JP3551769B2 - Internal combustion engine - Google Patents

Internal combustion engine Download PDF

Info

Publication number
JP3551769B2
JP3551769B2 JP17491698A JP17491698A JP3551769B2 JP 3551769 B2 JP3551769 B2 JP 3551769B2 JP 17491698 A JP17491698 A JP 17491698A JP 17491698 A JP17491698 A JP 17491698A JP 3551769 B2 JP3551769 B2 JP 3551769B2
Authority
JP
Japan
Prior art keywords
amount
combustion
soot
air
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17491698A
Other languages
Japanese (ja)
Other versions
JP2000008964A (en
Inventor
宏樹 村田
静夫 佐々木
丈和 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP17491698A priority Critical patent/JP3551769B2/en
Priority to US09/330,100 priority patent/US6152118A/en
Priority to EP99111890A priority patent/EP0967373B1/en
Publication of JP2000008964A publication Critical patent/JP2000008964A/en
Application granted granted Critical
Publication of JP3551769B2 publication Critical patent/JP3551769B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition

Description

【0001】
【発明の属する技術分野】
本発明は内燃機関に関する。
【0002】
【従来の技術】
従来より内燃機関、例えばディーゼル機関においてはNOの発生を抑制するために機関排気通路と機関吸気通路とを排気ガス再循環(以下、EGRと称す)通路により連結し、このEGR通路を介して排気ガス、即ちEGRガスを機関吸気通路内に再循環させるようにしている。この場合、EGRガスは比較的比熱が高く、従って多量の熱を吸収することができるので、EGRガス量を増大するほど、即ちEGR率(EGRガス量/(EGRガス量+吸入空気量))を増大するほど燃焼室内における燃焼温度が低下する。燃焼温度が低下するとNOの発生量が低下し、従ってEGR率を増大すればするほどNOの発生量は低下することになる。
【0003】
このように従来よりEGR率を増大すればNOの発生量を低下しうることはわかっている。しかしながらEGR率を増大させていくとEGR率が或る限度を越えたときに煤の発生量、即ちスモークが急激に増大し始める。この点に関し従来より、それ以上EGR率を増大すればスモークが限りなく増大していくものと考えられており、従ってスモークが急激に増大し始めるEGR率がEGR率の最大許容限界であると考えられている。
【0004】
従って従来よりEGR率はこの最大許容限界を越えない範囲内に定められている。このEGR率の最大許容限界は機関の形式や燃料によってかなり異なるがおおよそ30パーセントから50パーセントである。従って従来のディーゼル機関ではEGR率は最大でも30パーセントから50パーセント程度に抑えられている。
【0005】
このように従来ではEGR率に対して最大許容限界が存在すると考えられていたので従来よりEGR率はこの最大許容限界を越えない範囲内においてNOおよびスモークの発生量ができるだけ少なくなるように定められていた。しかしながらこのようにしてEGR率をNOおよびスモークの発生量ができるだけ少なくなるように定めてもNOおよびスモークの発生量の低下には限度があり、実際には依然としてかなりの量のNOおよびスモークが発生してしまうのが現状である。
【0006】
ところがディーゼル機関の燃焼の研究の過程においてEGR率を最大許容限界よりも大きくすれば上述の如くスモークが急激に増大するがこのスモークの発生量にはピークが存在し、このピークを越えてEGR率を更に大きくすると今度はスモークが急激に減少しはじめ、アイドリング運転時においてEGR率を70パーセント以上にすると、またEGRガスを強力に冷却した場合にはEGR率をほぼ55パーセント以上にするとスモークがほとんど零になる、即ち煤がほとんど発生しないことが見い出されたのである。また、このときにはNOの発生量が極めて少量となることも判明している。この後この知見に基づいて煤が発生しない理由について検討が進められ、その結果これまでにない煤およびNOの同時低減が可能な新たな燃焼システムが構築されるに至ったのである。この新たな燃焼システムについては後に詳細に説明するが簡単に言うと炭化水素が煤に成長するまでの途中の段階において炭化水素の成長を停止させることを基本としている。
【0007】
即ち、実験研究を重ねた結果判明したことは燃焼室内における燃焼時の燃料およびその周囲のガス温度が或る温度以下のときには炭化水素の成長が煤に至る前の途中の段階で停止し、燃料およびその周囲のガス温度が或る温度以上になると炭化水素は一気に煤まで成長してしまうということである。この場合、燃料およびその周囲のガス温度は燃料が燃焼した際の燃料周りのガスの吸熱作用が大きく影響しており、燃料燃焼時の発熱量に応じて燃料周りのガスの吸熱量を調整することによって燃料およびその周囲のガス温度を制御することができる。
【0008】
従って、燃焼室内における燃焼時の燃料およびその周囲のガス温度を炭化水素の成長が途中で停止する温度以下に抑制すれば煤が発生しなくなり、燃焼室内における燃焼時の燃料およびその周囲のガス温度を炭化水素の成長が途中で停止する温度以下に抑制することは燃料周りのガスの吸熱量を調整することによって可能となる。一方、煤に至る前に成長が途中で停止した炭化水素は酸化触媒等を用いた後処理によって容易に浄化することができる。これが新たな燃焼システムの基本的な考え方である。この新たな燃焼システムを採用した内燃機関については本出願人により既に出願されている(特願平9−305850号)。
【0009】
【発明が解決しようとする課題】
ところがこの内燃機関では排気マニホルド内に排出された排気ガスがそのままEGRガスとして機関吸気通路内に再循環せしめられる。しかしながらこの新たな燃焼システムを採用した内燃機関では排気ガス中に多量の未燃炭化水素が含まれており、更に排気ガス中には多量のSOF(可溶性有機物質)が含まれている。従って排気マニホルド内に排出された排気ガスをそのままEGRガスとして機関吸気通路内に再循環せしめると排気ガス中に含まれる未燃炭化水素やSOFが排気ガス再循環通路内に付着し、斯くして多量のデポジットが排気ガス再循環通路内に堆積するという問題を生ずる。
【0010】
【課題を解決するための手段】
上記問題点を解決するために1番目の発明では、燃焼室内に供給される再循環排気ガス量を増大していくと煤の発生量が次第に増大してピークに達し、燃焼室内に供給される再循環排気ガス量を更に増大していくと燃焼室内における燃焼時の燃料およびその周囲のガス温が煤の生成温度よりも低くなって煤がほとんど発生しなくなる内燃機関において、煤の発生量がピークとなる再循環排気ガス量よりも燃焼室内に供給される再循環排気ガス量を多くすることによって燃焼室内における燃焼時の燃料およびその周囲のガス温度を煤が生成される温度よりも低い温度に抑制し、燃焼室から排出される排気ガスを浄化するための触媒を具備し、触媒を通過した排気ガスを機関吸気通路内に再循環せしめるようにしている。即ち、排気ガス中の未燃炭化水素やSOFは触媒で浄化され、これら未燃炭化水素やSOFをほとんど含まない排気ガスが機関吸気通路内に再循環せしめられる。
【0011】
2番目の発明では1番目の発明において、触媒が機関排気通路内に配置されている。
3番目の発明では1番目の発明において、触媒が機関排気通路と機関吸気通路とを連結する排気ガス再循環通路内に配置されている。
4番目の発明では1番目の発明において、触媒が酸化触媒、三元触媒又はNO吸収剤の少くとも一つからなる。
【0012】
5番目の発明では1番目の発明において、排気ガス再循環率がほぼ55パーセント以上である。
6番目の発明では1番目の発明において、煤の発生量がピークとなる再循環排気ガス量よりも燃焼室内に供給される再循環排気ガス量が多く煤がほとんど発生しない第1の燃焼と、煤の発生量がピークとなる再循環ガス量よりも燃焼室内に供給される再循環排気ガス量が少ない第2の燃焼とを選択的に切換える切換手段を具備している。
【0013】
7番目の発明では6番目の発明において、第1の燃焼における空燃比が理論空燃比か、或いは理論空燃比に対してわずかにリーンなリーン空燃比か、或いはリッチ空燃比とされ、第2の燃焼における空燃比がリーン空燃比とされる。
8番目の発明では6番目の発明において、機関の運転領域を低負荷側の第1の運転領域と高負荷側の第2の運転領域に分割し、第1の運転領域では第1の燃焼を行い、第2の運転領域では第2の燃焼を行うようにしている。
【0014】
【発明の実施の形態】
図1は本発明を4ストローク圧縮着火式内燃機関に適用した場合を示している。
図1を参照すると、1は機関本体、2はシリンダブロック、3はシリンダヘッド、4はピストン、5は燃焼室、6は電気制御式燃料噴射弁、7は吸気弁、8は吸気ポート、9は排気弁、10は排気ポートを夫々示す。吸気ポート8は対応する吸気枝管11を介してサージタンク12に連結され、サージタンク12は吸気ダクト13およびインタークーラ14を介して過給機、例えば排気ターボチャージャ15のコンプレッサ16の出口部に連結される。コンプレッサ16の入口部は空気吸込管17を介してエアクリーナ18に連結され、空気吸込管17内にはステップモータ19により駆動されるスロットル弁20が配置される。
【0015】
一方、排気ポート10は排気マニホルド21および排気管22を介して排気ターボチャージャ15の排気タービン23の入口部に連結され、排気タービン23の出口部は排気管24を介して酸化機能を有する触媒25を内蔵した触媒コンバータ26に連結される。排気マニホルド21内には空燃比センサ27が配置される。
【0016】
触媒コンバータ26の出口部に連結された排気管28とスロットル弁20下流の空気吸込管17とは排気ガス再循環(以下、EGRと称す)通路29を介して互いに連結され、EGR通路29内にはステップモータ30により駆動されるEGR制御弁31が配置される。また、EGR通路29内にはEGR通路29内を流れるEGRガスを冷却するためのインタークーラ32が配置される。図1に示される実施例では機関冷却水がインタークーラ32内に導びかれ、機関冷却水によってEGRガスが冷却される。
【0017】
一方、燃料噴射弁6は燃料供給管33を介して燃料リザーバ、いわゆるコモンレール34に連結される。このコモンレール34内へは電気制御式の吐出量可変な燃料ポンプ35から燃料が供給され、コモンレール34内に供給された燃料は各燃料供給管33を介して燃料噴射弁6に供給される。コモンレール34にはコモンレール34内の燃料圧を検出するための燃料圧センサ36が取付けられ、燃料圧センサ36の出力信号に基づいてコモンレール34内の燃料圧が目標燃料圧となるように燃料ポンプ35の吐出量が制御される。
【0018】
電子制御ユニット40はデジタルコンピュータからなり、双方向性バス41によって互いに接続されたROM(リードオンリメモリ)42、RAM(ランダムアクセスメモリ)43、CPU(マイクロプロセッサ)44、入力ポート45および出力ポート46を具備する。空燃比センサ27の出力信号は対応するAD変換器47を介して入力ポート45に入力され、燃料圧センサ36の出力信号も対応するAD変換器47を介して入力ポート45に入力される。アクセルペダル50にはアクセルペダル50の踏込み量Lに比例した出力電圧を発生する負荷センサ51が接続され、負荷センサ51の出力電圧は対応するAD変換器47を介して入力ポート45に入力される。また、入力ポート45にはクランクシャフトが例えば30°回転する毎に出力パルスを発生するクランク角センサ52が接続される。一方、出力ポート46は対応する駆動回路48を介して燃料噴射弁6、スロットル弁制御用ステップモータ19、EGR制御弁制御用ステップモータ30および燃料ポンプ35に接続される。
【0019】
図2は機関低負荷運転時にスロットル弁20の開度およびEGR率を変化させることにより空燃比A/F(図2の横軸)を変化させたときの出力トルクの変化、およびスモーク、HC,CO,NOの排出量の変化を示す実験例を表している。図2からわかるようにこの実験例では空燃比A/Fが小さくなるほどEGR率が大きくなり、理論空燃比(≒14.6)以下のときにはEGR率は65パーセント以上となっている。
【0020】
図2に示されるようにEGR率を増大することにより空燃比A/Fを小さくしていくとEGR率が40パーセント付近となり空燃比A/Fが30程度になったときにスモークの発生量が増大を開始する。次いで、更にEGR率を高め、空燃比A/Fを小さくするとスモークの発生量が急激に増大してピークに達する。次いで更にEGR率を高め、空燃比A/Fを小さくすると今度はスモークが急激に低下し、EGR率を65パーセント以上とし、空燃比A/Fが15.0付近になるとスモークがほぼ零となる。即ち、煤がほとんど発生しなくなる。このとき機関の出力トルクは若干低下し、またNOの発生量がかなり低くなる。一方、このときHC,COの発生量は増大し始める。
【0021】
図3(A)は空燃比A/Fが18付近でスモークの発生量が最も多いときの燃焼室5内の燃焼圧変化を示しており、図3(B)は空燃比A/Fが13付近でスモークの発生量がほぼ零のときの燃焼室5内の燃焼圧の変化を示している。図3(A)と図3(B)とを比較すればわかるようにスモークの発生量がほぼ零である図3(B)に示す場合はスモークの発生量が多い図3(A)に示す場合に比べて燃焼圧が低いことがわかる。
【0022】
図2および図3に示される実験結果から次のことが言える。即ち、まず第1に空燃比A/Fが15.0以下でスモークの発生量がほぼ零のときには図2に示されるようにNOの発生量がかなり低下する。NOの発生量が低下したということは燃焼室5内の燃焼温度が低下していることを意味しており、従って煤がほとんど発生しないときには燃焼室5内の燃焼温度が低くなっていると言える。同じことが図3からも言える。即ち、煤がほとんど発生していない図3(B)に示す状態では燃焼圧が低くなっており、従ってこのとき燃焼室5内の燃焼温度は低くなっていることになる。
【0023】
第2にスモークの発生量、即ち煤の発生量がほぼ零になると図2に示されるようにHCおよびCOの排出量が増大する。このことは炭化水素が煤まで成長せずに排出されることを意味している。即ち、燃料中に含まれる図4に示されるような直鎖状炭化水素や芳香族炭化水素は酸素不足の状態で温度上昇せしめられると熱分解して煤の前駆体が形成され、次いで主に炭素原子が集合した固体からなる煤が生成される。この場合、実際の煤の生成過程は複雑であり、煤の前駆体がどのような形態をとるかは明確ではないがいずれにしても図4に示されるような炭化水素は煤の前駆体を経て煤まで成長することになる。従って、上述したように煤の発生量がほぼ零になると図2に示される如くHCおよびCOの排出量が増大するがこのときのHCは煤の前駆体又はその前の状態の炭化水素である。
【0024】
図2および図3に示される実験結果に基づくこれらの考察をまとめると燃焼室5内の燃焼温度が低いときには煤の発生量がほぼ零になり、このとき煤の前駆体又はその前の状態の炭化水素が燃焼室5から排出されることになる。このことについて更に詳細に実験研究を重ねた結果、燃焼室5内における燃料およびその周囲のガス温度が或る温度以下である場合には煤の成長過程が途中で停止してしまい、即ち煤が全く発生せず、燃焼室5内における燃料およびその周囲の温度が或る温度以上になると煤が生成されることが判明したのである。
【0025】
ところで煤の前駆体の状態で炭化水素の生成過程が停止するときの燃料およびその周囲の温度、即ち上述の或る温度は燃料の種類や空燃比や圧縮比等の種々の要因によって変化するので何度であるかということは言えないがこの或る温度はNOの発生量と深い関係を有しており、従ってこの或る温度はNOの発生量から或る程度規定することができる。即ち、EGR率が増大するほど燃焼時の燃料およびその周囲のガス温度は低下し、NOの発生量が低下する。このときNOの発生量が10p.p.m 前後又はそれ以下になったときに煤がほとんど発生しなくなる。従って上述の或る温度はNOの発生量が10p.p.m 前後又はそれ以下になったときの温度にほぼ一致する。
【0026】
一旦、煤が生成されるとこの煤は酸化機能を有する触媒を用いた後処理でもって浄化することはできない。これに対して煤の前駆体又はその前の状態の炭化水素は酸化機能を有する触媒を用いた後処理でもって容易に浄化することができる。このように酸化機能を有する触媒による後処理を考えると炭化水素を煤の前駆体又はその前の状態で燃焼室5から排出させるか、或いは煤の形で燃焼室5から排出させるかについては極めて大きな差がある。本発明において採用されている新たな燃焼システムは燃焼室5内において煤を生成させることなく炭化水素を煤の前駆体又はその前の状態の形でもって燃焼室5から排出させ、この炭化水素を酸化機能を有する触媒により酸化せしめることを核としている。
【0027】
さて、煤が生成される前の状態で炭化水素の成長を停止させるには燃焼室5内における燃焼時の燃料およびその周囲のガス温度を煤が生成される温度よりも低い温度に抑制する必要がある。この場合、燃料およびその周囲のガス温度を抑制するには燃料が燃焼した際の燃料周りのガスの吸熱作用が極めて大きく影響することが判明している。
【0028】
即ち、燃料周りに空気しか存在しないと蒸発した燃料はただちに空気中の酸素と反応して燃焼する。この場合、燃料から離れている空気の温度はさほど上昇せず、燃料周りの温度のみが局所的に極めて高くなる。即ち、このときには燃料から離れている空気は燃料の燃焼熱の吸熱作用をほとんど行わない。この場合には燃焼温度が局所的に極めて高くなるために、この燃焼熱を受けた未燃炭化水素は煤を生成することになる。
【0029】
一方、多量の不活性ガスと少量の空気の混合ガス中に燃料が存在する場合には若干状況が異なる。この場合には蒸発燃料は周囲に拡散して不活性ガス中に混在する酸素と反応し、燃焼することになる。この場合には燃焼熱は周りの不活性ガスに吸収されるために燃焼温度はさほど上昇しなくなる。即ち、燃焼温度を低く抑えることができることになる。即ち、燃焼温度を抑制するには不活性ガスの存在が重要な役割を果しており、不活性ガスの吸熱作用によって燃焼温度を低く抑えることができることになる。
【0030】
この場合、燃料およびその周囲のガス温度を煤が生成される温度よりも低い温度に抑制するにはそうするのに十分な熱量を吸収しうるだけの不活性ガス量が必要となる。従って燃料量が増大すれば必要となる不活性ガス量はそれに伴なって増大することになる。なお、この場合、不活性ガスの比熱が大きいほど吸熱作用は強力となり、従って不活性ガスは比熱の大きなガスが好ましいことになる。この点、COやEGRガスは比較的比熱が大きいので不活性ガスとしてEGRガスを用いることは好ましいと言える。
【0031】
図5は不活性ガスとしてEGRガスを用い、EGRガスの冷却度合を変えたときのEGR率とスモークとの関係を示している。即ち、図5において曲線AはEGRガスを強力に冷却してEGRガス温をほぼ90℃に維持した場合を示しており、曲線Bは小型の冷却装置でEGRガスを冷却した場合を示しており、曲線CはEGRガスを強制的に冷却していない場合を示している。
【0032】
図5の曲線Aで示されるようにEGRガスを強力に冷却した場合にはEGR率が50パーセントよりも少し低いところで煤の発生量がピークとなり、この場合にはEGR率をほぼ55パーセント以上にすれば煤がほとんど発生しなくなる。
一方、図5の曲線Bで示されるようにEGRガスを少し冷却した場合にはEGR率が50パーセントよりも少し高いところで煤の発生量がピークとなり、この場合にはEGR率をほぼ65パーセント以上にすれば煤がほとんど発生しなくなる。
【0033】
また、図5の曲線Cで示されるようにEGRガスを強制的に冷却していない場合にはEGR率が55パーセントの付近で煤の発生量がピークとなり、この場合にはEGR率をほぼ70パーセント以上にすれば煤がほとんど発生しなくなる。
なお、図5は機関負荷が比較的高いときのスモークの発生量を示しており、機関負荷が小さくなると煤の発生量がピークとなるEGR率は若干低下し、煤がほとんど発生しなくなるEGR率の下限も若干低下する。このように煤がほとんど発生しなくなるEGR率の下限はEGRガスの冷却度合や機関負荷に応じて変化する。
【0034】
図6は不活性ガスとしてEGRガスを用いた場合において燃焼時の燃料およびその周囲のガス温度を煤が生成される温度よりも低い温度にするために必要なEGRガスと空気の混合ガス量、およびこの混合ガス量中の空気の割合、およびこの混合ガス中のEGRガスの割合を示している。なお、図6において縦軸は燃焼室5内に吸入される全吸入ガス量を示しており、鎖線Yは過給が行われないときに燃焼室5内に吸入しうる全吸入ガス量を示している。また、横軸は要求負荷を示している。
【0035】
図6を参照すると空気の割合、即ち混合ガス中の空気量は噴射された燃料を完全に燃焼せしめるのに必要な空気量を示している。即ち、図6に示される場合では空気量と噴射燃料量との比は理論空燃比となっている。一方、図6においてEGRガスの割合、即ち混合ガス中のEGRガス量は噴射燃料が燃焼せしめられたときに燃料およびその周囲のガス温度を煤が形成される温度よりも低い温度にするのに必要最低限のEGRガス量を示している。このEGRガス量はEGR率で表すとほぼ55パーセント以上であり、図6に示す実施例では70パーセント以上である。即ち、燃焼室5内に吸入された全吸入ガス量を図6において実線Xとし、この全吸入ガス量Xのうちの空気量とEGRガス量との割合を図6に示すような割合にすると燃料およびその周囲のガス温度は煤が生成される温度よりも低い温度となり、斯くして煤が全く発生しなくなる。また、このときのNO発生量は10p.p.m 前後、又はそれ以下であり、従ってNOの発生量は極めて少量となる。
【0036】
燃料噴射量が増大すれば燃料が燃焼した際の発熱量が増大するので燃料およびその周囲のガス温度を煤が生成される温度よりも低い温度に維持するためにはEGRガスによる熱の吸収量を増大しなければならない。従って図6に示されるようにEGRガス量は噴射燃料量が増大するにつれて増大せしめなければならない。即ち、EGRガス量は要求負荷が高くなるにつれて増大する必要がある。
【0037】
ところで過給が行われていない場合には燃焼室5内に吸入される全吸入ガス量Xの上限はYであり、従って図6において要求負荷がLo よりも大きい領域では要求負荷が大きくなるにつれてEGRガス割合を低下させない限り空燃比を理論空燃比に維持することができない。云い換えると過給が行われていない場合に要求負荷がLo よりも大きい領域において空燃比を理論空燃比に維持しようとした場合には要求負荷が高くなるにつれてEGR率が低下し、斯くして要求負荷がLo よりも大きい領域では燃料およびその周囲のガス温度を煤が生成される温度よりも低い温度に維持しえなくなる。
【0038】
ところが図1に示されるようにEGR通路29を介して過給機の入口側即ち排気ターボチャージャ15の空気吸込管17内にEGRガスを再循環させると要求負荷がLo よりも大きい領域においてEGR率を55パーセント以上、例えば70パーセントに維持することができ、斯くして燃料およびその周囲のガス温度を煤が生成される温度よりも低い温度に維持することができる。即ち、空気吸込管17内におけるEGR率が例えば70パーセントになるようにEGRガスを再循環させれば排気ターボチャージャ15のコンプレッサ16により昇圧された吸入ガスのEGR率も70パーセントとなり、斯くしてコンプレッサ16により昇圧しうる限度まで燃料およびその周囲のガス温度を煤が生成される温度よりも低い温度に維持することができる。従って、低温燃焼を生じさせることのできる機関の運転領域を拡大することができることになる。
【0039】
なお、この場合、EGRガスの温度が低ければ低いほど低温燃焼の生じる運転領域が拡大する。従って図1に示されるように排気タービン23から流出した比較的温度の低い排気ガスがEGRガスとして再循環せしめられ、更にインタークーラ32によってEGRガスを冷却するようにしている。
また、図1に示される実施例では要求負荷がLo よりも大きい領域でEGR率を55パーセント以上にする際にはEGR制御弁31が全開せしめられ、スロットル弁20が若干閉弁せしめられる。
【0040】
前述したように図6は燃料を理論空燃比のもとで燃焼させる場合を示しているが空気量を図6に示される空気量よりも少くしても、即ち空燃比をリッチにしても煤の発生を阻止しつつNOの発生量を10p.p.m 前後又はそれ以下にすることができ、また空気量を図6に示される空気量よりも多くしても、即ち空燃比の平均値を17から18のリーンにしても煤の発生を阻止しつつNOの発生量を10p.p.m 前後又はそれ以下にすることができる。
【0041】
即ち、空燃比がリッチにされると燃料が過剰となるが燃焼温度が低い温度に抑制されているために過剰な燃料は煤まで成長せず、斯くして煤が生成されることがない。また、このときNOも極めて少量しか発生しない。一方、平均空燃比がリーンのとき、或いは空燃比が理論空燃比のときでも燃焼温度が高くなれば少量の煤が生成されるが本発明では燃焼温度が低い温度に抑制されているので煤は全く生成されない。更に、NOも極めて少量しか発生しない。
【0042】
このように、低温燃焼が行われているときには空燃比にかかわらずに、即ち空燃比がリッチであろうと、理論空燃比であろうと、或いは平均空燃比がリーンであろうと煤が発生されず、NOの発生量が極めて少量となる。従って燃料消費率の向上を考えるとこのとき平均空燃比をリーンにすることが好ましいと言える。
【0043】
ところで燃焼室内における燃焼時の燃料およびその周囲のガス温度を炭化水素の成長が途中で停止する温度以下に抑制しうるのは燃焼による発熱量が比較的少ない機関中低負荷運転時に限られる。従って本発明による実施例では機関中低負荷運転時には燃焼時の燃料およびその周囲のガス温度を炭化水素の成長が途中で停止する温度以下に抑制して第1の燃焼、即ち低温燃焼を行うようにし、機関高負荷運転時には第2の燃焼、即ち従来より普通に行われている燃焼を行うようにしている。なお、ここで第1の燃焼、即ち低温燃焼とはこれまでの説明から明らかなように煤の発生量がピークとなる不活性ガス量よりも燃焼室内の不活性ガス量が多く煤がほとんど発生しない燃焼のことを言い、第2の燃焼、即ち従来より普通に行われている燃焼とは煤の発生量がピークとなる不活性ガス量よりも燃焼室内の不活性ガス量が少い燃焼のことを言う。
【0044】
図7は第1の燃焼、即ち低温燃焼が行われる第1の運転領域Iと、第2の燃焼、即ち従来の燃焼方法による燃焼が行われる第2の運転領域IIとを示している。なお、図7において縦軸Lはアクセルペダル50の踏込み量、即ち要求負荷を示しており、横軸Nは機関回転数を示している。また、図7においてX(N)は第1の運転領域Iと第2の運転領域IIとの第1の境界を示しており、Y(N)は第1の運転領域Iと第2の運転領域IIとの第2の境界を示している。第1の運転領域Iから第2の運転領域IIへの運転領域の変化判断は第1の境界X(N)に基づいて行われ、第2の運転領域IIから第1の運転領域Iへの運転領域の変化判断は第2の境界Y(N)に基づいて行われる。
【0045】
即ち、機関の運転状態が第1の運転領域Iにあって低温燃焼が行われているときに要求負荷Lが機関回転数Nの関数である第1の境界X(N)を越えると運転領域が第2の運転領域IIに移ったと判断され、従来の燃焼方法による燃焼が行われる。次いで要求負荷Lが機関回転数Nの関数である第2の境界Y(N)よりも低くなると運転領域が第1の運転領域Iに移ったと判断され、再び低温燃焼が行われる。
【0046】
このように第1の境界X(N)と第1の境界X(N)よりも低負荷側の第2の境界Y(N)との二つの境界を設けたのは次の二つの理由による。第1の理由は、第2の運転領域IIの高負荷側では比較的燃焼温度が高く、このとき要求負荷Lが第1の境界X(N)より低くなったとしてもただちに低温燃焼を行えないからである。即ち、要求負荷Lがかなり低くなったとき、即ち第2の境界Y(N)よりも低くなったときでなければただちに低温燃焼が開始されないからである。第2の理由は第1の運転領域Iと第2の運転領域II間の運転領域の変化に対してヒステリシスを設けるためである。
【0047】
ところで機関の運転状態が第1の運転領域Iにあって低温燃焼が行われているときには煤はほとんど発生せず、その代り未燃炭化水素が煤の前駆体又はその前の状態の形でもって燃焼室5から排出される。このとき燃焼室5から排出された未燃炭化水素は酸化機能を有する触媒25により良好に酸化せしめられる。
触媒25としては酸化触媒、三元触媒、又はNO吸収剤を用いることができる。NO吸収剤は燃焼室5内における平均空燃比がリーンのときにNOを吸収し、燃焼室5内における平均空燃比がリッチになるとNOを放出する機能を有する。
【0048】
このNO吸収剤は例えばアルミナを担体とし、この担体上に例えばカリウムK、ナトリウムNa、リチウムLi、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類、ランタンLa、イットリウムYのような希土類から選ばれた少くとも一つと、白金Ptのような貴金属とが担持されている。
【0049】
酸化触媒はもとより、三元触媒およびNO吸収剤も酸化機能を有しており、従って上述した如く三元触媒およびNO吸収剤を触媒25として用いることができる。
一方、低温燃焼時には未燃炭化水素に加えSOF(可溶性有機物質)も多量に排出され、このSOFも触媒25によって浄化せしめられる。この場合、もし低温燃焼時にこれら未燃炭化水素やSOFを多量に含んだEGRガスが再循環せしめられるとこれら未燃炭化水素やSOFがEGR通路29、インタークーラ32およびコンプレッサ16内にデポジットとして付着堆積してしまう。しかしながら本発明による実施例では触媒25から排出された排気ガス、即ち未燃炭化水素やSOFをほとんど含んでいない排気ガスがEGRガスとして再循環せしめられるのでEGR通路29等にデポジットが堆積する危険性がない。
【0050】
図8は空燃比センサ27の出力を示している。図8に示されるように空燃比センサ27の出力電流Iは空燃比A/Fに応じて変化する。従って空燃比センサ27の出力電流Iから空燃比を知ることができる。
次に図9を参照しつつ第1の運転領域Iおよび第2の運転領域IIにおける運転制御について概略的に説明する。
【0051】
図9は要求負荷Lに対するスロットル弁20の開度、EGR制御弁31の開度、EGR率、空燃比、噴射時期および噴射量を示している。図9に示されるように要求負荷Lの低い第1の運転領域Iではスロットル弁20の開度は要求負荷Lが高くなるにつれて全閉近くから1/3開度程度まで徐々に増大せしめられ、EGR制御弁31の開度は要求負荷Lが高くなるにつれて全閉近くから全開まで徐々に増大せしめられる。また、図9に示される例では第1の運転領域IではEGR率がほぼ70パーセントとされており、空燃比はわずかばかりリーンなリーン空燃比とされている。
【0052】
言い換えると第1の運転領域IではEGR率がほぼ70パーセントとなり、空燃比がわずかばかりリーンなリーン空燃比となるようにスロットル弁20の開度およびEGR制御弁31の開度が制御される。なお、このとき空燃比は空燃比センサ27の出力信号に基づいてEGR制御弁31の開度を補正することによって目標リーン空燃比に制御される。また、第1の運転領域Iでは圧縮上死点TDC前に燃料噴射が行われる。この場合、噴射開始時期θSは要求負荷Lが高くなるにつれて遅くなり、噴射完了時期θEも噴射開始時期θSが遅くなるにつれて遅くなる。
【0053】
なお、アイドリング運転時にはスロットル弁20は全閉近くまで閉弁され、このときEGR制御弁31も全閉近くまで閉弁せしめられる。スロットル弁20を全閉近くまで閉弁すると圧縮始めの燃焼室5内の圧力が低くなるために圧縮圧力が小さくなる。圧縮圧力が小さくなるとピストン4による圧縮仕事が小さくなるために機関本体1の振動が小さくなる。即ち、アイドリング運転時には機関本体1の振動を抑制するためにスロットル弁20が全閉近くまで閉弁せしめられる。
一方、機関の運転領域が第1の運転領域Iから第2の運転領域IIに変わるとスロットル弁20の開度が1/3開度程度から全開方向へステップ状に増大せしめられる。このとき図9に示す例ではEGR率がほぼ70パーセントから40パーセント以下までステップ状に減少せしめられ、空燃比がステップ状に大きくされる。即ち、EGR率が多量のスモークを発生するEGR率範囲(図5)を飛び越えるので機関の運転領域が第1の運転領域Iから第2の運転領域IIに変わるときに多量のスモークが発生することがない。
【0054】
第2の運転領域IIでは従来から行われている燃焼が行われる。この第2の運転領域IIではスロットル弁20は一部を除いて全開状態に保持され、EGR制御弁31の開度は要求負荷Lが高くなると次第に小さくされる。また、この運転領域IIではEGR率は要求負荷Lが高くなるほど低くなり、空燃比は要求負荷Lが高くなるほど小さくなる。ただし、空燃比は要求負荷Lが高くなってもリーン空燃比とされる。また、第2の運転領域IIでは噴射開始時期θSは圧縮上死点TDC付近とされる。
【0055】
図10は第1の運転領域Iにおける空燃比A/Fを示している。図10において、A/F=15.5,A/F=16,A/F=17,A/F=18で示される各曲線は夫々空燃比が15.5,16,17,18であるときを示しており、各曲線間の空燃比は比例配分により定められる。図10に示されるように第1の運転領域Iでは空燃比がリーンとなっており、更に第1の運転領域Iでは要求負荷Lが低くなるほど空燃比A/Fがリーンとされる。
【0056】
即ち、要求負荷Lが低くなるほど燃焼による発熱量が少くなる。従って要求負荷Lが低くなるほどEGR率を低下させても低温燃焼を行うことができる。EGR率を低下させると空燃比は大きくなり、従って図10に示されるように要求負荷Lが低くなるにつれて空燃比A/Fが大きくされる。空燃比A/Fが大きくなるほど燃料消費率は向上し、従ってできる限り空燃比をリーンにするために本発明による実施例では要求負荷Lが低くなるにつれて空燃比A/Fが大きくされる。
【0057】
なお、空燃比を図10に示す目標空燃比とするのに必要なスロットル弁20の目標開度STが図11(A)に示されるように要求負荷Lおよび機関回転数Nの関数としてマップの形で予めROM42内に記憶されており、空燃比を図10に示す目標空燃比とするのに必要なEGR制御弁31の目標開度SEが図11(B)に示されるように要求負荷Lおよび機関回転数Nの関数としてマップの形で予めROM42内に記憶されている。
【0058】
図12は第2の燃焼、即ち従来の燃焼方法による普通の燃焼が行われるときの目標空燃比を示している。なお、図12においてA/F=24,A/F=35,A/F=45,A/F=60で示される各曲線は夫々目標空燃比24,35,45,60を示している。空燃比をこの目標空燃比とするのに必要なスロットル弁20の目標開度STが図13(A)に示されるように要求負荷Lおよび機関回転数Nの関数としてマップの形で予めROM42内に記憶されており、空燃比をこの目標空燃比とするのに必要なEGR制御弁31の目標開度SEが図13(B)に示されるように要求負荷Lおよび機関回転数Nの関数としてマップの形で予めROM42内に記憶されている。
【0059】
次に図14を参照しつつ運転制御について説明する。
図14を参照すると、まず初めにステップ100において機関の運転状態が第1の運転領域Iであることを示すフラグIがセットされているか否かが判別される。フラグIがセットされているとき、即ち機関の運転状態が第1の運転領域Iであるときにはステップ101に進んで要求負荷Lが第1の境界X(N)よりも大きくなったか否かが判別される。L≦X(N)のときにはステップ103に進んで低温燃焼が行われる。
【0060】
即ち、ステップ103では図11(A)に示すマップからスロットル弁20の目標開度STが算出され、スロットル弁20の開度がこの目標開度STとされる。次いでステップ104では図11(B)に示すマップからEGR制御弁31の目標開度SEが算出され、EGR制御弁31の開度がこの目標開度SEとされる。次いでステップ105では図10に示される空燃比となるように燃料噴射が行われる。このとき低温燃焼が行われる。
【0061】
一方、ステップ101においてL>X(N)になったと判別されたときにはステップ102に進んでフラグIがリセットされ、次いでステップ108に進んで第2の燃焼が行われる。
即ち、ステップ108では図13(A)に示すマップからスロットル弁20の目標開度STが算出され、スロットル弁20の開度がこの目標開度STとされる。次いでステップ109では図13(B)に示すマップからEGR制御弁31の目標開度SEが算出され、EGR制御弁31の開度がこの目標開度SEとされる。次いでステップ110では図12に示されるリーン空燃比となるように燃料噴射が行われる。
【0062】
フラグIがリセットされると次の処理サイクルではステップ100からステップ106に進んで要求負荷Lが第2の境界Y(N)よりも低くなったか否かが判別される。L≧Y(N)のときにはステップ108に進み、リーン空燃比のもとで第2の燃焼が行われる。
一方、ステップ106においてL<Y(N)になったと判別されたときにはステップ107に進んでフラグIがセットされ、次いでステップ103に進んで低温燃焼が行われる。
【0063】
図15に別の実施例を示す。この実施例では排気マニホルド21とサージタンク12とがEGR通路29を介して連結され、このEGR通路29内に酸化触媒又は三元触媒又はNO吸収剤のような酸化機能を有する触媒37を内蔵した触媒コンバータが配置される。従ってこの実施例においても未燃炭化水素およびSOFは触媒37によって浄化され、従って未燃炭化水素およびSOFをほとんど含まないEGRガスがサージタンク12内に供給される。
【0064】
【発明の効果】
EGR通路等に多量のデポジットが堆積するのを阻止することができる。
【図面の簡単な説明】
【図1】圧縮着火式内燃機関の全体図である。
【図2】スモークおよびNOの発生量等を示す図である。
【図3】燃焼圧を示す図である。
【図4】燃料分子を示す図である。
【図5】スモークの発生量とEGR率との関係を示す図である。
【図6】噴射燃料量と混合ガス量との関係を示す図である。
【図7】第1の運転領域Iおよび第2の運転領域IIを示す図である。
【図8】空燃比センサの出力を示す図である。
【図9】スロットル弁の開度等を示す図である。
【図10】第1の運転領域Iにおける空燃比を示す図である。
【図11】スロットル弁等の目標開度のマップを示す図である。
【図12】第2の燃焼における空燃比を示す図である。
【図13】スロットル弁等の目標開度のマップを示す図である。
【図14】機関の運転を制御するためのフローチャートである。
【図15】圧縮着火式内燃機関の別の実施例を示す全体図である。
【符号の説明】
6…燃料噴射弁
15…排気ターボチャージャ
20…スロットル弁
29…EGR通路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an internal combustion engine.
[0002]
[Prior art]
Conventionally engine, for example, exhaust gas recirculation and engine exhaust passage and the engine intake passage in order to suppress the generation of the NO x in the diesel engine (hereinafter, referred to as EGR) connected by passage through the EGR passage Exhaust gas, that is, EGR gas, is recirculated into the engine intake passage. In this case, the EGR gas has a relatively high specific heat and can absorb a large amount of heat. Therefore, as the EGR gas amount increases, the EGR rate (EGR gas amount / (EGR gas amount + intake air amount)) Increases, the combustion temperature in the combustion chamber decreases. When the combustion temperature is lowered to decrease the generated amount of NO x, thus the generation amount of the more NO x to be increased EGR rate is lowered.
[0003]
Thus it may reduce the generation amount of the NO x if increasing the EGR rate has conventionally been found. However, when the EGR rate is increased, when the EGR rate exceeds a certain limit, the amount of generated soot, that is, smoke starts to increase rapidly. In this regard, it has been conventionally considered that if the EGR rate is further increased, the smoke will increase infinitely. Therefore, the EGR rate at which the smoke starts to increase rapidly is considered to be the maximum allowable limit of the EGR rate. Has been.
[0004]
Therefore, conventionally, the EGR rate is set within a range not exceeding the maximum allowable limit. The maximum allowable EGR rate varies substantially depending on the type of engine and fuel, but is approximately 30 to 50%. Therefore, in the conventional diesel engine, the EGR rate is suppressed to about 30% to 50% at the maximum.
[0005]
Thus the maximum EGR rate than conventional since the allowable limit has been considered to exist determined as NO x and the amount of smoke produced becomes as small as possible within a range not exceeding the maximum allowable limit with respect to the EGR rate in the conventional Had been. However, this way there is a limit to the EGR rate to decrease of the NO x and NO x and the amount of smoke produced be determined so that the amount generated is as small as possible of smoke, the actual NO x and still a significant amount to At present, smoke is generated.
[0006]
However, if the EGR rate is made larger than the maximum permissible limit in the course of research on the combustion of a diesel engine, the smoke increases sharply as described above. However, a peak exists in the amount of generated smoke. When the EGR rate is further increased, the smoke starts to decrease sharply, and when the EGR rate is increased to 70% or more during idling operation, and when the EGR gas is cooled strongly, the smoke is reduced to about 55% or more. It was found that it was zero, ie, little soot was generated. Further, it has been found that the generation amount of the NO x becomes extremely small in this case. The reason why the soot is not generated based Thereafter this finding study is underway, the results so far no possibility to simultaneously reduce the soot and NO x new combustion system is had come to be constructed. This new combustion system will be described in detail later, but in short, it is basically based on stopping the growth of hydrocarbons in the middle of the process until the hydrocarbons grow into soot.
[0007]
That is, as a result of repeated experimental research, it has been found that when the temperature of the fuel during combustion in the combustion chamber and the gas temperature around it are below a certain temperature, the growth of hydrocarbons stops at a stage before reaching soot, and the fuel When the temperature of the gas surrounding the gas exceeds a certain temperature, hydrocarbons grow to soot at a stretch. In this case, the temperature of the fuel and the surrounding gas is greatly affected by the heat absorbing action of the gas around the fuel when the fuel is burned, and the amount of heat absorbed by the gas around the fuel is adjusted according to the calorific value at the time of burning the fuel. As a result, the temperature of the fuel and the surrounding gas can be controlled.
[0008]
Therefore, if the temperature of the fuel and the surrounding gas during combustion in the combustion chamber is suppressed to a temperature at which the growth of hydrocarbons stops halfway, soot will not be generated, and the temperature of the fuel and the surrounding gas during combustion in the combustion chamber will be reduced. Can be suppressed below the temperature at which the growth of hydrocarbons stops halfway, by adjusting the amount of heat absorbed by the gas around the fuel. On the other hand, hydrocarbons whose growth has stopped halfway before reaching soot can be easily purified by post-treatment using an oxidation catalyst or the like. This is the basic idea of a new combustion system. An internal combustion engine employing the new combustion system has already been filed by the present applicant (Japanese Patent Application No. 9-305850).
[0009]
[Problems to be solved by the invention]
However, in this internal combustion engine, the exhaust gas discharged into the exhaust manifold is directly recirculated into the engine intake passage as EGR gas. However, in an internal combustion engine employing this new combustion system, a large amount of unburned hydrocarbons is contained in the exhaust gas, and a large amount of SOF (soluble organic matter) is contained in the exhaust gas. Therefore, if the exhaust gas discharged into the exhaust manifold is directly recirculated as EGR gas into the engine intake passage, unburned hydrocarbons and SOF contained in the exhaust gas adhere to the exhaust gas recirculation passage. The problem is that large amounts of deposits accumulate in the exhaust gas recirculation passage.
[0010]
[Means for Solving the Problems]
In the first invention to solve the above problems, it reached the peak generation amount of As you increase the recirculated exhaust gas amount supplied to the combustion chamber soot increases gradually, is supplied to the combustion chamber If the amount of recirculated exhaust gas is further increased, the temperature of fuel during combustion in the combustion chamber and the temperature of the gas around it become lower than the temperature at which soot is generated, so that the amount of soot generated in the internal combustion engine is reduced. The fuel and the surrounding gas temperature during combustion in the combustion chamber are lower than the temperature at which soot is generated by increasing the amount of recirculated exhaust gas supplied to the combustion chamber from the amount of recirculated exhaust gas at which the peak becomes A catalyst for controlling the temperature and purifying exhaust gas discharged from the combustion chamber is provided, and the exhaust gas passing through the catalyst is recirculated into the engine intake passage. That is, the unburned hydrocarbons and SOF in the exhaust gas are purified by the catalyst, and the exhaust gas containing almost no unburned hydrocarbons and SOF is recirculated into the engine intake passage.
[0011]
In a second aspect based on the first aspect, the catalyst is disposed in the engine exhaust passage.
In a third aspect based on the first aspect, the catalyst is disposed in an exhaust gas recirculation passage connecting the engine exhaust passage and the engine intake passage.
In the first invention in the fourth invention, the catalyst consists of one at least of the oxidation catalyst, three-way catalyst or the NO x absorbent.
[0012]
In a fifth aspect based on the first aspect, the exhaust gas recirculation rate is approximately 55% or more.
In a sixth aspect based on the first aspect, the first combustion in which the amount of recirculated exhaust gas supplied to the combustion chamber is larger than the amount of recirculated exhaust gas at which the generation amount of soot reaches a peak and soot is hardly generated; There is provided switching means for selectively switching between the second combustion in which the amount of recirculated exhaust gas supplied into the combustion chamber is smaller than the amount of recirculated gas at which the amount of generated soot becomes a peak.
[0013]
In a seventh aspect based on the sixth aspect, the air-fuel ratio in the first combustion is a stoichiometric air-fuel ratio, a lean air-fuel ratio slightly leaner than the stoichiometric air-fuel ratio, or a rich air-fuel ratio. The air-fuel ratio in the combustion is defined as the lean air-fuel ratio.
In an eighth aspect based on the sixth aspect, the operating range of the engine is divided into a first operating range on the low load side and a second operating range on the high load side, and the first combustion is performed in the first operating range. In the second operation region, the second combustion is performed.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows a case where the present invention is applied to a four-stroke compression ignition type internal combustion engine.
Referring to FIG. 1, 1 is an engine body, 2 is a cylinder block, 3 is a cylinder head, 4 is a piston, 5 is a combustion chamber, 6 is an electrically controlled fuel injection valve, 7 is an intake valve, 8 is an intake port, 9 Denotes an exhaust valve, and 10 denotes an exhaust port. The intake port 8 is connected to a surge tank 12 via a corresponding intake branch 11, and the surge tank 12 is connected to a supercharger, for example, an outlet of a compressor 16 of an exhaust turbocharger 15 via an intake duct 13 and an intercooler 14. Be linked. An inlet of the compressor 16 is connected to an air cleaner 18 via an air suction pipe 17, and a throttle valve 20 driven by a step motor 19 is arranged in the air suction pipe 17.
[0015]
On the other hand, the exhaust port 10 is connected to an inlet of an exhaust turbine 23 of the exhaust turbocharger 15 via an exhaust manifold 21 and an exhaust pipe 22, and an outlet of the exhaust turbine 23 is connected to a catalyst 25 having an oxidation function through an exhaust pipe 24. Is connected to a catalytic converter 26 having a built-in. An air-fuel ratio sensor 27 is disposed in the exhaust manifold 21.
[0016]
The exhaust pipe 28 connected to the outlet of the catalytic converter 26 and the air suction pipe 17 downstream of the throttle valve 20 are connected to each other via an exhaust gas recirculation (hereinafter, referred to as EGR) passage 29. An EGR control valve 31 driven by a step motor 30 is disposed. In the EGR passage 29, an intercooler 32 for cooling the EGR gas flowing in the EGR passage 29 is arranged. In the embodiment shown in FIG. 1, the engine cooling water is guided into the intercooler 32, and the engine cooling water cools the EGR gas.
[0017]
On the other hand, the fuel injection valve 6 is connected via a fuel supply pipe 33 to a fuel reservoir, a so-called common rail 34. Fuel is supplied into the common rail 34 from an electric control type variable discharge fuel pump 35, and the fuel supplied into the common rail 34 is supplied to the fuel injection valve 6 through each fuel supply pipe 33. A fuel pressure sensor 36 for detecting the fuel pressure in the common rail 34 is attached to the common rail 34, and the fuel pump 35 is controlled so that the fuel pressure in the common rail 34 becomes the target fuel pressure based on the output signal of the fuel pressure sensor 36. Is controlled.
[0018]
The electronic control unit 40 is composed of a digital computer, and is connected to each other by a bidirectional bus 41 such as a ROM (Read Only Memory) 42, a RAM (Random Access Memory) 43, a CPU (Microprocessor) 44, an input port 45 and an output port 46. Is provided. The output signal of the air-fuel ratio sensor 27 is input to the input port 45 via the corresponding AD converter 47, and the output signal of the fuel pressure sensor 36 is also input to the input port 45 via the corresponding AD converter 47. A load sensor 51 that generates an output voltage proportional to the depression amount L of the accelerator pedal 50 is connected to the accelerator pedal 50, and the output voltage of the load sensor 51 is input to the input port 45 via the corresponding AD converter 47. . The input port 45 is connected to a crank angle sensor 52 that generates an output pulse every time the crankshaft rotates, for example, by 30 °. On the other hand, the output port 46 is connected to the fuel injection valve 6, the step motor 19 for controlling the throttle valve, the step motor 30 for controlling the EGR control valve, and the fuel pump 35 via the corresponding drive circuit 48.
[0019]
FIG. 2 shows a change in the output torque when the air-fuel ratio A / F (horizontal axis in FIG. 2) is changed by changing the opening degree and the EGR rate of the throttle valve 20 during the low load operation of the engine, and smoke, HC, CO, represents an experimental example illustrating changes in emissions of NO x. As can be seen from FIG. 2, in this experimental example, the smaller the air-fuel ratio A / F, the higher the EGR rate. When the air-fuel ratio A / F is smaller than the stoichiometric air-fuel ratio (.14.6), the EGR rate is 65% or more.
[0020]
As shown in FIG. 2, when the air-fuel ratio A / F is reduced by increasing the EGR rate, the amount of smoke generated when the EGR rate becomes about 40% and the air-fuel ratio A / F becomes about 30 is reduced. Start growing. Next, when the EGR rate is further increased and the air-fuel ratio A / F is reduced, the amount of smoke generated sharply increases and reaches a peak. Next, when the EGR rate is further increased and the air-fuel ratio A / F is reduced, the smoke is sharply reduced. When the EGR rate is increased to 65% or more, and the air-fuel ratio A / F becomes about 15.0, the smoke becomes almost zero. . That is, almost no soot is generated. At this time, the output torque of the engine is slightly reduced and the generation amount of the NO x becomes considerably lower. On the other hand, at this time, the generation amounts of HC and CO begin to increase.
[0021]
FIG. 3A shows the change in the combustion pressure in the combustion chamber 5 when the air-fuel ratio A / F is around 18 and the amount of generated smoke is the largest, and FIG. The graph shows changes in the combustion pressure in the combustion chamber 5 when the amount of generated smoke is almost zero in the vicinity. As can be seen by comparing FIG. 3 (A) and FIG. 3 (B), FIG. 3 (B) in which the amount of smoke generation is almost zero is shown in FIG. 3 (A) where the amount of smoke generation is large. It can be seen that the combustion pressure is lower than in the case.
[0022]
The following can be said from the experimental results shown in FIGS. That is, the generation amount of the NO x, as shown in FIG. 2 when the first air-fuel ratio A / F is approximately the amount of smoke produced at 15.0 below zero in the first drops significantly. That the generation amount of the NO x produced falls means that the combustion temperature in the combustion chamber 5 is reduced, thus the combustion temperature in the combustion chamber 5 when the soot is hardly generated is lower I can say. The same can be said from FIG. That is, in the state shown in FIG. 3B where almost no soot is generated, the combustion pressure is low, and the combustion temperature in the combustion chamber 5 is low at this time.
[0023]
Second, when the amount of generated smoke, that is, the amount of generated soot becomes almost zero, the amount of HC and CO emissions increases as shown in FIG. This means that hydrocarbons are emitted without growing to soot. That is, the linear hydrocarbon and the aromatic hydrocarbon contained in the fuel as shown in FIG. 4 are thermally decomposed when the temperature is increased in a state of lack of oxygen, so that a precursor of soot is formed. A soot consisting of a solid aggregate of carbon atoms is produced. In this case, the actual soot generation process is complicated, and it is not clear what form the soot precursor takes, but in any case, the hydrocarbon as shown in FIG. It will grow to soot. Therefore, as described above, when the generation amount of soot becomes almost zero, the emission amounts of HC and CO increase as shown in FIG. 2, but HC at this time is a soot precursor or a hydrocarbon in a state before it. .
[0024]
Summarizing these considerations based on the experimental results shown in FIGS. 2 and 3, when the combustion temperature in the combustion chamber 5 is low, the amount of generated soot becomes almost zero. The hydrocarbon will be discharged from the combustion chamber 5. As a result of further detailed experimental research on this, when the temperature of the fuel and the surrounding gas in the combustion chamber 5 is lower than a certain temperature, the growth process of the soot is stopped halfway, that is, the soot is It was found that no soot was generated, and soot was generated when the temperature of the fuel and its surroundings in the combustion chamber 5 exceeded a certain temperature.
[0025]
By the way, the temperature of the fuel and its surrounding when the process of producing hydrocarbons is stopped in the state of the soot precursor, that is, the above-mentioned certain temperature varies depending on various factors such as the type of fuel, the air-fuel ratio and the compression ratio, Although not say that how many times has a generation amount and the deep relationship between the certain temperature is nO x, therefore this certain temperature can be defined to a certain degree from the generation amount of the nO x . That is, the fuel and the gas temperature surrounding it at the time of combustion and the greater the EGR rate, decreases, the amount of the NO x is reduced. At this time, the generation amount of NOx is 10 p . p. When it is less or equal to or less than m, almost no soot is generated. Therefore, at the above-mentioned certain temperature, the generation amount of NOx is 10 p . p. m The temperature almost coincides with the temperature when the temperature becomes lower or higher.
[0026]
Once soot is produced, it cannot be purified by post-treatment using a catalyst having an oxidizing function. On the other hand, the soot precursor or the hydrocarbon in a state before the soot can be easily purified by a post-treatment using a catalyst having an oxidation function. Considering the post-treatment with the catalyst having the oxidation function, it is extremely difficult to discharge the hydrocarbon from the combustion chamber 5 in the state of the precursor of soot or in the state before the soot, or to discharge the hydrocarbon from the combustion chamber 5 in the form of soot. There is a big difference. The new combustion system employed in the present invention discharges hydrocarbons from the combustion chamber 5 in the form of a soot precursor or previous state without producing soot in the combustion chamber 5 and removes the hydrocarbons. The core is to oxidize with a catalyst having an oxidation function.
[0027]
Now, in order to stop the growth of hydrocarbons before soot is generated, it is necessary to suppress the temperature of the fuel and the surrounding gas during combustion in the combustion chamber 5 to a temperature lower than the temperature at which soot is generated. There is. In this case, it has been found that the endothermic effect of the gas around the fuel when the fuel is burned has an extremely large effect on suppressing the temperature of the fuel and the gas around the fuel.
[0028]
That is, if there is only air around the fuel, the evaporated fuel immediately reacts with the oxygen in the air and burns. In this case, the temperature of the air separated from the fuel does not rise so much, and only the temperature around the fuel becomes extremely high locally. That is, at this time, the air separated from the fuel hardly absorbs the heat of combustion heat of the fuel. In this case, since the combustion temperature locally becomes extremely high, the unburned hydrocarbons that have received the combustion heat will generate soot.
[0029]
On the other hand, when fuel is present in a mixed gas of a large amount of inert gas and a small amount of air, the situation is slightly different. In this case, the fuel vapor diffuses to the surroundings, reacts with oxygen mixed in the inert gas, and burns. In this case, since the combustion heat is absorbed by the surrounding inert gas, the combustion temperature does not rise so much. That is, the combustion temperature can be kept low. That is, the presence of the inert gas plays an important role in suppressing the combustion temperature, and the combustion temperature can be suppressed low by the endothermic effect of the inert gas.
[0030]
In this case, in order to suppress the temperature of the fuel and the surrounding gas to a temperature lower than the temperature at which the soot is generated, an amount of the inert gas is required to be able to absorb enough heat to do so. Therefore, if the fuel amount increases, the required amount of inert gas increases accordingly. In this case, the endothermic effect becomes stronger as the specific heat of the inert gas increases, so that the inert gas preferably has a higher specific heat. In this regard, since CO 2 and EGR gas have relatively large specific heats, it can be said that it is preferable to use EGR gas as the inert gas.
[0031]
FIG. 5 shows the relationship between the EGR rate and the smoke when the EGR gas is used as the inert gas and the degree of cooling of the EGR gas is changed. That is, in FIG. 5, the curve A shows a case where the EGR gas is cooled strongly and the EGR gas temperature is maintained at approximately 90 ° C., and the curve B shows a case where the EGR gas is cooled by a small cooling device. , Curve C shows the case where the EGR gas is not forcibly cooled.
[0032]
As shown by the curve A in FIG. 5, when the EGR gas is cooled strongly, the amount of soot generation peaks at a point where the EGR rate is slightly lower than 50%. In this case, the EGR rate is increased to approximately 55% or more. Then, almost no soot is generated.
On the other hand, as shown by the curve B in FIG. 5, when the EGR gas is slightly cooled, the amount of soot generation peaks at a point where the EGR rate is slightly higher than 50%, and in this case, the EGR rate is increased to about 65% or more. So that almost no soot is generated.
[0033]
As shown by the curve C in FIG. 5, when the EGR gas is not forcibly cooled, the amount of soot generation reaches a peak when the EGR rate is around 55%. Above a percentage, soot is hardly generated.
FIG. 5 shows the amount of smoke generated when the engine load is relatively high. When the engine load decreases, the EGR rate at which the amount of soot peaks slightly decreases, and the EGR rate at which almost no soot is generated Also lowers slightly. As described above, the lower limit of the EGR rate at which almost no soot is generated varies depending on the degree of cooling of the EGR gas and the engine load.
[0034]
FIG. 6 shows a mixed gas amount of the EGR gas and the air necessary for setting the fuel temperature during combustion and the surrounding gas temperature to a temperature lower than the temperature at which soot is generated when EGR gas is used as the inert gas; Further, the ratio of air in the mixed gas amount and the ratio of EGR gas in the mixed gas are shown. In FIG. 6, the vertical axis indicates the total intake gas amount drawn into the combustion chamber 5, and the dashed line Y indicates the total intake gas amount that can be drawn into the combustion chamber 5 when supercharging is not performed. ing. The horizontal axis indicates the required load.
[0035]
Referring to FIG. 6, the proportion of air, that is, the amount of air in the mixed gas, indicates the amount of air required to completely burn the injected fuel. That is, in the case shown in FIG. 6, the ratio between the air amount and the injected fuel amount is the stoichiometric air-fuel ratio. On the other hand, in FIG. 6, the ratio of the EGR gas, that is, the amount of the EGR gas in the mixed gas, is set so that when the injected fuel is burned, the temperature of the fuel and the surrounding gas is lower than the temperature at which the soot is formed. The minimum required EGR gas amount is shown. This EGR gas amount is approximately 55% or more in terms of the EGR rate, and is 70% or more in the embodiment shown in FIG. That is, the total intake gas amount sucked into the combustion chamber 5 is indicated by a solid line X in FIG. 6, and the ratio between the air amount and the EGR gas amount in the total intake gas amount X is as shown in FIG. The temperature of the fuel and the gas around it will be lower than the temperature at which soot is produced, so that no soot is generated. In this case, the amount of generated NOx is 10 p . p. m longitudinal, or at less, thus the generation amount of the NO x becomes extremely small.
[0036]
As the amount of fuel injection increases, the amount of heat generated when the fuel burns increases. Therefore, in order to maintain the temperature of the fuel and the surrounding gas at a temperature lower than the temperature at which soot is generated, the amount of heat absorbed by the EGR gas Must be increased. Accordingly, as shown in FIG. 6, the EGR gas amount must be increased as the injected fuel amount increases. That is, the EGR gas amount needs to increase as the required load increases.
[0037]
By the way, when the supercharging is not performed, the upper limit of the total intake gas amount X sucked into the combustion chamber 5 is Y, and therefore, in FIG. 6, in the region where the required load is larger than Lo, as the required load increases, Unless the EGR gas ratio is reduced, the air-fuel ratio cannot be maintained at the stoichiometric air-fuel ratio. In other words, when the supercharge is not performed, and when the required air-fuel ratio is maintained at the stoichiometric air-fuel ratio in a region where the required load is larger than Lo, the EGR rate decreases as the required load increases. In a region where the required load is larger than Lo, the temperature of the fuel and the surrounding gas cannot be maintained at a temperature lower than the temperature at which soot is generated.
[0038]
However, as shown in FIG. 1, when the EGR gas is recirculated through the EGR passage 29 into the inlet side of the supercharger, that is, into the air suction pipe 17 of the exhaust turbocharger 15, the EGR rate is increased in a region where the required load is larger than Lo. Can be maintained at or above 55 percent, for example, 70 percent, and thus the temperature of the fuel and its surrounding gas can be maintained below the temperature at which soot is produced. That is, if the EGR gas is recirculated so that the EGR rate in the air suction pipe 17 becomes, for example, 70%, the EGR rate of the suction gas boosted by the compressor 16 of the exhaust turbocharger 15 also becomes 70%. The temperature of the fuel and the surrounding gas can be maintained at a temperature lower than the temperature at which soot is generated, to the extent that the pressure can be increased by the compressor 16. Therefore, the operating range of the engine that can generate low-temperature combustion can be expanded.
[0039]
In this case, the lower the temperature of the EGR gas, the wider the operating region in which low-temperature combustion occurs. Therefore, as shown in FIG. 1, the exhaust gas having a relatively low temperature flowing out of the exhaust turbine 23 is recirculated as the EGR gas, and the EGR gas is further cooled by the intercooler 32.
In the embodiment shown in FIG. 1, when the EGR rate is set to 55% or more in a region where the required load is larger than Lo, the EGR control valve 31 is fully opened and the throttle valve 20 is slightly closed.
[0040]
As described above, FIG. 6 shows the case where the fuel is burned under the stoichiometric air-fuel ratio. However, even if the air amount is smaller than the air amount shown in FIG. The generation of NOx is reduced to 10 p . p. m or less, and even if the air amount is larger than the air amount shown in FIG. 6, that is, the average value of the air-fuel ratio is 17 to 18 lean, soot generation is prevented. While the amount of generated NOx is 10 p . p. m can be around or below.
[0041]
That is, when the air-fuel ratio is made rich, the fuel becomes excessive, but since the combustion temperature is suppressed to a low temperature, the excess fuel does not grow to soot, and thus no soot is generated. Further, at this time NO x even only an extremely small amount of generated. On the other hand, when the average air-fuel ratio is lean, or even when the air-fuel ratio is the stoichiometric air-fuel ratio, a small amount of soot is generated if the combustion temperature is high. Not generated at all. Further, NO x is also only an extremely small amount of generated.
[0042]
In this way, when low-temperature combustion is being performed, soot is not generated regardless of the air-fuel ratio, that is, whether the air-fuel ratio is rich, the stoichiometric air-fuel ratio, or the average air-fuel ratio is lean, generation amount of the NO x becomes extremely small. Therefore, considering the improvement of the fuel consumption rate, it can be said that it is preferable to make the average air-fuel ratio lean at this time.
[0043]
By the way, the temperature of the fuel and the surrounding gas at the time of combustion in the combustion chamber can be suppressed to a temperature at or below the temperature at which the growth of hydrocarbons stops halfway, only during low load operation in the engine, which generates a relatively small amount of heat by combustion. Therefore, in the embodiment according to the present invention, the first combustion, that is, the low-temperature combustion is performed by suppressing the temperature of the fuel during combustion and the gas temperature around the same at or below the temperature at which the growth of hydrocarbons stops halfway during the low load operation in the engine. In addition, the second combustion, that is, the combustion that has been performed conventionally, is performed during the high load operation of the engine. Here, the first combustion, that is, the low-temperature combustion, as is clear from the above description, the amount of inert gas in the combustion chamber is larger than the amount of inert gas at which the amount of soot is peaked, and soot is almost generated. The second combustion, that is, the combustion that has been performed conventionally, is a combustion in which the amount of inert gas in the combustion chamber is smaller than the amount of inert gas at which the amount of soot generation peaks. Say that.
[0044]
FIG. 7 shows a first operation region I in which first combustion, that is, low-temperature combustion is performed, and a second operation region II in which second combustion, that is, combustion by a conventional combustion method, is performed. In FIG. 7, the vertical axis L indicates the amount of depression of the accelerator pedal 50, that is, the required load, and the horizontal axis N indicates the engine speed. In FIG. 7, X (N) indicates a first boundary between the first operation region I and the second operation region II, and Y (N) indicates the first operation region I and the second operation region. The second boundary with the area II is shown. The determination of the change of the operation region from the first operation region I to the second operation region II is made based on the first boundary X (N), and the change from the second operation region II to the first operation region I is performed. The determination of the change of the operating region is performed based on the second boundary Y (N).
[0045]
That is, if the required load L exceeds a first boundary X (N), which is a function of the engine speed N, when the operating state of the engine is in the first operating region I and low-temperature combustion is being performed, the operating region Is shifted to the second operation region II, and combustion is performed by the conventional combustion method. Next, when the required load L becomes lower than a second boundary Y (N) which is a function of the engine speed N, it is determined that the operation region has shifted to the first operation region I, and low-temperature combustion is performed again.
[0046]
The two boundaries of the first boundary X (N) and the second boundary Y (N) on the lower load side than the first boundary X (N) are provided for the following two reasons. . The first reason is that the combustion temperature is relatively high on the high load side of the second operation region II, and even if the required load L becomes lower than the first boundary X (N), low-temperature combustion cannot be performed immediately. Because. That is, the low-temperature combustion does not immediately start unless the required load L becomes considerably low, that is, when the required load L becomes lower than the second boundary Y (N). The second reason is that hysteresis is provided for a change in the operation range between the first operation range I and the second operation range II.
[0047]
By the way, when the operating state of the engine is in the first operating region I and low-temperature combustion is being performed, almost no soot is generated, and instead, the unburned hydrocarbon is in the form of a precursor of soot or a state before it. It is discharged from the combustion chamber 5. At this time, the unburned hydrocarbon discharged from the combustion chamber 5 is oxidized well by the catalyst 25 having an oxidizing function.
As the catalyst 25 can be used for the oxidation catalyst, three-way catalyst, or the NO x absorbent. The NO x absorbent absorbs NO x when the mean air-fuel ratio is lean in the combustion chamber 5 has a function of releasing NO x when the mean air-fuel ratio in the combustion chamber 5 becomes rich.
[0048]
This the NO x absorbent is a carrier such as alumina, the carrier on, for example potassium K, sodium Na, lithium Li, alkaline earth such as alkali metal, barium Ba, calcium Ca, such as cesium Cs, lanthanum La, yttrium At least one selected from rare earths such as Y and a noble metal such as platinum Pt are supported.
[0049]
The oxidation catalyst as well as the three-way catalyst and the NO x absorbent also has an oxidation function, therefore the three-way catalyst and NO x absorbent as described above can be used as the catalyst 25.
On the other hand, during low-temperature combustion, a large amount of SOF (soluble organic matter) is emitted in addition to unburned hydrocarbons, and this SOF is also purified by the catalyst 25. In this case, if the EGR gas containing a large amount of these unburned hydrocarbons and SOF is recirculated during low-temperature combustion, these unburned hydrocarbons and SOF adhere to the EGR passage 29, the intercooler 32 and the compressor 16 as deposits. Will accumulate. However, in the embodiment according to the present invention, since the exhaust gas discharged from the catalyst 25, that is, the exhaust gas containing almost no unburned hydrocarbons or SOF is recirculated as the EGR gas, there is a danger that deposits are deposited on the EGR passage 29 and the like. There is no.
[0050]
FIG. 8 shows the output of the air-fuel ratio sensor 27. As shown in FIG. 8, the output current I of the air-fuel ratio sensor 27 changes according to the air-fuel ratio A / F. Therefore, the air-fuel ratio can be known from the output current I of the air-fuel ratio sensor 27.
Next, the operation control in the first operation region I and the second operation region II will be schematically described with reference to FIG.
[0051]
FIG. 9 shows the opening degree of the throttle valve 20, the opening degree of the EGR control valve 31, the EGR rate, the air-fuel ratio, the injection timing, and the injection amount with respect to the required load L. As shown in FIG. 9, in the first operation region I where the required load L is low, the opening of the throttle valve 20 is gradually increased from almost fully closed to about 1/3 as the required load L increases. The opening degree of the EGR control valve 31 is gradually increased from near full closure to full opening as the required load L increases. In the example shown in FIG. 9, in the first operation region I, the EGR rate is approximately 70%, and the air-fuel ratio is a slightly lean air-fuel ratio.
[0052]
In other words, in the first operating region I, the opening of the throttle valve 20 and the opening of the EGR control valve 31 are controlled such that the EGR rate becomes approximately 70% and the air-fuel ratio becomes a slightly lean air-fuel ratio. At this time, the air-fuel ratio is controlled to the target lean air-fuel ratio by correcting the opening of the EGR control valve 31 based on the output signal of the air-fuel ratio sensor 27. In the first operation region I, fuel injection is performed before the compression top dead center TDC. In this case, the injection start timing θS is delayed as the required load L is increased, and the injection completion timing θE is delayed as the injection start timing θS is delayed.
[0053]
At the time of idling operation, the throttle valve 20 is closed to almost fully closed, and at this time, the EGR control valve 31 is also closed to almost fully closed. When the throttle valve 20 is closed close to the fully closed state, the pressure in the combustion chamber 5 at the start of compression decreases, so that the compression pressure decreases. When the compression pressure decreases, the compression work by the piston 4 decreases, so that the vibration of the engine body 1 decreases. That is, at the time of idling operation, the throttle valve 20 is closed to almost fully closed in order to suppress the vibration of the engine body 1.
On the other hand, when the operating region of the engine changes from the first operating region I to the second operating region II, the opening of the throttle valve 20 is increased stepwise from about 1/3 opening toward the full opening direction. At this time, in the example shown in FIG. 9, the EGR rate is reduced stepwise from approximately 70% to 40% or less, and the air-fuel ratio is increased stepwise. That is, since the EGR rate jumps over the EGR rate range (FIG. 5) in which a large amount of smoke is generated, a large amount of smoke is generated when the engine operating region changes from the first operating region I to the second operating region II. There is no.
[0054]
In the second operation region II, the conventional combustion is performed. In the second operation region II, the throttle valve 20 is held in a fully open state except for a part, and the opening degree of the EGR control valve 31 is gradually reduced as the required load L increases. In this operating region II, the EGR rate decreases as the required load L increases, and the air-fuel ratio decreases as the required load L increases. However, the air-fuel ratio is a lean air-fuel ratio even when the required load L increases. In the second operation region II, the injection start timing θS is set near the compression top dead center TDC.
[0055]
FIG. 10 shows the air-fuel ratio A / F in the first operation region I. In FIG. 10, the curves indicated by A / F = 15.5, A / F = 16, A / F = 17, and A / F = 18 have air-fuel ratios of 15.5, 16, 17, and 18, respectively. And the air-fuel ratio between the curves is determined by proportional distribution. As shown in FIG. 10, the air-fuel ratio is lean in the first operating region I, and the air-fuel ratio A / F is leaner in the first operating region I as the required load L decreases.
[0056]
That is, the lower the required load L, the smaller the amount of heat generated by combustion. Therefore, as the required load L decreases, low-temperature combustion can be performed even if the EGR rate is reduced. When the EGR rate is reduced, the air-fuel ratio increases. Therefore, as shown in FIG. 10, the air-fuel ratio A / F increases as the required load L decreases. As the air-fuel ratio A / F increases, the fuel consumption rate increases. Therefore, in order to make the air-fuel ratio as lean as possible, in the embodiment according to the present invention, the air-fuel ratio A / F increases as the required load L decreases.
[0057]
Note that the target opening ST of the throttle valve 20 necessary for setting the air-fuel ratio to the target air-fuel ratio shown in FIG. 10 is obtained as a function of the required load L and the engine speed N as shown in FIG. The target opening SE of the EGR control valve 31 required for setting the air-fuel ratio to the target air-fuel ratio shown in FIG. 10 is stored in the ROM 42 in advance as shown in FIG. And in the form of a map as a function of the engine speed N in the ROM 42 in advance.
[0058]
FIG. 12 shows the target air-fuel ratio when the second combustion, that is, the normal combustion by the conventional combustion method is performed. In FIG. 12, curves indicated by A / F = 24, A / F = 35, A / F = 45, and A / F = 60 indicate target air-fuel ratios 24, 35, 45, and 60, respectively. The target opening degree ST of the throttle valve 20 required for setting the air-fuel ratio to the target air-fuel ratio is stored in the ROM 42 in advance in the form of a map as a function of the required load L and the engine speed N as shown in FIG. The target opening SE of the EGR control valve 31 required for setting the air-fuel ratio to the target air-fuel ratio is calculated as a function of the required load L and the engine speed N as shown in FIG. It is stored in the ROM 42 in the form of a map in advance.
[0059]
Next, the operation control will be described with reference to FIG.
Referring to FIG. 14, first, in step 100, it is determined whether or not a flag I indicating that the operating state of the engine is in the first operating region I is set. When the flag I is set, that is, when the operating state of the engine is in the first operating region I, the routine proceeds to step 101, where it is determined whether the required load L has become larger than the first boundary X (N). Is done. When L ≦ X (N), the routine proceeds to step 103, where low-temperature combustion is performed.
[0060]
That is, in step 103, the target opening ST of the throttle valve 20 is calculated from the map shown in FIG. 11A, and the opening of the throttle valve 20 is set to the target opening ST. Next, at step 104, the target opening SE of the EGR control valve 31 is calculated from the map shown in FIG. 11B, and the opening of the EGR control valve 31 is set as the target opening SE. Next, at step 105, fuel injection is performed so as to attain the air-fuel ratio shown in FIG. At this time, low-temperature combustion is performed.
[0061]
On the other hand, when it is determined in step 101 that L> X (N), the routine proceeds to step 102, where the flag I is reset, and then proceeds to step 108 to perform the second combustion.
That is, in step 108, the target opening ST of the throttle valve 20 is calculated from the map shown in FIG. 13A, and the opening of the throttle valve 20 is set to the target opening ST. Next, at step 109, the target opening SE of the EGR control valve 31 is calculated from the map shown in FIG. 13B, and the opening of the EGR control valve 31 is set as the target opening SE. Next, at step 110, fuel injection is performed so as to attain the lean air-fuel ratio shown in FIG.
[0062]
When the flag I is reset, in the next processing cycle, the process proceeds from step 100 to step 106, where it is determined whether or not the required load L has become lower than the second boundary Y (N). When L ≧ Y (N), the routine proceeds to step 108, where the second combustion is performed under the lean air-fuel ratio.
On the other hand, when it is determined in step 106 that L <Y (N), the routine proceeds to step 107, where the flag I is set, and then proceeds to step 103 to perform low-temperature combustion.
[0063]
FIG. 15 shows another embodiment. In this embodiment the exhaust manifold 21 and the surge tank 12 is connected via the EGR passage 29, a built-in catalyst 37 having an oxidation function such as an oxidation catalyst or three-way catalyst or the NO x absorbent in the EGR passage 29 The arranged catalytic converter is arranged. Therefore, also in this embodiment, the unburned hydrocarbons and SOF are purified by the catalyst 37, so that the EGR gas containing almost no unburned hydrocarbons and SOF is supplied into the surge tank 12.
[0064]
【The invention's effect】
It is possible to prevent a large amount of deposit from being deposited in the EGR passage or the like.
[Brief description of the drawings]
FIG. 1 is an overall view of a compression ignition type internal combustion engine.
2 is a diagram showing a generation amount of the smoke and NO x.
FIG. 3 is a diagram showing a combustion pressure.
FIG. 4 is a diagram showing fuel molecules.
FIG. 5 is a diagram showing a relationship between a generation amount of smoke and an EGR rate.
FIG. 6 is a diagram showing a relationship between an injected fuel amount and a mixed gas amount.
FIG. 7 is a diagram showing a first operation region I and a second operation region II.
FIG. 8 is a diagram showing an output of an air-fuel ratio sensor.
FIG. 9 is a diagram showing an opening degree of a throttle valve and the like.
FIG. 10 is a diagram showing an air-fuel ratio in a first operation region I.
FIG. 11 is a diagram showing a map of a target opening degree of a throttle valve and the like.
FIG. 12 is a view showing an air-fuel ratio in a second combustion.
FIG. 13 is a diagram showing a map of a target opening degree of a throttle valve and the like.
FIG. 14 is a flowchart for controlling operation of the engine.
FIG. 15 is an overall view showing another embodiment of the compression ignition type internal combustion engine.
[Explanation of symbols]
6 fuel injection valve 15 exhaust turbocharger 20 throttle valve 29 EGR passage

Claims (8)

燃焼室内に供給される再循環排気ガス量を増大していくと煤の発生量が次第に増大してピークに達し、燃焼室内に供給される再循環排気ガス量を更に増大していくと燃焼室内における燃焼時の燃料およびその周囲のガス温が煤の生成温度よりも低くなって煤がほとんど発生しなくなる内燃機関において、煤の発生量がピークとなる再循環排気ガス量よりも燃焼室内に供給される再循環排気ガス量を多くすることによって燃焼室内における燃焼時の燃料およびその周囲のガス温度を煤が生成される温度よりも低い温度に抑制し、燃焼室から排出される排気ガスを浄化するための触媒を具備し、触媒を通過した排気ガスを機関吸気通路内に再循環せしめるようにした内燃機関。 Combustion As we increase the recirculated exhaust gas amount supplied to the combustion chamber the amount of soot produced is peaked gradually increased, and gradually the recirculated exhaust gas amount further increases to be supplied into the combustion chamber In an internal combustion engine in which the temperature of the fuel and the surrounding gas during combustion in the room becomes lower than the soot generation temperature and soot is hardly generated , the amount of soot generation is more in the combustion chamber than the recirculated exhaust gas amount where the amount of soot is peaked. By increasing the amount of recirculated exhaust gas to be supplied, the temperature of fuel and the surrounding gas during combustion in the combustion chamber is suppressed to a temperature lower than the temperature at which soot is generated, and the exhaust gas discharged from the combustion chamber is reduced. An internal combustion engine having a catalyst for purification, wherein exhaust gas passing through the catalyst is recirculated into an engine intake passage. 上記触媒が機関排気通路内に配置されている請求項1に記載の内燃機関。The internal combustion engine according to claim 1, wherein the catalyst is disposed in an engine exhaust passage. 上記触媒が機関排気通路と機関吸気通路とを連結する排気ガス再循環通路内に配置されている請求項1に記載の内燃機関。The internal combustion engine according to claim 1, wherein the catalyst is disposed in an exhaust gas recirculation passage connecting the engine exhaust passage and the engine intake passage. 該触媒が酸化触媒、三元触媒又はNO吸収剤の少くとも一つからなる請求項1に記載の内燃機関。The internal combustion engine of claim 1 wherein said catalyst comprises one at least of the oxidation catalyst, three-way catalyst or the NO x absorbent. 排気ガス再循環率がほぼ55パーセント以上である請求項1に記載の内燃機関。The internal combustion engine of claim 1, wherein the exhaust gas recirculation rate is greater than or equal to about 55 percent. 煤の発生量がピークとなる再循環排気ガス量よりも燃焼室内に供給される再循環排気ガス量が多く煤がほとんど発生しない第1の燃焼と、煤の発生量がピークとなる再循環ガス量よりも燃焼室内に供給される再循環排気ガス量が少ない第2の燃焼とを選択的に切換える切換手段を具備した請求項1に記載の内燃機関。First combustion in which the amount of recirculated exhaust gas supplied to the combustion chamber is larger than the amount of recirculated exhaust gas at which the amount of soot is peaked and little soot is generated, and the recirculated gas at which the amount of soot generated is peaked 2. The internal combustion engine according to claim 1, further comprising a switching means for selectively switching between a second combustion in which the amount of recirculated exhaust gas supplied into the combustion chamber is smaller than an amount of the second combustion. 第1の燃焼における空燃比が理論空燃比か、或いは理論空燃比に対してわずかにリーンなリーン空燃比か、或いはリッチ空燃比とされ、第2の燃焼における空燃比がリーン空燃比とされる請求項6に記載の内燃機関。The air-fuel ratio in the first combustion is a stoichiometric air-fuel ratio, a lean air-fuel ratio slightly leaner than the stoichiometric air-fuel ratio, or a rich air-fuel ratio, and the air-fuel ratio in the second combustion is a lean air-fuel ratio. The internal combustion engine according to claim 6. 機関の運転領域を低負荷側の第1の運転領域と高負荷側の第2の運転領域に分割し、第1の運転領域では第1の燃焼を行い、第2の運転領域では第2の燃焼を行うようにした請求項6に記載の内燃機関。The operating region of the engine is divided into a first operating region on the low load side and a second operating region on the high load side, and a first combustion is performed in the first operating region, and a second combustion is performed in the second operating region. 7. The internal combustion engine according to claim 6, wherein combustion is performed.
JP17491698A 1998-06-22 1998-06-22 Internal combustion engine Expired - Fee Related JP3551769B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP17491698A JP3551769B2 (en) 1998-06-22 1998-06-22 Internal combustion engine
US09/330,100 US6152118A (en) 1998-06-22 1999-06-11 Internal combustion engine
EP99111890A EP0967373B1 (en) 1998-06-22 1999-06-21 Internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17491698A JP3551769B2 (en) 1998-06-22 1998-06-22 Internal combustion engine

Publications (2)

Publication Number Publication Date
JP2000008964A JP2000008964A (en) 2000-01-11
JP3551769B2 true JP3551769B2 (en) 2004-08-11

Family

ID=15986960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17491698A Expired - Fee Related JP3551769B2 (en) 1998-06-22 1998-06-22 Internal combustion engine

Country Status (1)

Country Link
JP (1) JP3551769B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3552645B2 (en) 2000-05-17 2004-08-11 トヨタ自動車株式会社 Internal combustion engine

Also Published As

Publication number Publication date
JP2000008964A (en) 2000-01-11

Similar Documents

Publication Publication Date Title
JP3061019B2 (en) Internal combustion engine
JP3552645B2 (en) Internal combustion engine
JP3555559B2 (en) Internal combustion engine
JP2000145509A (en) Internal combustion engine
JP3539238B2 (en) Internal combustion engine
JP3551789B2 (en) Internal combustion engine
JP3551768B2 (en) Internal combustion engine
JP3551794B2 (en) Internal combustion engine
JP3551771B2 (en) Internal combustion engine
JP3555439B2 (en) Compression ignition type internal combustion engine
JP3405217B2 (en) Internal combustion engine
JP3551788B2 (en) Compression ignition type internal combustion engine
JP3551769B2 (en) Internal combustion engine
JP3344334B2 (en) Internal combustion engine
JP3424571B2 (en) Internal combustion engine
JP3331974B2 (en) Internal combustion engine
JP3551797B2 (en) Internal combustion engine
JP3331981B2 (en) Internal combustion engine
JP3092597B2 (en) Internal combustion engine
JP3551791B2 (en) Internal combustion engine
JP3551785B2 (en) Internal combustion engine
JP3424570B2 (en) Internal combustion engine
JP3424554B2 (en) Internal combustion engine
JP3551793B2 (en) Internal combustion engine
JP3427754B2 (en) Internal combustion engine

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees