JP3551998B2 - Earthquake-resistant wall - Google Patents

Earthquake-resistant wall Download PDF

Info

Publication number
JP3551998B2
JP3551998B2 JP06500996A JP6500996A JP3551998B2 JP 3551998 B2 JP3551998 B2 JP 3551998B2 JP 06500996 A JP06500996 A JP 06500996A JP 6500996 A JP6500996 A JP 6500996A JP 3551998 B2 JP3551998 B2 JP 3551998B2
Authority
JP
Japan
Prior art keywords
precast plate
female screw
structural member
earthquake
cup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06500996A
Other languages
Japanese (ja)
Other versions
JPH09256669A (en
Inventor
和廣 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP06500996A priority Critical patent/JP3551998B2/en
Publication of JPH09256669A publication Critical patent/JPH09256669A/en
Application granted granted Critical
Publication of JP3551998B2 publication Critical patent/JP3551998B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Load-Bearing And Curtain Walls (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、梁等の上部構造部材と下部構造部材との間にプレキャスト版が配置されてなる耐震壁に関する。
【0002】
【従来の技術】
従来のプレキャスト版を用いた耐震壁には、V形やΛ形、ひし形等に組み合わされた鋼板を内蔵したものがあり、こういった耐震壁は、地震等によって引き起こされる水平方向の交番力に対して内蔵する鋼板に引張力と圧縮力を作用させることによって耐震性を発揮するものである。その場合、プレキャスト版を形成するコンクリートは、鋼板が圧縮力を受けたときの座屈防止や耐火被覆として利用されている。
【0003】
【発明が解決しようとする課題】
上記のような耐震壁は耐力要素として鉄骨を主体としており、構造部材との接合が現場溶接と高力ボルト接合とでなされているため施工時の取り付けに手間がかかっていた。また、大地震に対しては耐震壁も損傷を受ける可能性が非常に大きいが、損傷してしまったプレキャスト版を交換するには、溶接部分を切断し、ボルトを離脱しなければならないので、プレキャスト版の取り替えも容易には行なえなかった。
【0004】
本発明は上記の事情に鑑みてなされたものであり、十分な耐震性を備えつつ、施工時の取り付けや損傷時の取り替えを簡単に行なうことができる耐震壁を提供することを目的としている。
【0005】
【課題を解決するための手段】
請求項1に記載された耐震壁は、平行に配置された下部構造部材と上部構造部材との間にプレキャスト版が配置されてなるもので、プレキャスト版には、下部構造部材に対向する下辺から上部構造部材に対向する上辺にわたって斜めに、且つ、プレキャスト版の上下方向に沿う軸線に対して線対象に配設されて軸方向に作用する圧縮力に対抗する耐力機構が設けられ、該耐力機構の下端に位置するプレキャスト版の下辺と下部構造部材との間、および耐力機構の上端に位置するプレキャスト版の上辺と下部構造部材との間には、プレキャスト版と各構造部材とを接合する接合手段がそれぞれ設けられ、該耐力機構は、プレキャスト版の下辺から上辺にわたって斜めに配された直線状の鉄筋と該鉄筋を囲むフープ筋とが、プレキャスト版を形成するコンクリートに埋設されてなることを特徴とする。
【0008】
請求項に記載された耐震壁は、請求項に記載された耐震壁における接合手段が、プレキャスト版と上下構造部材のいずれか一方に設けられた雌ネジ部と、該雌ネジ部に螺合され、この螺合を解除する向きに回転させることによって雌ネジ部から突出しその突出端がプレキャスト版と上下構造部材のいずれか他方に圧接される雄ネジ部材とからなることを特徴とする。
【0009】
【発明の実施の形態】
本発明の耐震壁の実施の形態を図1ないし図5に示して説明する。
図1に示す耐震壁は、柱1、1の間に上下に離間して設けられてた鉄骨造の下部大梁(下部構造部材)2、上部大梁(上部構造部材)3の間にプレキャスト版10が配置されることによって構成されている。
【0010】
プレキャスト版10は、縦の幅が柱1、1の間隔よりも若干短く横の幅が縦に比べて長い矩形状のコンクリート版であり、その内部には、格子状に組まれた鉄筋11が備えられるとともに、下部大梁2に対向する下辺10aと上部大梁3に対向する上辺10bとの間に傾斜して配され、その軸方向に作用する圧縮力に対抗する耐力機構12A、12Bがそれぞれ配備されている。
【0011】
耐力機構12A、12Bは、上辺10bの中央部と下辺10aの両端部との間に直線状に延在する複数の鉄筋13と、この鉄筋13を囲む螺旋状のフープ筋14とを備えており、これらが鉄筋11とともにコンクリート15に埋設されることによって、鉄筋13の配設方向に作用する圧縮力に対抗する強度が与えられている。
【0012】
下部大梁2とプレキャスト版10との間には、下部接合手段20A、20Bがそれぞれ設けられ、上部大梁3とプレキャスト版10との間には、上部接合手段30が設けられている。
【0013】
下部接合手段20A、20Bはどちらも、図2に示すように、プレキャスト版10の下辺10aの両端部に相対して下部大梁3にそれぞれ設けられた雌ネジカップ21と、雌ネジカップ21に相対してプレキャスト版10の下辺10aの両端部にそれぞれ設けられたストッパカップ22と、雌ネジカップ21とストッパカップ22との間に介在しかつ雌ネジカップ21に螺合された雄ネジ部材23とからなる。
【0014】
雌ネジカップ21は有底円筒形状を有し、上方に向けて開口し軸線方向を下部大梁3のフランジ面に対して垂直に向けた状態で溶接により固定されている。さらに、雌ネジカップ21の内側周面には雌ネジ部21aが形成されている。
【0015】
ストッパカップ22は雌ネジカップ21よりも浅い有底円筒形状を有し、下方に向けて開口し軸線を雌ネジカップ21の軸線に一致させた状態で鉄筋11、13に溶接により固定され、一部がコンクリート15に埋設されている。
【0016】
雄ネジ部材23は雌ネジカップ21、ストッパカップ22の内径にほぼ等しい円柱形状を有し、その周面には雄ネジ部23aが形成されて雌ネジカップ21に螺合され、かつ上端23bがストッパカップ22の内側に嵌入されている。これによりプレキャスト版10は下部大梁3上に載置され下部接合手段20を介して接合された状態となっている。
【0017】
上部接続手段30は、図3に示すように、プレキャスト版10の上辺10bの中央部に設けられた雌ネジカップ31と、雌ネジカップ31に相対して上部大梁2に設けられたストッパカップ32と、雌ネジカップ31とストッパカップ32との間に介在しかつ雌ネジカップ31に螺合された雄ネジ部材33とからなる。
【0018】
雌ネジカップ31は雌ネジカップ21と同形状を有し、上方に向けて開口し軸線方向を上部大梁2のフランジ面に対して垂直に向けた状態で鉄筋11、13に溶接により固定され、一部がコンクリート15に埋設されている。さらに、雌ネジカップ31の内周面には雌ネジ部31aが形成されている。
【0019】
ストッパカップ32はストッパカップ22と同形状を有し、下方に向けて開口し軸線を雌ネジカップ31の軸線に一致させた状態で上部大梁2のフランジ面に溶接により固定されている。
【0020】
雄ネジ部材33は雄ネジ部材23と同形状を有し、その周面には雄ネジ部33aが形成されて雌ネジカップ31に螺合され、かつ上端33bがストッパカップ22の内側に嵌入されている。これによりプレキャスト版10は上部接合手段30を介して上部大梁2に接合された状態となっている。
【0021】
ここで上部接合手段30について、雄ネジ部材33には、図4に示すように、その周面に直径方向に向けてコントロールネジ33cが貫通されている。雄ネジ部材33は、このコントロールネジ33cをもって雌ネジカップ31との螺合を解く向きに回転させることによって上方に移動し、上方に位置するストッパカップ32の内側に嵌入される。この状態から雄ネジ部材33をさらに回転させると、雄ネジ部材33の上端23bがストッパカップ32に圧接され、雌ネジカップ31とストッパカップ32とを離間させる方向に力を生むことができる。これは下部接合手段20についても同様であり、プレキャスト版10はこの力を利用して上部大梁2と下部大梁3との間に係止されている。
【0022】
上記のように構成された耐震壁の施工手順を説明する。まず、下部接合手段20を構成する雌ネジカップ21を、下部大梁2に適切な間隔を空けて配設するとともに、上部接合手段30を構成するストッパカップ32を上部大梁3に配設する。次に、下部大梁2上の雌ネジカップ21に雄ネジ部材23を螺合させ、その上端23aにストッパカップ22を合わせてプレキャスト版10を載置し立ち上げる。そして、先に雌ネジカップ31に螺合しておいた雄ネジ部材33を回転させて上方に移動させ、その上端33aをストッパカップ32に嵌入させる。その後さらに雄ネジ部材23、33を回転させ、下部大梁2と上部大梁3とにそれぞれ圧接させることによってプレキャスト版10を下部大梁2と上部大梁3との間に係止させる。
【0023】
次に、地震によって引き起こされる水平方向の外力が作用した場合を図5に示す。
まず、図5(a)に示すように、プレキャスト版10に外力Aが加わると、上部接合手段30と下部接合手段20Aとの間に耐力機構12Aを介してこの外力Aに対する反力が作用し、耐力機構12Aに沿って軸方向の圧縮力が作用する。また、図5(b)に示すように、プレキャスト版10に外力Bが加わると、上部接合手段30と下部接合手段20Bとの間に耐力機構12Bを介してこの外力Bに対する反力が作用し、耐力機構12Bに沿って軸方向の圧縮力が作用する。
【0024】
耐震壁は、耐力機構12A、12Bがその軸方向に作用する圧縮力に対抗することによってプレキャスト版10が水平方向の外力に耐えるので、全体として有効な耐震性を発揮することができる。
【0025】
また、地震によって引き起こされる水平方向の外力が非常に大きく、耐力機構12A、12Bに作用する圧縮力がその圧縮強度を上回った場合には、プレキャスト版10自体を意図的に破壊させて外力のエネルギーを吸収することも可能である。このとき、破壊されたプレキャスト版10は、下部大梁2、上部大梁3との接合がそれぞれ下部接合手段20、上部接合手段30によってなされており撤去が簡単なので、破壊されたプレキャスト版10およびこのプレキャスト版10と一体化された各部品を撤去し、上記の施工手順に従って新たなプレキャスト版10を取り付け、耐震壁を再生することができる。よって、工期の短縮、作業コストの削減が可能である。
【0026】
なお、本実施の形態においては、下部大梁2、上部大梁3を鉄骨造としたが、プレキャスト版10を支持する上下の構造部材は、鉄骨造、鉄筋コンクリート造を問わない。
【0027】
【発明の効果】
請求項1に記載された耐震壁によれば、プレキャスト版には、下部構造部材に対向する下辺から上部構造部材に対向する上辺にわたって傾斜して配設されて軸方向に作用する圧縮力に対抗する耐力機構が設けられ、該耐力機構の端部にあたるプレキャスト版の下辺と下部構造部材との間、およびプレキャスト版の上辺と上部構造部材との間には、プレキャスト版と各構造部材とを接合する接合手段がそれぞれ設けられているので、プレキャスト版に水平方向の外力が加わった場合、下部構造部材側の接合手段と上部構造部材側の接合手段との間に耐力機構を介してこの外力に対する反力が作用し、耐力機構に沿って軸方向の圧縮力が作用するが、この圧縮力に耐力機構が対抗することによってプレキャスト版が外力に耐えるので、耐震壁全体として有効な耐震性を発揮することができる。
また、請求項1に記載された耐震壁によれば、耐力機構がプレキャスト版の上下方向に沿う軸線に対して線対象に配置されているので、プレキャスト版が水平方向の交番外力にも耐え、さらに有効な耐震性を発揮することができる。
また、請求項1に記載された耐震壁によれば、耐力機構として、直線状の鉄筋と、この鉄筋を囲むフープ筋とがプレキャスト版を形成するコンクリートに埋設されているので、軸方向の圧縮力に対して高い強度を得ることができる。
【0030】
請求項に記載された耐震壁によれば、接合手段が、プレキャスト版と上下構造部材のいずれか一方に設けられた雌ネジ部と、該雌ネジ部に螺合され、この螺合を解除する向きに回転させることによって雌ネジ部から突出しその突出端がプレキャスト版と上下構造部材のいずれか他方に圧接される雄ネジ部材とからなり、上下構造部材に対して取り付け、取り外しを簡単に行なうことができ、溶接やボルト接合等の手間のかかる作業を廃することができるので、工期の短縮、作業コストの削減が可能である。
【図面の簡単な説明】
【図1】本発明に係る耐震壁の実施の形態を示す側方断面図である。
【図2】図1における下部構造部材とプレキャスト版との接合部分を示す側方断面図である。
【図3】図1における上部構造部材とプレキャスト版との接合部分を示す側方断面図である。
【図4】上下構造部材とプレキャスト版との間に配される接合手段の動きを示す状態説明図である。
【図5】耐震壁に水平方向の外力が加わった場合のプレキャスト版における力の釣り合いを示す状態説明図である。
【符号の説明】
2 下部大梁(下部構造部材)
3 上部大梁(上部構造部材)
10 プレキャスト版
12 耐力機構
13 鉄筋
14 フープ筋
20 下部接合手段(接合手段)
21 雌ネジカップ(雌ネジ部)
23 雄ネジ部材
30 上部接合手段(接合手段)
31 雌ネジカップ(雌ネジ部)
33 雄ネジ部材
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a shear wall having a precast plate disposed between an upper structural member such as a beam and a lower structural member.
[0002]
[Prior art]
Some conventional earthquake-resistant walls using precast plates have built-in steel plates combined in V-shape, Λ-shape, diamond shape, etc. On the other hand, it exerts earthquake resistance by applying a tensile force and a compressive force to the built-in steel plate. In that case, the concrete forming the precast plate is used as a buckling prevention and a fireproof coating when the steel sheet is subjected to a compressive force.
[0003]
[Problems to be solved by the invention]
The above-mentioned earthquake-resistant wall is mainly made of steel as a load-bearing element, and since the connection with the structural member is made by on-site welding and high-strength bolt connection, installation at the time of construction is troublesome. Also, it is very likely that the earthquake-resistant wall will be damaged in the event of a large earthquake, but in order to replace the damaged precast plate, you must cut the welded part and remove the bolts, Precast versions could not be easily replaced.
[0004]
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide an earthquake-resistant wall which has sufficient earthquake resistance and can be easily mounted at the time of construction or replaced when damaged.
[0005]
[Means for Solving the Problems]
The earthquake-resistant wall according to claim 1, wherein a precast plate is disposed between a lower structural member and an upper structural member arranged in parallel, and the precast plate is provided from a lower side facing the lower structural member. A strength mechanism is provided obliquely over an upper side facing the upper structural member and symmetrically disposed with respect to an axis extending along the vertical direction of the precast plate to resist a compressive force acting in the axial direction. For joining the precast plate and each structural member between the lower side of the precast plate located at the lower end of the precast plate and the lower structural member and between the upper side of the precast plate located at the upper end of the load bearing mechanism and the lower structural member means are provided respectively, resistant force mechanism comprises a hoop which surrounds the straight rebar and iron muscle arranged diagonally across the upper side from the lower side of the precast version, form a precast plate Is embedded in that concrete, characterized by comprising.
[0008]
According to a second aspect of the present invention, there is provided the earthquake-resistant wall according to the first aspect , wherein the joining means in the first wall comprises a female screw portion provided on one of the precast plate and the upper and lower structural members, and a female screw portion provided on the female screw portion. The pre-cast plate and a male screw member that is pressed against one of the upper and lower structural members, the protrusion end protruding from the female screw portion by rotating in a direction to release the screw engagement.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the earthquake-resistant wall of the present invention will be described with reference to FIGS.
The earthquake-resistant wall shown in FIG. 1 includes a precast plate 10 between a lower steel girder (lower structural member) 2 and an upper steel girder (upper structural member) 3 which are vertically separated from each other between columns 1 and 1. Are arranged.
[0010]
The precast plate 10 is a rectangular concrete plate whose vertical width is slightly shorter than the interval between the columns 1 and 1 and whose horizontal width is longer than the vertical length. In addition, a proof mechanism 12A, 12B is provided between the lower side 10a facing the lower girder 2 and the upper side 10b opposing the upper girder 3, and resists the compressive force acting in the axial direction. Have been.
[0011]
Each of the bearing mechanisms 12A and 12B includes a plurality of reinforcing bars 13 extending linearly between the center of the upper side 10b and both ends of the lower side 10a, and a spiral hoop bar 14 surrounding the reinforcing bars 13. When these are buried in the concrete 15 together with the reinforcing bars 11, strength against the compressive force acting in the direction in which the reinforcing bars 13 are provided is given.
[0012]
Lower joining means 20A and 20B are provided between the lower girder 2 and the precast plate 10, and upper joining means 30 is provided between the upper girder 3 and the precast plate 10.
[0013]
As shown in FIG. 2, both of the lower joining means 20A and 20B are provided with female screw cups 21 provided on the lower girders 3 opposite to both ends of the lower side 10a of the precast plate 10, and with female screw cups 21 respectively. It comprises a stopper cup 22 provided at each end of the lower side 10 a of the precast plate 10, and a male screw member 23 interposed between the female screw cup 21 and the stopper cup 22 and screwed to the female screw cup 21.
[0014]
The female screw cup 21 has a bottomed cylindrical shape, is opened upward, and is fixed by welding in a state where the axial direction is perpendicular to the flange surface of the lower large beam 3. Further, a female screw portion 21 a is formed on the inner peripheral surface of the female screw cup 21.
[0015]
The stopper cup 22 has a cylindrical shape with a bottom that is shallower than the female screw cup 21, is opened downward, and is fixed to the rebars 11 and 13 by welding in a state where the axis coincides with the axis of the female screw cup 21, and a part of the stopper cup 22 is welded. It is buried in concrete 15.
[0016]
The male screw member 23 has a cylindrical shape substantially equal to the inner diameters of the female screw cup 21 and the stopper cup 22, and has a male screw portion 23 a formed on the peripheral surface thereof, and is screwed to the female screw cup 21, and the upper end 23 b is formed of a stopper cup. 22 are fitted inside. As a result, the precast plate 10 is placed on the lower girder 3 and is joined via the lower joining means 20.
[0017]
As shown in FIG. 3, the upper connection means 30 includes a female screw cup 31 provided at the center of the upper side 10 b of the precast plate 10, a stopper cup 32 provided on the upper beam 2 opposite to the female screw cup 31, A male screw member 33 interposed between the female screw cup 31 and the stopper cup 32 and screwed to the female screw cup 31.
[0018]
The female screw cup 31 has the same shape as the female screw cup 21, is opened upward, and is fixed to the reinforcing bars 11 and 13 by welding in a state where the axial direction is perpendicular to the flange surface of the upper girders 2. Are buried in the concrete 15. Further, a female screw portion 31a is formed on the inner peripheral surface of the female screw cup 31.
[0019]
The stopper cup 32 has the same shape as the stopper cup 22, is opened downward, and is fixed to the flange surface of the upper large beam 2 by welding with its axis coinciding with the axis of the female screw cup 31.
[0020]
The male screw member 33 has the same shape as the male screw member 23, and has a male screw portion 33 a formed on the peripheral surface thereof and is screwed to the female screw cup 31, and the upper end 33 b is fitted inside the stopper cup 22. I have. Thereby, the precast plate 10 is in a state of being joined to the upper girders 2 via the upper joining means 30.
[0021]
Here, in the upper joining means 30, the control screw 33c is pierced in the male screw member 33 in the diametrical direction on the peripheral surface as shown in FIG. The male screw member 33 is moved upward by rotating the control screw 33c in a direction in which the male screw member 33 is disengaged from the female screw cup 31, and is fitted inside the stopper cup 32 located above. When the male screw member 33 is further rotated from this state, the upper end 23b of the male screw member 33 is pressed against the stopper cup 32, and a force can be generated in a direction to separate the female screw cup 31 and the stopper cup 32. The same applies to the lower joining means 20, and the precast plate 10 is locked between the upper girders 2 and the lower girders 3 using this force.
[0022]
A construction procedure of the earthquake-resistant wall configured as described above will be described. First, the female screw cup 21 constituting the lower joining means 20 is arranged on the lower large beam 2 at an appropriate interval, and the stopper cup 32 constituting the upper joining means 30 is arranged on the upper large beam 3. Next, the male screw member 23 is screwed into the female screw cup 21 on the lower girder 2, the stopper cup 22 is aligned with the upper end 23 a, and the precast plate 10 is placed and raised. Then, the male screw member 33 previously screwed into the female screw cup 31 is rotated and moved upward, and its upper end 33 a is fitted into the stopper cup 32. After that, the male screw members 23 and 33 are further rotated to press the lower beam 2 and the upper beam 3 respectively, thereby locking the precast plate 10 between the lower beam 2 and the upper beam 3.
[0023]
Next, FIG. 5 shows a case where a horizontal external force caused by an earthquake acts.
First, as shown in FIG. 5A, when an external force A is applied to the precast plate 10, a reaction force against the external force A acts between the upper joining means 30 and the lower joining means 20A via the proof mechanism 12A. , An axial compressive force acts along the bearing mechanism 12A. As shown in FIG. 5B, when an external force B is applied to the precast plate 10, a reaction force against the external force B acts between the upper joining means 30 and the lower joining means 20B via the proof mechanism 12B. , An axial compressive force acts along the bearing mechanism 12B.
[0024]
The anti-seismic wall can exhibit effective anti-seismic properties as a whole, since the precast plate 10 withstands external forces in the horizontal direction by the compressive forces acting in the axial direction by the anti-seismic mechanisms 12A and 12B.
[0025]
If the horizontal external force caused by the earthquake is very large and the compressive force acting on the load bearing mechanisms 12A, 12B exceeds the compressive strength, the precast plate 10 itself is intentionally destroyed and the energy of the external force is reduced. Can also be absorbed. At this time, since the broken precast plate 10 is connected to the lower girder 2 and the upper girder 3 by the lower bonding means 20 and the upper bonding means 30, respectively, and is easily removed, the broken precast plate 10 and the precast Each part integrated with the plate 10 is removed, a new precast plate 10 is attached according to the above-described construction procedure, and the earthquake-resistant wall can be regenerated. Therefore, it is possible to shorten the construction period and reduce the operation cost.
[0026]
In the present embodiment, the lower girder 2 and the upper girder 3 are made of steel. However, the upper and lower structural members supporting the precast plate 10 may be steel or reinforced concrete.
[0027]
【The invention's effect】
According to the earthquake-resistant wall of the first aspect, the precast plate is inclined from the lower side facing the lower structural member to the upper side facing the upper structural member to oppose the compressive force acting in the axial direction. A bearing mechanism is provided, and the precast plate and each structural member are joined between the lower side of the precast plate and the lower structural member and the upper side of the precast plate and the upper structural member at the end of the bearing mechanism. Since the joining means are provided respectively, when a horizontal external force is applied to the precast plate, the external force with respect to this external force is provided between the joining means on the lower structural member side and the joining means on the upper structural member side via a bearing mechanism. The reaction force acts, and the axial compressive force acts along the bearing mechanism, but the resisting mechanism opposes this compressive force, so the precast plate withstands the external force. It is possible to exert an effective earthquake resistance to.
Further, according to the earthquake-resistant wall described in claim 1, since the bearing mechanism is arranged symmetrically with respect to the axis along the vertical direction of the precast plate, the precast plate withstands alternating external forces in the horizontal direction, Further, effective earthquake resistance can be exhibited.
Further, according to the earthquake-resistant wall according to the first aspect, as the reinforcing mechanism, the linear reinforcing bar and the hoop reinforcing bar surrounding the reinforcing bar are buried in the concrete forming the precast slab, so that the axial compression is achieved. High strength against force can be obtained.
[0030]
According to the earthquake-resistant wall described in claim 2 , the joining means is screwed to the female screw portion provided on one of the precast plate and the upper and lower structural members, and the female screw portion is released. When it is rotated in the direction of rotation, it protrudes from the female screw portion and its protruding end is composed of a precast plate and a male screw member pressed against one of the upper and lower structural members, and is easily attached to and removed from the upper and lower structural members This eliminates the need for time-consuming operations such as welding and bolt joining, so that it is possible to shorten the construction period and reduce operating costs.
[Brief description of the drawings]
FIG. 1 is a side sectional view showing an embodiment of a shear wall according to the present invention.
FIG. 2 is a side sectional view showing a joint portion between a lower structural member and a precast plate in FIG.
FIG. 3 is a side sectional view showing a joint portion between an upper structural member and a precast plate in FIG. 1;
FIG. 4 is a state explanatory view showing the movement of the joining means arranged between the upper and lower structural members and the precast plate.
FIG. 5 is an explanatory diagram showing a state of balance of forces in a precast plate when a horizontal external force is applied to a shear wall.
[Explanation of symbols]
2 Lower girders (lower structural members)
3 Upper girders (upper structural members)
DESCRIPTION OF SYMBOLS 10 Precast plate 12 Strength mechanism 13 Reinforcing bar 14 Hoop bar 20 Lower joining means (joining means)
21 Female screw cup (Female screw part)
23 male screw member 30 upper joining means (joining means)
31 Female screw cup (Female screw part)
33 Male thread member

Claims (2)

平行に配置された下部構造部材と上部構造部材との間にプレキャスト版が配置されてなる耐震壁であって、
プレキャスト版には、下部構造部材に対向する下辺から上部構造部材に対向する上辺にわたって斜めに、且つ、プレキャスト版の上下方向に沿う軸線に対して線対象に配設されて軸方向に作用する圧縮力に対抗する耐力機構が設けられ、
該耐力機構の下端に位置するプレキャスト版の下辺と下部構造部材との間、および耐力機構の上端に位置するプレキャスト版の上辺と下部構造部材との間には、プレキャスト版と各構造部材とを接合する接合手段がそれぞれ設けられ
該耐力機構は、プレキャスト版の下辺から上辺にわたって斜めに配された直線状の鉄筋と該鉄筋を囲むフープ筋とが、プレキャスト版を形成するコンクリートに埋設されてなる
ことを特徴とする耐震壁。
An earthquake-resistant wall in which a precast plate is arranged between a lower structural member and an upper structural member arranged in parallel,
The precast plate has a compression that is disposed obliquely from the lower side facing the lower structural member to the upper side facing the upper structural member , and is arranged symmetrically with respect to the axis along the vertical direction of the precast plate, and acts in the axial direction. A proof mechanism against the force is provided,
Between the lower side of the precast plate located at the lower end of the load-bearing mechanism and the lower structural member, and between the upper side of the precast plate located at the upper end of the load-bearing mechanism and the lower structural member, the precast plate and each structural member are placed. Joining means for joining are respectively provided ,
The load-bearing mechanism is characterized in that a linear reinforcing bar obliquely arranged from the lower side to the upper side of the precast plate and a hoop reinforcing bar surrounding the reinforcing bar are embedded in concrete forming the precast plate. Shockproof wall.
請求項に記載された耐震壁において、
前記接合手段は、プレキャスト版と上下構造部材のいずれか一方に設けられた雌ネジ部と、
該雌ネジ部に螺合され、この螺合を解除する向きに回転させることによって雌ネジ部から突出しその突出端がプレキャスト版と上下構造部材のいずれか他方に圧接される雄ネジ部材とからなる
ことを特徴とする耐震壁。
In the earthquake-resistant wall according to claim 1 ,
The joining means is a female screw portion provided on one of the precast plate and the upper and lower structural members,
The female screw portion is screwed into the female screw portion, and the male screw member is protruded from the female screw portion by rotating in a direction to release the screw engagement, and the protruding end thereof is pressed against one of the precast plate and one of the upper and lower structural members. An earthquake-resistant wall characterized by that.
JP06500996A 1996-03-21 1996-03-21 Earthquake-resistant wall Expired - Fee Related JP3551998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06500996A JP3551998B2 (en) 1996-03-21 1996-03-21 Earthquake-resistant wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06500996A JP3551998B2 (en) 1996-03-21 1996-03-21 Earthquake-resistant wall

Publications (2)

Publication Number Publication Date
JPH09256669A JPH09256669A (en) 1997-09-30
JP3551998B2 true JP3551998B2 (en) 2004-08-11

Family

ID=13274567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06500996A Expired - Fee Related JP3551998B2 (en) 1996-03-21 1996-03-21 Earthquake-resistant wall

Country Status (1)

Country Link
JP (1) JP3551998B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100970942B1 (en) * 2007-11-14 2010-07-20 재단법인 포항산업과학연구원 steel structure

Also Published As

Publication number Publication date
JPH09256669A (en) 1997-09-30

Similar Documents

Publication Publication Date Title
WO2008133460A1 (en) Composite concrete column and construction method using the same
KR100690197B1 (en) Steel beam with plate type shear connector and Steel composite beam using the steel beam
JP3551998B2 (en) Earthquake-resistant wall
KR100197759B1 (en) A conjunctive construction part for joining a concrete column and iron beam of a building
KR102337940B1 (en) Combination structure of reinforced concrete columns and steel beams
JP2763443B2 (en) Beam and floor structure
JPH08302619A (en) Joint structure for composite members
JP3682521B2 (en) Structure of two-stage main girder composite floor slab bridge
KR200392009Y1 (en) Composite frame for Slab-form
JP4660810B2 (en) Boundary beam damper
JPH06306930A (en) Connection structure of precast reinforced concrete construction
JP4136200B2 (en) Connection structure between reinforced concrete columns and steel beams
JP7386367B1 (en) system of structures
JP3072604B2 (en) Precast reinforced concrete beam and its joining method
JP2949650B2 (en) Precast reinforced concrete members
JP2984870B2 (en) Column and beam joint toughness reinforcement structure
JPS5920492Y2 (en) PC version strength fixing structure
KR20180070097A (en) Prestressed Hybrid Wide Flange Girder System Suitable For Resisting Negative Moments At Construction Stage
JPH0524768Y2 (en)
JP2544851Y2 (en) Composite structural members
JP2024503042A (en) panelized serrated beam assembly
JPS59116090A (en) Wall structure in reactor building and the like
JPH07102825A (en) Arrangement construction for wall
JPS6321601Y2 (en)
JP2540314B2 (en) Steel rebar concrete columns and beams

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040420

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees