JP3552206B2 - Doppler radar equipment - Google Patents

Doppler radar equipment Download PDF

Info

Publication number
JP3552206B2
JP3552206B2 JP26870699A JP26870699A JP3552206B2 JP 3552206 B2 JP3552206 B2 JP 3552206B2 JP 26870699 A JP26870699 A JP 26870699A JP 26870699 A JP26870699 A JP 26870699A JP 3552206 B2 JP3552206 B2 JP 3552206B2
Authority
JP
Japan
Prior art keywords
speed
correction
sector
velocity
doppler radar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26870699A
Other languages
Japanese (ja)
Other versions
JP2001091645A (en
Inventor
将一 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26870699A priority Critical patent/JP3552206B2/en
Publication of JP2001091645A publication Critical patent/JP2001091645A/en
Application granted granted Critical
Publication of JP3552206B2 publication Critical patent/JP3552206B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、気象防災に資するドップラーレーダ装置に関する。
【0002】
【従来の技術】
周知のように、例えば空港におけるダウンバースト・マイクロバースト検出、雷予知におけるセル追尾などの気象防災に資するドップラーレーダ装置にあっては、スタガトリガ方式が採用されている。この方式は、パルス繰り返し周期について、一定時間だけ長くした周期と短くした周期を数種類生成し、それらの周期をパルスの繰り返し毎に、予め決められた順序で切り換えて使用するものである。
【0003】
このようなスタガトリガ方式によれば、複数スタガにおける速度データをセクタ毎に算出することで、パルス繰り返し周波数(以下、PRFと記す)の異なる隣接セクタの組み合わせにより速度折り返し補正を行うことができる。しかしながら、気象エコーは速度領域で広がりを持ち、1セクタ毎の算出速度がばらつくため、隣接するセクタ間で比較して速度折り返し補正を行うと、補正の誤りを起こす可能性が高くなるという問題がある。
【0004】
【発明が解決しようとする課題】
以上述べたように、従来のスタガトリガ方式によるドップラーレーダ装置では、特に気象用の場合、気象エコーの速度領域が広がりを持つため、1セクタ毎の算出速度がばらついてしまい、隣接するセクタ間で比較して速度折り返し補正を行うと、補正の誤りを起こしやすいという問題が生じている。
【0005】
本発明は、上記の問題を解決し、観測対象の速度領域が広がりを持つ場合でも、良好な速度折り返し補正を行うことのできるドップラーレーダ装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記の目的を達成するために本発明は、複数スタガにおける速度データをセクタ毎に算出し、パルス繰り返し周波数の異なる隣接セクタの組み合わせにより速度折り返し補正を行うドップラーレーダ装置において、対象エコーが速度領域で広がりを持つ場合に、対象エコーの平均的な速度の変化が少ないと考えられる範囲を単位面積とし、この範囲内にある複数セクタ、複数レンジの平均速度を基準として速度折り返し補正を行うことを特徴とする。
【0007】
具体的には、セクタ毎に規定レンジ単位で速度を算出する第1ステップと、対象選択の周辺に位置する(mセクタ)×(nレンジ)の範囲で平均速度を送信繰り返しパルス別に算出する第2ステップと、前記第2ステップで算出した送信繰り返しパルス別の平均速度を基に、折り返し補正後の速度基準V0 を算出する第3ステップと、対象セクタと隣接セクタにより折り返し補正後の速度候補Vi (1≦i≦k)を算出する第4ステップと、前記速度候補値Vi と速度基準値V0 の速度差が基準値以内となる速度候補Vi を折り返し補正後の速度とする第5ステップとを備えることを特徴とする。
【0008】
上記の処理手順によれば、セクタ単位ではばらつきが大きく、速度折り返し補正誤差の発生頻度が高くなる場合であっても、複数セクタ×複数レンジ単位で折り返し補正後の速度基準値を算出し、この値から大きく外れることのないように補正を行うため、速度折り返し補正誤差の頻度が低くなる。
【0009】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を詳細に説明する。
【0010】
図1は本発明に係るドップラーレーダ装置の構成を示すもので、COHO発振器11で発生される周波数fi の中間周波信号と局部発振器12で発生される周波数fLo の局部発振信号が混合器13でミキシングされて周波数f0 の送信信号が生成され、送信機14に送られる。この送信機14に入力された送信信号は電力増幅器141で電力増幅された後、クライストロンあるいはマグネトロンによる変調器142に送り込まれ、高圧変調回路143からの繰り返し送信パルスに基づいてパルス化される。
【0011】
ここで、上記高圧変調回路143において、スタガトリガ方式を採用し、例えばPRFを720Hzと900Hzの2スタガを用いる。このようにして送信機13で生成された送信パルス信号は、サーキュレータ15を介して空中線装置16に供給され、空間に送出される。
【0012】
上記空中線装置16から送出された周波数f0 の送信波は、目標(雨粒等)に当たって戻ってくるが、目標の移動によりドップラー周波数fd を伴っている。
【0013】
空中線装置16で受けた受信信号(周波数fr =f0 +fd )は、サーキュレータ15を介して高周波増幅器17で増幅され、混合器18で局部発振信号とミキシングされて中間周波に変換され(周波数fi +fd )、中間周波数増幅器19で増幅された後、混合器20、21にて、位相検波器22により互いに90°の位相差が与えられた中間周波数信号(fi )と混合されることで直交検波されて信号処理装置23に送られる。信号処理装置25は、受信中において、セクタ単位でドップラー速度を求めて雨量換算処理を行うものである。
【0014】
上記構成において、本発明の特徴となる信号処理装置23の処理内容を説明する。
【0015】
前述のように、気象エコーは速度領域で広がりを持つことにより、1セクタ毎の算出速度がばらついているため、隣接するセクタの比較のみから速度折り返し補正を行うと補正の誤りを起こす可能性が高くなる。そこで、本実施形態では、信号処理装置23において、気象エコーの平均的な速度の変化が少ないと考えられる範囲を単位面積とし、この範囲内にある複数セクタ、複数レンジの平均速度を基準として速度折り返し補正を行うことにより、速度折り返し誤差を減らす。
【0016】
この場合の速度折り返し補正の手順を図2に示し、図3を参照して説明する。
【0017】
(1)まず、セクタ毎に規定レンジ単位でドップラー速度を算出する(S1)。
(2)図3に示すように、対象選択の周辺に位置する(mセクタ)×(nレンジ)の範囲で平均速度をPRF別に算出する(S2)。
(3)次に、(2)で算出したPRF別の平均速度を基に、折り返し補正後の速度基準V0 を算出する(S3)。
(4)対象セクタと隣接セクタにより折り返し補正後の速度候補Vi (1≦i≦k)を算出する(S4)。
(5)Vi とV0 の速度差が基準値以内となる候補Vi を折り返し補正後の速度とする(S5)。
【0018】
ここで、(4)において、折り返し補正後の速度候補Viy は複数算出されるが、その候補の数はスタガ比に依存する。例えば、PRFが720Hzと900Hzの2スタガの場合、スタガ比は4:5なので、720Hzのときに5つ、900Hzのときに4つの候補が存在することになる。これらの速度候補は、PRF毎に算出される速度の差から、可能性の高い順に1番目の候補からk番目の候補まで存在する。(5)において選択される候補は、Vi とV0 の速度差が基準値以内となる候補の中で最も可能性の高い候補を意味する。
【0019】
以上の処理の結果、セクタ単位ではばらつきが大きく、速度折り返し補正誤差の発生頻度が高くなる場合であっても、複数セクタ×複数レンジ単位で折り返し補正後の速度基準値を算出し、この値から大きく外れることのないように補正を行うため、速度折り返し補正誤差の頻度が低くなる。
【0020】
したがって、上記構成によるドップラーレーダ装置は、観測対象の速度領域が広がりを持つ場合でも、良好な速度折り返し補正を行うことができる。
【0021】
【発明の効果】
以上のように本発明によれば、観測対象の速度領域が広がりを持つ場合でも、良好な速度折り返し補正を行うことのできるドップラーレーダ装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係るドップラーレーダ装置の構成を示すブロック図。
【図2】同実施形態の折り返し補正手順を示すフローチャート。
【図3】同実施形態の折り返し補正において、平均速度をPRF別に算出する場合の対象選択の周辺に位置する(mセクタ)×(nレンジ)の範囲を示す図。
【符号の説明】
11…COHO発振器
12…局部発振器
13…混合器
14…送信機
141…電力増幅器
142…変調器
143…高圧変調回路
15…サーキュレータ
16…空中線装置
17…高周波増幅器
18…混合器
19…中間周波増幅器
20…混合器
21…混合器
22…位相検波器
23…信号処理装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a Doppler radar device that contributes to weather disaster prevention.
[0002]
[Prior art]
As is well known, for example, in a Doppler radar device that contributes to weather disaster prevention such as downburst / microburst detection at an airport and cell tracking in lightning prediction, a staggered trigger system is employed. In this method, several types of the pulse repetition period are generated by increasing and shortening by a fixed time, and these periods are switched and used in a predetermined order for each pulse repetition.
[0003]
According to such a stagger trigger method, by calculating speed data in a plurality of staggers for each sector, it is possible to perform speed turnaround correction by a combination of adjacent sectors having different pulse repetition frequencies (hereinafter, referred to as PRF). However, since the weather echo has a spread in the velocity region and the calculated speed of each sector varies, there is a problem in that if the speed aliasing correction is performed between adjacent sectors, the possibility of a correction error increases. is there.
[0004]
[Problems to be solved by the invention]
As described above, in the conventional Doppler radar system based on the staggered trigger method, especially in the case of weather, the speed range of the weather echo is wide, so that the calculation speed for each sector varies, and the comparison between adjacent sectors is performed. When the speed aliasing correction is performed in this manner, there is a problem that an error in the correction is likely to occur.
[0005]
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above problem and to provide a Doppler radar device capable of performing favorable velocity return correction even when a velocity region to be observed has a wide area.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a Doppler radar device which calculates velocity data in a plurality of staggers for each sector, and performs velocity aliasing correction by a combination of adjacent sectors having different pulse repetition frequencies. When there is a spread, the range in which the average change of the target echo is considered to be small is defined as the unit area, and the speed aliasing correction is performed based on the average speed of multiple sectors and multiple ranges within this range. And
[0007]
Specifically, a first step of calculating the speed in units of a prescribed range for each sector, and a second step of calculating an average speed for each transmission repetition pulse in a range of (m sectors) × (n range) located around the target selection. Two steps, a third step of calculating a velocity reference V0 after the return correction based on the average velocity for each transmission repetition pulse calculated in the second step, and a velocity candidate Vi after the return correction by the target sector and the adjacent sector. A fourth step of calculating (1 ≦ i ≦ k) and a fifth step of setting a speed candidate Vi in which a speed difference between the speed candidate value Vi and the speed reference value V0 is within the reference value as a speed after loopback correction. It is characterized by having.
[0008]
According to the above processing procedure, even when the variation is large in the sector unit and the frequency of occurrence of the speed return correction error increases, the speed reference value after the return correction is calculated in units of plural sectors × multiple ranges. Since the correction is performed so as not to largely deviate from the value, the frequency of the speed aliasing correction error decreases.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0010]
FIG. 1 shows a configuration of a Doppler radar apparatus according to the present invention, in which an intermediate frequency signal having a frequency fi generated by a COHO oscillator 11 and a local oscillation signal having a frequency fLo generated by a local oscillator 12 are mixed by a mixer 13. Then, a transmission signal of the frequency f0 is generated and sent to the transmitter 14. The transmission signal input to the transmitter 14 is power-amplified by the power amplifier 141 and then sent to a klystron or magnetron modulator 142 where it is pulsed based on a repetitive transmission pulse from the high voltage modulation circuit 143.
[0011]
Here, in the high-voltage modulation circuit 143, a staggered trigger method is adopted, and for example, two staggered PRFs of 720 Hz and 900 Hz are used. The transmission pulse signal generated by the transmitter 13 in this way is supplied to the antenna device 16 via the circulator 15 and sent out to space.
[0012]
The transmission wave of the frequency f0 transmitted from the antenna device 16 returns upon hitting a target (raindrops or the like), but is accompanied by the Doppler frequency fd due to the movement of the target.
[0013]
The received signal (frequency fr = f0 + fd) received by the antenna device 16 is amplified by the high-frequency amplifier 17 via the circulator 15, mixed with the local oscillation signal by the mixer 18, and converted into an intermediate frequency (frequency fi + fd). After being amplified by the intermediate frequency amplifier 19, the signals are mixed by the phase detectors 22 and 21 with the intermediate frequency signals (fi) having a phase difference of 90 ° by the mixers 20 and 21 so that the signals are subjected to quadrature detection. The signal is sent to the signal processing device 23. The signal processing device 25 performs a rainfall conversion process by obtaining a Doppler speed in sector units during reception.
[0014]
In the above configuration, the processing content of the signal processing device 23 which is a feature of the present invention will be described.
[0015]
As described above, since the weather echo has a spread in the speed domain, the calculated speed for each sector varies, so if speed loopback correction is performed only from comparison of adjacent sectors, a correction error may occur. Get higher. Therefore, in the present embodiment, in the signal processing device 23, a range in which the average speed change of the weather echo is considered to be small is defined as a unit area, and the speed is determined based on the average speed of a plurality of sectors and a plurality of ranges within the range. By performing the aliasing correction, the speed aliasing error is reduced.
[0016]
FIG. 2 shows the procedure of the speed return correction in this case, and will be described with reference to FIG.
[0017]
(1) First, a Doppler velocity is calculated for each sector in a specified range unit (S1).
(2) As shown in FIG. 3, an average speed is calculated for each PRF in a range of (m sectors) × (n range) located around the target selection (S2).
(3) Next, a speed reference V0 after aliasing correction is calculated based on the average speed for each PRF calculated in (2) (S3).
(4) A speed candidate Vi (1 ≦ i ≦ k) after aliasing correction is calculated by the target sector and the adjacent sector (S4).
(5) A candidate Vi in which the speed difference between Vi and V0 is within the reference value is set as the speed after loopback correction (S5).
[0018]
Here, in (4), a plurality of speed candidates Viy after aliasing correction are calculated, but the number of candidates depends on the stagger ratio. For example, when the PRF is two staggers of 720 Hz and 900 Hz, the stagger ratio is 4: 5, so that there are five candidates at 720 Hz and four candidates at 900 Hz. These speed candidates exist from the first candidate to the k-th candidate in descending order of possibility from the difference in speed calculated for each PRF. The candidate selected in (5) means the most likely candidate among the candidates in which the speed difference between Vi and V0 is within the reference value.
[0019]
As a result of the above processing, even when the variation is large in the sector unit and the frequency of occurrence of the speed return correction error increases, the speed reference value after the return correction is calculated in units of plural sectors × multiple ranges, and from this value. Since the correction is performed so as not to be largely deviated, the frequency of the speed aliasing correction error decreases.
[0020]
Therefore, the Doppler radar device having the above-described configuration can perform favorable velocity aliasing correction even when the velocity range of the observation target is wide.
[0021]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a Doppler radar device that can perform favorable velocity aliasing correction even when the velocity range of the observation target is wide.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of a Doppler radar device according to an embodiment of the present invention.
FIG. 2 is an exemplary flowchart illustrating the aliasing correction procedure of the embodiment.
FIG. 3 is a diagram showing a range of (m sectors) × (n range) located around a target selection when an average speed is calculated for each PRF in the loopback correction of the embodiment.
[Explanation of symbols]
11 COHO oscillator 12 Local oscillator 13 Mixer 14 Transmitter 141 Power amplifier 142 Modulator 143 High voltage modulation circuit 15 Circulator 16 Antenna device 17 High frequency amplifier 18 Mixer 19 Intermediate frequency amplifier 20 ... Mixer 21 ... Mixer 22 ... Phase detector 23 ... Signal processing device

Claims (2)

複数スタガにおける速度データをセクタ毎に算出し、パルス繰り返し周波数の異なる隣接セクタの組み合わせにより速度折り返し補正を行うドップラーレーダ装置において、
対象エコーが速度領域で広がりを持つ場合に、対象エコーの平均的な速度の変化が少ないと考えられる範囲を単位面積とし、この範囲内にある複数セクタ、複数レンジの平均速度を基準として速度折り返し補正を行うことを特徴とするドップラーレーダ装置。
In a Doppler radar device which calculates speed data in a plurality of staggers for each sector and performs speed return correction by a combination of adjacent sectors having different pulse repetition frequencies,
When the target echo has a spread in the velocity region, the area where the average change in the average velocity of the target echo is considered to be small is defined as the unit area, and the speed is looped back based on the average velocity of multiple sectors and multiple ranges within this range A Doppler radar device that performs correction.
複数スタガにおける速度データをセクタ毎に算出し、パルス繰り返し周波数の異なる隣接セクタの組み合わせにより速度折り返し補正を行うドップラーレーダ装置において、
セクタ毎に規定レンジ単位で速度を算出する第1ステップと、
対象選択の周辺に位置する(mセクタ)×(nレンジ)の範囲で平均速度を送信繰り返しパルス別に算出する第2ステップと、
前記第2ステップで算出した送信繰り返しパルス別の平均速度を基に、折り返し補正後の速度基準V0 を算出する第3ステップと、
対象セクタと隣接セクタにより折り返し補正後の速度候補Vi (1≦i≦k)を算出する第4ステップと、
前記速度候補値Vi と速度基準値V0 の速度差が基準値以内となる速度候補Vi を折り返し補正後の速度とする第5ステップとを備えることを特徴とするドップラーレーダ装置。
In a Doppler radar device which calculates speed data in a plurality of staggers for each sector and performs speed return correction by a combination of adjacent sectors having different pulse repetition frequencies,
A first step of calculating a speed in a specified range unit for each sector;
A second step of calculating an average speed for each transmission repetition pulse in a range of (m sectors) × (n range) located around the target selection;
A third step of calculating a velocity reference V0 after aliasing correction based on the average velocity for each transmission repetition pulse calculated in the second step;
A fourth step of calculating a velocity candidate Vi (1 ≦ i ≦ k) after aliasing correction by the target sector and the adjacent sector;
A Doppler radar apparatus, comprising: setting a speed candidate Vi in which a speed difference between the speed candidate value Vi and the speed reference value V0 is within the reference value as a speed after loopback correction.
JP26870699A 1999-09-22 1999-09-22 Doppler radar equipment Expired - Fee Related JP3552206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26870699A JP3552206B2 (en) 1999-09-22 1999-09-22 Doppler radar equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26870699A JP3552206B2 (en) 1999-09-22 1999-09-22 Doppler radar equipment

Publications (2)

Publication Number Publication Date
JP2001091645A JP2001091645A (en) 2001-04-06
JP3552206B2 true JP3552206B2 (en) 2004-08-11

Family

ID=17462249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26870699A Expired - Fee Related JP3552206B2 (en) 1999-09-22 1999-09-22 Doppler radar equipment

Country Status (1)

Country Link
JP (1) JP3552206B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5017786B2 (en) * 2005-03-23 2012-09-05 三菱電機株式会社 Radar equipment
JP2007322331A (en) * 2006-06-02 2007-12-13 Mitsubishi Electric Corp Radar device
JP5196959B2 (en) * 2007-11-01 2013-05-15 三菱電機株式会社 Radar equipment
JP2011520127A (en) * 2008-05-07 2011-07-14 コロラド ステート ユニバーシティー リサーチ ファウンデーション Networked waveform system
JP5421568B2 (en) * 2008-10-20 2014-02-19 アズビル株式会社 Physical quantity sensor and physical quantity measuring method
JP2010181273A (en) * 2009-02-05 2010-08-19 Toshiba Corp Radar device and method of signal processing
JP6255153B2 (en) * 2012-09-13 2017-12-27 古野電気株式会社 Radar apparatus, detection method and detection program
KR101690640B1 (en) 2015-10-02 2016-12-28 오가닉브릿지 주식회사 Textile having deodorant capacity

Also Published As

Publication number Publication date
JP2001091645A (en) 2001-04-06

Similar Documents

Publication Publication Date Title
US6646587B2 (en) Doppler radar apparatus
JP5478010B2 (en) Electronic scanning radar equipment
US5309160A (en) Radar system and method having variable tracking range
JP3723650B2 (en) Radar system
CN113093123B (en) Jammer for resisting pulse Doppler radar and interference method thereof
US8384587B2 (en) Radar for aerial target detection fitted to an aircraft notably for the avoidance of obstacles in flight
AU2006248845A1 (en) Marine radar apparatus
WO2007043475A1 (en) Radar device and inter-rader site adjustment method
JP3552206B2 (en) Doppler radar equipment
US3344426A (en) Radar system
US6518917B1 (en) MPRF interpulse phase modulation for maximizing doppler clear space
Griffiths et al. Provision of moving target indication in an independent bistatic radar receiver
O'Donnell Radar Systems Engineering Lecture 11 Waveforms and Pulse Compression
JP2001091646A (en) Doppler radar device
Gonzalez-Partida et al. Stagger procedure to extend the frequency modulated interrupted continuous wave technique to high resolution radars
JP3303862B2 (en) Pulse compression radar device
JPH04301584A (en) Pulse doppler radar equipment
JP3335778B2 (en) Radar equipment
Körner et al. Efficient bandwidth enhanced multirate radar target simulation
JP2007225319A (en) Pulse radar system
JP3514297B2 (en) Radar equipment
JPH11281729A (en) Beam switched radar apparatus
US20240111040A1 (en) Radar-based segmented presence detection
JPS5845582A (en) Synthetic aperture radar device
JP2001091643A (en) Dual polarization type doppler radar device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees