere, it is quite stable even at high temperatures, and is an obstacle to the use of useful resources as, for example, raw materials for chemical industry, raw materials for ceramics, and slag-making agents for metal refining.
[0008]
As a method for treating aluminum dross residual ash containing harmful impurities such as aluminum nitride, various methods have been conventionally known.
For example, in the treatment method by calcination, aluminum dross residual ash is put into a rotary kiln (rotary calcination furnace) in an atmosphere of steam, and heated at a temperature of 700 to 1000 ° C. by a burner to remove harmful impurities such as aluminum nitride. A method of decomposing and removing nitrogen and chlorine components from aluminum dross residual ash (Japanese Patent Application Laid-Open No. Hei 7-51652), and a method of turning aluminum dross residual ash into pellets while adding water using a pan-type granulator, and rotating the pellets There has been proposed a method of removing aluminum nitride by firing at a temperature of 800 to 1000 ° C. in a calcination furnace (Japanese Patent Laid-Open No. 53-123398). This is a method of obtaining an alumina composition by decomposing impurities such as aluminum nitride contained therein and firing the generated hydrate.
[0009]
However, in a rotary kiln such as a rotary kiln, an input port for charging aluminum dross residual ash is provided at one end, and a discharge port for the burned material is provided at the other end, and a burner is provided. An exhaust duct is provided near the inlet as well as near the outlet, and inside the rotary kiln, the flows of aluminum dross residual ash and combustion gas are of a countercurrent type. For this reason, the temperature inside the rotary kiln is high on the discharge port side and low on the input port side, and even when heated to 700 to 1000 ° C. on the discharge port side, the temperature becomes 200 ° C. or lower on the input port side. The gas generated by the hydration reaction, that is, the combustible gas including ammonia and hydrogen, the explosive gas, and the gas having a strong odor are led to the exhaust duct without being directly burned.
[0010]
The gas thus generated may pass through the composition of the explosive gas when the mixing ratio of the various gases and air changes in a firing device such as a rotary kiln or in an exhaust gas treatment facility. In such a case, there is a concern that an unexpected unexpected small explosion may occur in the firing apparatus or the exhaust gas treatment facility.
[0011]
Further, even if the equipment capable of sufficiently responding to the explosion as described above is provided, a gas having a bad smell such as ammonia remains in the exhaust gas and brings about a bad smell in the atmosphere. A removal device for processing the gas is indispensable.
[0012]
Furthermore, in the method using a rotary kiln such as the rotary kiln, since the aluminum dross residual ash charged into the rotary kiln is gradually heated, it takes time to reach a target firing temperature, and Since the time during which the temperature is maintained at a high temperature after reaching the firing temperature is also short, the obtained fired product is liable to form a compacted lump by rolling in a rotary kiln, and in particular, a pre-granulated aluminum dross residual ash. When fired, a firmer mass is generated, and impurities such as aluminum nitride remain in the recovered fired material without being decomposed.
[0013]
Therefore, in order to solve such a problem, measures such as reducing the amount of aluminum dross residual ash to be treated and increasing the firing temperature have been taken, but the quality of the recovered fired material is sufficiently satisfactory. It has not been possible.
[0014]
Furthermore, as another method, a method of performing heat treatment while supplying an oxidizing gas in a heating furnace such as an electric arc furnace without adding water to aluminum dross residual ash (Japanese Patent Laid-Open No. 9-310129), There is also known a method in which heating is performed in a rotary furnace such as a rotary kiln while maintaining an oxidizing atmosphere without adding water to the residual ash of the amidroth (Japanese Patent Laid-Open No. 6-135762).
[0015]
However, in the above method, a high temperature of 1400 ° C. is required to completely decompose aluminum nitride and the like, and when heated at such a high temperature, the amount required for the reaction for the oxidation treatment is several times excessive. The excess air introduced into the furnace is heated, and the volume of the excess air rapidly increases due to thermal expansion. For this reason, an exhaust system with an enormous amount of exhaust air for maintaining a good environment of the furnace is required, and it is necessary to make the system high temperature and heat resistant, so that the facility cost must be expensive. In addition, when aluminum dross residual ash is fired at such a high temperature, the resulting fired material is in a semi-molten state and clinker is generated, so if powdery products are required, separate pulverization is required. It is necessary to perform processing such as performing.
[0016]
[Problems to be solved by the invention]
Therefore, the present inventors have found that when treating aluminum dross residual ash which is difficult to treat and occur in the manufacturing process of aluminum products, ammonia generated due to impurities such as aluminum nitride contained in the aluminum dross residual ash. As a result of intensive studies on the treatment method of aluminum dross residual ash, which can suppress odors caused by water, etc., and prevent explosion caused by ammonia, hydrogen gas, etc., water is added to the aluminum dross residual ash and kneaded. Then, the obtained kneaded material was charged into a firing furnace, rapidly exposed to a high temperature of 650 ° C. or higher, and maintained at a temperature of 650 ° C. or higher from the start to the end of the firing process, so as to be included in aluminum dross residual ash. The decomposition of impurities such as aluminum nitride proceeds efficiently, and the combustible gas such as ammonia and hydrogen generated can be quickly burned. As a result, ammonia and hydrogen gas It was found that there was no explosion caused by this and that the aluminum dross residual ash could be treated without leaving a bad odor, and that the resulting fired product was a porous and easily crushable mass. Completed the invention.
[0017]
Accordingly, an object of the present invention is to suppress the malodor such as ammonia generated due to impurities such as aluminum nitride in the process of treating aluminum dross residual ash, and to reduce the explosion caused by ammonia and hydrogen gas. To provide a method for treating aluminum dross residual ash that can remove harmful impurities from the aluminum dross residual ash while preventing the sintering, and the resulting fired material can be a porous and easily crushable mass. It is in.
[0018]
[Means for Solving the Problems]
That is, according to the present invention, water is added to aluminum dross residual ash and kneaded, and the obtained kneaded material is charged into a firing furnace, where the kneaded material is rapidly exposed to a high temperature of 650 ° C. or more. In addition, this is a method for treating aluminum dross residual ash which is maintained at a high temperature of 650 ° C. or more from the start to the end of the baking treatment.
[0019]
Aluminum dross residue ash to be treated in the present invention is not particularly limited as long as it is a by-product in an aluminum melting step of melting an aluminum raw material made of aluminum or an aluminum alloy. For example, new aluminum ingots, aluminum mother alloys, aluminum scraps of products produced in the factory (return material in the factory), secondary aluminum ingots, secondary aluminum mother alloy ingots, aluminum scraps collected from automobile parts and aluminum cans, etc. Aluminum dross residue ash obtained from aluminum dross by-produced in the aluminum melting process when manufacturing aluminum ingots such as slabs, billets, aluminum ingots, aluminum alloy ingots, etc. by melting aluminum raw materials . The composition of such aluminum dross residual ash is generally about 8 to 15% by weight of metal aluminum, 50 to 60% by weight of aluminum oxide (Al 2 O 3 ), 5 to 15% by weight of aluminum nitride (AlN), and aluminum carbide (Al). 4 is a C 3) 0 to 2 wt%, and the like.
[0020]
In the present invention, first, water is added to the above aluminum dross residual ash and kneaded to obtain a kneaded product. In this case, as for the amount of water to be added, the weight ratio of aluminum dross residual ash to water (water / aluminum dross residual ash) is usually in the range of 0.25 to 1, preferably 0.33 to 0.67. Water may be added as described above. When the weight ratio between the aluminum dross residual ash and water (water / aluminum dross residual ash) is less than 0.25, the mixing becomes uneven when water is added to the aluminum dross residual ash and kneaded, or Kneading becomes impossible, and aluminum nitride contained in aluminum dross residual ash is not sufficiently decomposed and a large amount of aluminum nitride remains, increasing the load on decomposition due to firing, resulting in insufficient decomposition . On the other hand, if the weight ratio of aluminum dross residual ash to water (water / aluminum dross residual ash) is more than 1, the resulting kneaded material cannot be heated quickly in the sintering apparatus, and aluminum nitride or the like cannot be used. Inability to decompose impurities. Further, a large amount of energy is required to vaporize excess water, which is not preferable.
[0021]
The kneaded material obtained by kneading in this manner is usually extruded in a rod shape having an average diameter of 10 to 150 mm, and introduced into a firing furnace. The kneaded material is a lump having a diameter of about 100 mmφ. There is no particular problem.
In addition, regarding the kneading of aluminum dross residual ash and water, for example, a paddle mixer, a kneader mixer, a rotary kneader such as a double circular mixer or a continuous kneader such as a screw mixer is used to uniformly mix. Good to keep.
[0022]
Next, in the present invention, the kneaded material obtained as described above is charged into a firing furnace, and the kneaded material is rapidly exposed to a high temperature of 650 ° C. or more, preferably 700 ° C. or more, thereby rapidly increasing the temperature. The temperature of the kneaded material, which has been rapidly raised, is maintained at a high temperature of 650 ° C. or higher, preferably 700 ° C. or higher, and is maintained at a high temperature of 650 ° C. or higher from the start to the end of the firing treatment. The temperature from the start to the end of the calcination treatment may be 650 ° C. or higher, and there is no particular upper limit. However, maintaining the temperature at a temperature higher than 1100 ° C. is uneconomical, and up to about 1100 ° C., more preferably The temperature is preferably up to about 1000 ° C. The firing time is usually about 30 minutes.
[0023]
As described above, when the above-mentioned kneaded material is rapidly exposed to a high temperature of 650 ° C. or more in the firing furnace and the temperature is rapidly increased, a part of the moisture contained in the aluminum dross residual ash boils and evaporates at a stretch. Because the volume expands inside the mass, the mass kneaded material is crushed into a small aggregated fired product, and further, gas escapes from the aggregated fired material, and the passage through which the gas escapes remains as a form body. Thus, a very porous fired product is obtained. As a result, the chance of contact with oxygen in the air dramatically increases, and a smooth gas-solid reaction occurs.
[0024]
In addition, by maintaining the kneaded material, whose temperature has risen rapidly, at a high temperature of 650 ° C. or higher until the baking treatment is completed, impurities such as aluminum nitride remaining in the baking material without reacting with water vigorously come into contact with air. Therefore, the decomposition of these impurities is efficiently performed, and as a result, a high-quality fired product is obtained.
[0025]
When the temperature at which the kneaded material is rapidly exposed in the firing furnace is lower than 650 ° C., the temperature of the kneaded material is not rapidly increased, and the water contained in the kneaded material does not evaporate at a stretch, The kneaded material is not crushed. As a result, a porous fired product cannot be obtained, and many undecomposed products such as aluminum nitride remain.
If the temperature of the kneaded material cannot be maintained at 650 ° C. or more, decomposition of impurities such as aluminum nitride that does not react with water becomes insufficient.
[0026]
The firing furnace used in the present invention can be rapidly exposed to a high temperature of 650 ° C. or more immediately after charging the kneaded material in the firing furnace, and is maintained at a high temperature of 650 ° C. or more from the start to the end of the firing process. There is no particular limitation as long as it is possible, and a rotary rotary kiln, a firing furnace with a rotary arm, or the like can be used.
[0027]
In general, in a rotary kiln, since the flow of the kneaded material and the flow of the combustion gas in the flame section are countercurrent in the firing furnace, the temperature of the kneaded material is raised to a high temperature immediately after being charged into the firing furnace. Although it cannot be rapidly exposed, in such a case, the kneaded material is rapidly exposed to a high temperature of 650 ° C. or more immediately after charging by arranging a flame portion on the side of the kneaded material charging portion in the firing furnace. If the temperature inside the firing furnace can be maintained at 650 ° C. or higher as a whole, such a modification can be used.
[0028]
In the present invention, as the firing furnace, a rotary arm type flat plate firing furnace is suitably used, and particularly has a flame portion near the inlet of the kneaded material, and when the kneaded material is charged into the firing furnace, It is preferable that the flame is injected while being directly exposed to the flame in the flame portion, and the flame temperature of the flame portion is 800 ° C. or higher, preferably 900 ° C. or higher. As described above, when the kneaded material is put into the firing furnace while being directly exposed to the flame in the flame portion having a flame temperature of 800 ° C. or more, the temperature of the kneaded material is rapidly increased, and further, the kneaded material is generated from the kneaded material. Flammable gas such as ammonia and hydrogen can be oxidized and burned instantaneously. If the temperature of the flame portion is lower than 800 ° C., it is not preferable because inconveniences such as insufficient combustion of combustible gas such as ammonia and hydrogen occur.
[0029]
In the present invention, regarding the charging speed when the kneaded material is charged into the firing furnace, the capacity of the burner, which is a flame portion, the residence time of the kneaded material in the firing furnace, or the aluminum dross residue is determined. Although it depends on the ash composition and the like, it is sufficient that the furnace temperature can be maintained at 650 ° C. or higher and the charging speed is within the range of the time during which the charged kneaded material stays in the furnace.
[0030]
In the present invention, when water is added to and kneaded with aluminum dross residual ash, the addition of acidic water suppresses the decomposition of aluminum nitride during kneading and during storage of the kneaded material, whereby ammonia Generation is suppressed. In addition, the generated ammonia is neutralized to suppress the generation of basic water, thereby suppressing the decomposition of metallic aluminum.
[0031]
Usually, the acidic water may be water having a pH of about 4 or less, but is preferably water adjusted to a pH of 1 to 4, more preferably 1 to 2 with an organic acid or an inorganic acid. If the pH of the acidic water is greater than "4", it becomes difficult to suppress the decomposition of aluminum nitride contained in the aluminum dross residual ash, and the ability to neutralize the ammonia generated by the decomposition is reduced. . From the viewpoint that the effect of suppressing the decomposition of aluminum nitride and the effect of neutralizing ammonia can be more reliably obtained, the pH is preferably “2” or less. Conversely, if the pH value is less than “1”, it promotes the decomposition of metallic aluminum contained in aluminum dross residual ash, which promotes the generation of hydrogen gas. Economically disadvantageous.
[0032]
The acid for adjusting the pH of the acidic water may be an inorganic acid such as sulfuric acid, hydrochloric acid or nitric acid, but is preferably an organic acid from the viewpoint of reducing the load of exhaust gas treatment and preserving equipment. Further, the organic acid is preferably acetic acid, gluconic acid or citric acid from the viewpoint of good solubility in water and the like.
[0033]
The fired product obtained by the method of the present invention is a porous and easily crushable lump having a fine particle size of 30 mm or less. For this reason, the obtained fired product can be used for ceramic products such as tiles and bricks that require powder.
[0034]
According to the present invention, when treating aluminum dross residual ash, unlike the conventional method, at a relatively low temperature of 650 ° C. or higher, the odor such as ammonia is suppressed in a short time, and ammonia, hydrogen gas, etc. In this way, it is possible to efficiently remove harmful impurities such as aluminum nitride from aluminum dross residual ash while preventing explosion caused by the above. Moreover, since the obtained fired product is a porous and easily crushable mass, it can be used as a substitute for alumina for ceramic products such as tiles and bricks, and as a slag-making agent for steel and the like.
[0035]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be specifically described based on Examples and Comparative Examples.
[0036]
Example 1
Water was added to the residual aluminum ash at a weight ratio (water / aluminum dross residual ash) of 0.5, and gluconic acid was added at a ratio of 0.5% by weight to the aluminum dross residual ash. The mixture was kneaded for about 3 minutes using a concrete mixer to obtain a kneaded material.
[0037]
While maintaining the atmosphere temperature of a rotary arm type flat plate firing furnace (Vortex furnace manufactured by Daiwa Sanko Seisakusho Co., Ltd.) at 650 ° C., 200 kg of the above kneaded material was continuously charged into the firing furnace at a rate of about 180 kg / hr. It was fired to obtain a fired product. The rotary arm type flat plate firing furnace had a flame portion having a flame temperature of 800 ° C. or more near the inlet of the kneaded material, and the kneaded material was charged into the furnace while being directly exposed to the flame at the flame portion. Further, the exhaust gas amount of the exhaust gas from the vortex furnace is 200 Nm 3 / min.
[0038]
With respect to the fired product obtained by firing in this manner, the concentrations of aluminum nitride and metallic aluminum in the fired product and the ammonia concentration in the exhaust gas during the firing over time were measured.
Table 1 shows the results.
[0039]
Example 2
The measurement was performed in the same manner as in Example 1 except that the atmosphere temperature of the rotating arm type flat plate firing furnace was maintained at 800 ° C. Table 1 shows the results.
[0040]
Comparative Example 1
The measurement was performed in the same manner as in Example 1 except that the atmosphere temperature of the rotating arm type flat plate firing furnace was maintained at 500 ° C. Table 1 shows the results.
[0041]
Comparative Examples 2 to 4
The weight ratio (water / aluminum dross ash) of the amidroth residue ash and water is 0.6 to 0.7, and gluconic acid is 0.5% by weight based on the aluminum dross residue ash. And kneaded for about 3 minutes using a concrete mixer to obtain a kneaded product.
[0042]
With the outlet temperature of the rotary kiln (Kurita Iron Works) set to 500 ° C., 650 and 800 ° C., 300 kg of the aluminum dross residual ash kneaded with the above water was continuously charged into the firing furnace at a rate of about 400 kg / hr, After firing, the same measurement as in Example 1 was performed. In addition, the temperature of the inlet of the rotary kiln was also measured due to its structure. Further, the amount of exhaust gas of the exhaust gas from the rotary kiln was 250 Nm 3 / min. Table 1 shows the results.
[0043]
[Table 1]
Figure 0003552604
[0044]
【The invention's effect】
According to the present invention, in the treatment step of aluminum dross residual ash, it is possible to suppress an odor such as ammonia generated due to impurities such as aluminum nitride and to prevent an explosion caused by ammonia or hydrogen gas. While harmful impurities can be removed from aluminum dross residual ash, the resulting fired material can be formed into a porous and easily crushable mass, which is extremely practical from the viewpoint of using aluminum dross residual ash as a useful resource. It is of high value.

Claims (4)

アルミドロス残灰に水を添加して混練し、得られた混練物を焼成炉内に装入して焼成するアルミドロス残灰の処理方法であって、
上記焼成炉は、混練物の投入口付近に火炎温度が800℃以上の火炎部を有すると共に炉内温度を焼成処理の開始から終了まで650℃以上の高温に維持されており、また、上記混練物は、酸性水を添加して混練され、かつ、上記火炎部で直接火炎に晒されながら炉内に投入されることを特徴とするアルミドロス残灰の処理方法。
A method of treating aluminum dross residual ash, in which water is added to the amidros residual ash and kneaded, and the obtained kneaded material is charged into a firing furnace and fired ,
The sintering furnace has a flame portion having a flame temperature of 800 ° C. or more near the inlet of the kneaded material, and the temperature in the furnace is maintained at a high temperature of 650 ° C. or more from the start to the end of the sintering process. A method for treating aluminum dross residual ash, wherein the product is kneaded by adding acidic water and charged into a furnace while being directly exposed to a flame in the flame portion .
混練物は、アルミドロス残灰と水とを重量比(水/アルミドロス残灰)0.25〜1の割合で混合し混練して得られる請求項1に記載のアルミドロス残灰の処理方法。The method for treating aluminum dross residual ash according to claim 1, wherein the kneaded product is obtained by mixing and kneading the aluminum dross residual ash and water in a weight ratio (water / aluminum dross residual ash) of 0.25 to 1. . 酸性水が、有機酸又は無機酸によりpH1〜4に調整されている請求項1に記載のアルミドロス残灰の処理方法。 The method for treating aluminum dross residual ash according to claim 1 , wherein the acidic water is adjusted to pH 1 to 4 with an organic acid or an inorganic acid . 有機酸が、酢酸、グルコン酸又はクエン酸である請求項3に記載のアルミドロス残灰の処理方法。 The method for treating aluminum dross residual ash according to claim 3, wherein the organic acid is acetic acid, gluconic acid, or citric acid .
JP24592699A 1999-08-31 1999-08-31 Treatment method of residual aluminum ash Expired - Fee Related JP3552604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24592699A JP3552604B2 (en) 1999-08-31 1999-08-31 Treatment method of residual aluminum ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24592699A JP3552604B2 (en) 1999-08-31 1999-08-31 Treatment method of residual aluminum ash

Publications (2)

Publication Number Publication Date
JP2001072461A JP2001072461A (en) 2001-03-21
JP3552604B2 true JP3552604B2 (en) 2004-08-11

Family

ID=17140914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24592699A Expired - Fee Related JP3552604B2 (en) 1999-08-31 1999-08-31 Treatment method of residual aluminum ash

Country Status (1)

Country Link
JP (1) JP3552604B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT512740B1 (en) * 2012-04-13 2014-05-15 Andritz Energy & Environment Gmbh Process for the inerting of metallic aluminum and other base metal phases
TWI772774B (en) * 2020-04-07 2022-08-01 蔡建程 The treatment method of aluminum slag ash reuse
CN115261651A (en) * 2022-07-28 2022-11-01 苏州仓松金属制品有限公司 Method for extracting aluminum alloy from aluminum ash

Also Published As

Publication number Publication date
JP2001072461A (en) 2001-03-21

Similar Documents

Publication Publication Date Title
JP7204156B2 (en) Pre-dechlorination and sintering process for highly chlorinated metallurgical waste and incineration fly ash
NO314034B1 (en) Process for producing a sintered mixture of material consisting mainly of calcium aluminates
JP3552604B2 (en) Treatment method of residual aluminum ash
KR102113779B1 (en) Method for treating aluminium dross
JP3317658B2 (en) Metal recovery from steel industry waste.
CN110860314A (en) Carbon catalytic oxidant and method for treating carbon-containing waste residue of electrolytic aluminum
JP2004154614A (en) Method for treating aluminum dross residual ash
JP3796929B2 (en) Almidros residual ash treatment method
JP3990547B2 (en) Expansion inhibitor and cement composition
JP3147840B2 (en) Treatment method of residual aluminum ash
JPH11319764A (en) Treatment of aluminum dross residual ash
JPH11319753A (en) Treatment of aluminum dross residual ash
JP3263364B2 (en) Desulfurization and defluoridation of neutralized sludge
JP2002045824A (en) Method for treating aluminum dross residual ash
JP2000192155A (en) Treatment of sludge containing water and oil components
JP3395689B2 (en) Treatment method of residual aluminum ash
JPH09176752A (en) Simultaneous treatment of aluminum dross remaining ash and aluminum sludge
JP2000247616A (en) Facilities and method for recovering phosphorus from waste
JPS62278120A (en) Treatment of aluminum dross
KR20090028089A (en) Aluminum dross and water filtration plant waster carbone or ect carbone and water ammonia use acctylene gas process method
JP3524119B2 (en) Method for treating Ni-containing waste catalyst for recovering raw materials for steelmaking
KR102101180B1 (en) Treatment Method of Aluminum Dust using Oxidizing Agent and Solidifying Agent
CN115572843B (en) Preparation method of high-purity metal tantalum
RU2688083C1 (en) Method of nepheline concentrate desiliconization and device for its implementation
KR960016702B1 (en) Process for producing stabilized zirconia from zircon sand

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees