JP3551655B2 - Gamma correction device - Google Patents

Gamma correction device Download PDF

Info

Publication number
JP3551655B2
JP3551655B2 JP27196796A JP27196796A JP3551655B2 JP 3551655 B2 JP3551655 B2 JP 3551655B2 JP 27196796 A JP27196796 A JP 27196796A JP 27196796 A JP27196796 A JP 27196796A JP 3551655 B2 JP3551655 B2 JP 3551655B2
Authority
JP
Japan
Prior art keywords
gradation
gamma correction
degree
correction
histogram
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27196796A
Other languages
Japanese (ja)
Other versions
JPH10126619A (en
Inventor
文男 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP27196796A priority Critical patent/JP3551655B2/en
Publication of JPH10126619A publication Critical patent/JPH10126619A/en
Application granted granted Critical
Publication of JP3551655B2 publication Critical patent/JP3551655B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Image Processing (AREA)
  • Processing Of Color Television Signals (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Dot-Matrix Printers And Others (AREA)
  • Color, Gradation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、映像信号のガンマ(以後γと表す)補正装置(国際特許分類H04N 9/69)に関し、特に、プリンタの階調補正に利用して効果のあるものである。
【0002】
【従来の技術】
従来、プリンタの階調補正等を目的として、γ補正処理が一般的に行われている。γ補正処理では、入力画像データの階調特性に関わらず一つの固定されたγ補正テーブルを用いて入力画像を変換するか、またはγ補正テーブルを設定できるプリンタにおいても、オペレータが画像、またはその階調特性を見ながらγ補正テーブルを設定していた。
【0003】
そのためこれらの作業を軽減するため、γ補正処理を自動化する方法も数多く提案されており、例えば特開昭60−139080号公報がある。以下にこの従来のγ補正装置について説明する。
【0004】
図7は従来例におけるγ補正回路のブロック図である。図7において、601はR信号γ補正手段、602はG信号γ補正手段、603はB信号γ補正手段、604は輝度信号ヒストグラム作成手段、605は累積輝度分布曲線設定手段である。以下にその動作につて説明する。
【0005】
入力信号RGB信号から輝度信号Yを算出し、輝度信号ヒストグラム作成手段604により、輝度信号のヒストグラムを作成する。そのヒストグラムから累積輝度分布を求め、累積輝度分布曲線設定手段605により累積輝度曲線を設定する。この累積輝度曲線を0〜255の値に正規化することにより、γ補正曲線を求める。このγ補正曲線をR信号、G信号、B信号のγ補正に用いることにより、画像の階調特性に応じたγ補正を自動的に行っている。
【0006】
【発明が解決しようとする課題】
しかしながら前述のγ補正回路では、逆光の度合いが大きい場合、階調を均一にするように補正するため、階調のない部分が伸張されて階調とびが発生し、特に低階調部で階調とびが疑似輪郭として目立つようになる。また階調性が良い部分が逆に圧縮されてコントラストが低下するというような問題を有していた。
【0007】
【課題を解決するための手段】
前記課題を解決するために、本発明のガンマ補正装置は、入力映像信号であるRGB信号の階調分布を示すヒストグラムを作成する手段と、それらのヒストグラムから低階調部の階調とびを検出する手段と、低階調部の階調つぶれ度合いを検出する手段とを具備し、前記階調とびと階調つぶれ度合いとからγ補正量を決定することを特徴としたものである。
【0008】
本発明によれば階調つぶれ度合いから補正すべきγの値を算出し、どのような入力画像でも最適なγ補正処理を施すことができる。また階調とびがある画像に対してはγ補正を行わないことにより、疑似輪郭等の画質の低下を防ぐことができる。
【0009】
【発明の実施の形態】
本発明の請求項1に記載のガンマ補正装置は、入力映像信号であるRGB信号の階調分布を示すヒストグラムを作成する手段と、それらのヒストグラムから低階調部の階調とびを検出する手段と、低階調部の階調つぶれ度合いを検出する手段とを具備し、前記階調とびが存在する場合、ガンマ補正を行わず、階調とびが存在しない場合に階調つぶれ度合いからガンマ補正量を決定することを特徴としたものであり、入力画像データに応じた疑似輪郭の生じない最適なガンマ補正を自動的に行うことができるという作用を有する。
【0010】
次に請求項2に記載のガンマ補正装置は、請求項1において、低階調部を2分割し、その低階調部の低階調側の領域の階調分布数XDと、高階調側の領域の階調分布数YDとから、階調つぶれ度合い=XD/YDの値を算出し、階調つぶれ度合いの値に応じてガンマ補正量を決定することを特徴としたものであり、逆光等の階調つぶれをガンマ補正により補正して画像を見やすくするという作用を有する。
【0011】
(実施の形態1)
以下に本発明の請求項1及び請求項2に記載された発明の実施の形態について図1から図6を用いて説明する。
【0012】
図1は本発明の原理的構成を示すγ補正装置のブロック図である。図1において、1,2,3は画像入力データR,G,Bから階調分布を示すヒストグラムを作成するヒストグラム作成回路であり、4,5,6は各信号の階調とびを検出する階調とび検出回路、7,8,9は各信号の階調つぶれの度合いを検出する階調つぶれ度合い検出回路、10は各信号の階調つぶれ度合いの最大値を検出する階調つぶれ度合い最大値検出回路、11は階調つぶれ度合いと階調とびの検出結果からγ補正係数を算出するγ補正係数算出回路、12,13,14はそのγ補正係数に応じて各信号のγ補正を行うγ補正回路、そしてタイミング合わせのための遅延回路15,16,17により構成される。
【0013】
画像入力データは、R,G,Bそれぞれ8ビットデータとする。まず画像入力データR,G,Bのヒストグラムをヒストグラム作成回路1,2,3により作成し、それらの作成されたヒストグラムより階調とびの有無を階調とび検出回路4,5,6にて検出する。
【0014】
図2は階調とびの状態を示すヒストグラムを表しており、低階調部の所々の階調レベルで分布が0となっている。通常、階調とびはヒストグラムの信号レベル50までの低階調部において、視認しやすく、階調とびが存在する状態でγ補正を行うと画質がさらに悪化するので、本発明では、階調とびが検出されるとγ補正を行わない。ヒストグラムで度数が0となる階調レベルが何レベル連続している場合に階調とびが発生してγ補正を行わないと判断するかは、プリンタ等の階調表現性能によって決定される。すなわち少しの階調とびでも目につくようなプリンタでは連続レベル数を小さく、そうでない場合は大きくとるようにする。実施例では連続レベル数を2としているが通常1から3の値をとる。入力画像データR信号、G信号、B信号のうちいずれかに階調とびがある場合、その情報はγ補正係数算出回路11に送られ、図3のaに示すようにγ補正係数=1、つまりγ補正を行わないようにする。階調とびの検出を階調レベル50までの低階調部で行うのは、前述したように低階調部に階調とびが存在する状態でγ補正を行うと、画質がさらに悪化して疑似輪郭が発生しノイズが特に目立つようになるためであり、従って低階調部の階調とびを検出してγ補正の実施、不実施を決めることにより、画質の低下を防止できる。
【0015】
次に各信号の階調つぶれの度合いを階調つぶれ度合い検出回路7,8,9にて検出する。このつぶれ度合いによりγ補正量を決定する。図4、図5は階調つぶれ度合いの算出方法のための説明図である。階調レベルX1とX2により低階調部を2分割し、階調レベルX1までの低階調側の領域の階調分布数Xと、階調レベルX1からX2までの領域の階調分布数Yとから、階調つぶれ度合い=X/Yの値を算出する。X/Y≧1であれば階調つぶれが発生している状態であり、X/Y<1であれば階調つぶれは発生していない状態を示している。分割の例として、低階調部を2分割する場合、図5に示すように0に近い領域を除いてX3=10、X4=30、X5=50として2分割して、階調つぶれを検出する。階調つぶれ度合い最大値検出回路10では画像データR,G,Bの階調つぶれ度合いの最大値を選択する。この最大値によりγ補正係数を決定するため、画像データR,G,Bのどの信号が階調つぶれを起こしている場合でも階調つぶれを補正することができる。
【0016】
次に、γ補正の手順を図6を用いて説明する。
(1)画像データR,G,B信号のヒストグラムを作成する。
(2)画像データR,G,B信号の各々について、階調レベル0から30までの分布数を調べる。
(4)画像データR,G,B信号のいずれかが2階調レベル連続して、分布が0となっているか、すなわち、階調とびを調べる。階調とびが存在すれば、γ補正を行わず、すなわち、γ=1とする。階調とびが存在しなければ、次のステップの階調つぶれを調べる。
(5)画像データR,G,B信号各々について、階調レベルX3からX4までの階調分布数XD、階調レベルX4からX5までの階調分布数YDを算出する。
(6)画像データR,G,B信号の階調つぶれ度合いXD/YDの最大値を検出する。
(7)XD/YDが1より大きいかどうか判定し、1より小の場合、γ補正せず、すなわち、γ=1とする。
(8)XD/YDが1より大きい場合、γ補正係数を算出する。すなわち、γ=−0.25*(XD/YDの最大値)+1.25を算出する。
(9)γが0.5より小さいかどうか判定し、0.5より大きい場合、算出したγ値をそのまま用いてγ補正する。
(10)算出した値が0.5より小さい場合、γ=0.5としてγ補正する。
【0017】
以上のように、γ補正係数算出回路11では階調とびが発生している場合は、階調つぶれ度合いの最大値に関わらずγ補正係数=1としてγ補正を行わない。また、階調とびが発生していない場合にのみ、階調つぶれ度合いの最大値に応じたγ補正係数を算出する。すなわちXD/YD<1である場合、階調つぶれはないとしてγ補正係数=1としてγ補正を行わない。またXD/YD≧1である場合、階調つぶれがあるとして、階調つぶれ度合いの大きさに応じてγ補正量を決定する。階調つぶれ度合いが大きい場合は、図3のbに示すようにγカーブを大きく上げ、つぶれ度合いがそれほど大きくない場合は図3のcに示すように少しだけγカーブをあげてやるようにする。このようにγ補正係数を決定した場合、高階調部の階調が多少つぶれることになるが、γ補正を必要とする逆光状態の映像では、低階調部から中階調部に補正を必要とする部分があるため、高階調部の階調つぶれは気にならない。またγ補正を必要とする部分のコントラスト低下も発生しない。
【0018】
γ補正係数はそれぞれγ補正回路12,13,14に入力される。γ補正回路により、画像入力データR,G,BはそれぞれR’,G’,B’に補正される。これにより同じγ補正係数を各信号に施すこととなり、色のバランスがくずれないという優れた特性をもつ。
【0019】
【発明の効果】
以上のように本発明によれば、階調とびと階調つぶれ度合いを検出することにより、自動的に疑似輪郭のない画像に最適なγ補正を施すことができる。
【図面の簡単な説明】
【図1】本発明の実施の形態におけるガンマ補正装置のブロック図
【図2】本発明の実施の形態における階調とびを説明するための図
【図3】本発明の実施の形態におけるガンマ補正係数を示す図
【図4】本発明の実施の形態における階調つぶれ度合い算出を説明するためのヒストグラムを示す図
【図5】本発明の実施の形態における階調つぶれ度合い算出を説明するための別なヒストグラムを示す図
【図6】本発明の実施の形態におけるガンマ補正装置のステップを示すフローグラフ
【図7】従来例におけるガンマ補正装置を示すブロック図
【符号の説明】
1,2,3 ヒストグラム作成回路
4,5,6 階調とび検出回路
7,8,9 階調つぶれ度合い検出回路
10 階調つぶれ度合い最大値検出回路
11 γ補正係数算出回路
12 R信号γ補正回路
13 G信号γ補正回路
14 B信号γ補正回路
15,16,17 遅延回路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a gamma (hereinafter referred to as γ) correction device (International Patent Classification H04N 9/69) for a video signal, and is particularly effective when used for gradation correction of a printer.
[0002]
[Prior art]
Conventionally, γ correction processing is generally performed for the purpose of gradation correction of a printer. In the gamma correction processing, the input image is converted using one fixed gamma correction table regardless of the gradation characteristics of the input image data, or even in a printer that can set the gamma correction table, the operator can use the image or its image. The gamma correction table has been set while observing the gradation characteristics.
[0003]
Therefore, in order to reduce these operations, many methods for automating the γ correction processing have been proposed, for example, Japanese Patent Application Laid-Open No. Sho 60-139080. Hereinafter, the conventional gamma correction device will be described.
[0004]
FIG. 7 is a block diagram of a gamma correction circuit in a conventional example. In FIG. 7, reference numeral 601 denotes an R signal γ correction unit, 602 denotes a G signal γ correction unit, 603 denotes a B signal γ correction unit, 604 denotes a luminance signal histogram creation unit, and 605 denotes a cumulative luminance distribution curve setting unit. The operation will be described below.
[0005]
A luminance signal Y is calculated from the input signal RGB signal, and a luminance signal histogram is created by the luminance signal histogram creating means 604. The cumulative luminance distribution is obtained from the histogram, and the cumulative luminance curve is set by the cumulative luminance distribution curve setting means 605. The γ correction curve is obtained by normalizing this cumulative luminance curve to a value of 0 to 255. By using the γ correction curve for the γ correction of the R signal, the G signal, and the B signal, the γ correction according to the gradation characteristics of the image is automatically performed.
[0006]
[Problems to be solved by the invention]
However, in the above-described γ correction circuit, when the degree of backlight is large, the gradation is corrected so that the gradation becomes uniform. Key jumps become noticeable as false contours. In addition, there is a problem in that a portion having good gradation is compressed in the opposite manner and the contrast is reduced.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, a gamma correction apparatus according to the present invention includes means for creating a histogram indicating a gradation distribution of an RGB signal which is an input video signal, and detecting a gradation jump in a low gradation part from the histogram. And a means for detecting the degree of gradation loss in the low gradation part, and determining the γ correction amount from the gradation skip and gradation loss degree.
[0008]
According to the present invention, it is possible to calculate the value of γ to be corrected based on the degree of gradation loss, and to perform the optimal γ correction processing on any input image. Further, by not performing the γ correction on the image having the gradation jump, it is possible to prevent the image quality such as the false contour from deteriorating.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The gamma correction apparatus according to claim 1 of the present invention provides a means for creating a histogram indicating a gradation distribution of an RGB signal as an input video signal, and a means for detecting a gradation jump of a low gradation part from the histogram. Means for detecting the degree of gradation loss in the low gradation part, wherein the gamma correction is not performed when the gradation skip exists, and the gamma correction is performed based on the gradation loss degree when the gradation skip does not exist. This is characterized in that the amount is determined, and has an effect that an optimal gamma correction without generating a false contour according to input image data can be automatically performed.
[0010]
Next, in the gamma correction device according to the second aspect, the low gradation part is divided into two parts, and the gradation distribution number XD of the low gradation side area of the low gradation part and the high gradation side Is calculated based on the number of gradation distributions YD in the region of (1), and the value of XD / YD is determined, and the amount of gamma correction is determined according to the value of the degree of gradation reduction. This has the effect of correcting the gradation loss such as that by gamma correction to make the image easier to see.
[0011]
(Embodiment 1)
Embodiments of the present invention described in claims 1 and 2 of the present invention will be described below with reference to FIGS.
[0012]
FIG. 1 is a block diagram of a gamma correction device showing the basic configuration of the present invention. In FIG. 1, reference numerals 1, 2, and 3 denote a histogram creation circuit for creating a histogram showing a gradation distribution from image input data R, G, and B. A tone skip detection circuit, 7, 8 and 9 are tone dropout degree detection circuits that detect the tone dropout level of each signal, and 10 is a tone dropout maximum value that detects the maximum tone dropout level of each signal. A detection circuit 11 is a γ correction coefficient calculation circuit that calculates a γ correction coefficient from the detection result of the gradation collapse degree and the gradation skip, and 12, 13 and 14 perform γ correction of each signal according to the γ correction coefficient. It is composed of a correction circuit and delay circuits 15, 16, 17 for timing adjustment.
[0013]
The image input data is 8-bit data for each of R, G, and B. First, histograms of the image input data R, G, and B are created by the histogram creation circuits 1, 2, and 3, and the presence or absence of a tone skip is detected by the tone skip detection circuits 4, 5, and 6 from the created histograms. I do.
[0014]
FIG. 2 shows a histogram indicating the state of skipped gradations, and the distribution is 0 at various gradation levels in a low gradation part. Normally, gradation skipping is easy to recognize in a low gradation portion up to the signal level 50 of the histogram, and the image quality is further deteriorated by performing γ correction in a state where gradation skipping is present. Is detected, no γ correction is performed. The number of consecutive tone levels at which the frequency is 0 in the histogram is determined by the tone expression performance of a printer or the like, and it is determined that tone skipping occurs and γ correction is not performed. That is, the number of continuous levels is reduced in a printer that can be noticed even with a small amount of gradation skipping, and is increased in other cases. In the embodiment, the number of continuous levels is set to 2, but usually takes a value of 1 to 3. If any of the input image data R signal, G signal, and B signal has a gradation jump, the information is sent to the γ correction coefficient calculation circuit 11, and as shown in FIG. That is, γ correction is not performed. The detection of the gradation skip in the low gradation portion up to the gradation level 50 is as described above. If the γ correction is performed in a state where the gradation skip exists in the low gradation portion, the image quality is further deteriorated. This is because false contours are generated and noise becomes particularly noticeable. Therefore, deterioration of image quality can be prevented by detecting gradation skipping in a low gradation part and determining whether or not to perform γ correction.
[0015]
Next, the degree of gradation collapse of each signal is detected by gradation collapse degree detection circuits 7, 8, and 9. The γ correction amount is determined based on the degree of the crush. 4 and 5 are explanatory diagrams for the method of calculating the degree of gradation loss. The low gradation portion is divided into two by gradation levels X1 and X2, and the number of gradation distributions X in the region on the low gradation side up to gradation level X1, and the number of gradation distributions in the region from gradation level X1 to X2. From Y, the value of the gradation collapse degree = X / Y is calculated. If X / Y ≧ 1, it indicates a state in which gradation loss has occurred, and if X / Y <1, it indicates a state in which gradation loss has not occurred. As an example of division, when the low gradation part is divided into two parts, as shown in FIG. 5, X3 = 10, X4 = 30, and X5 = 50 except for an area close to 0, and gradation division is detected. I do. The maximum gradation value detection circuit 10 selects the maximum value of the gradation loss degree of the image data R, G, B. Since the γ correction coefficient is determined based on this maximum value, even if any of the signals of the image data R, G, and B causes the gradation loss, the gradation loss can be corrected.
[0016]
Next, the procedure of the γ correction will be described with reference to FIG.
(1) Create a histogram of the image data R, G, B signals.
(2) For each of the image data R, G, and B signals, the number of distributions from gradation levels 0 to 30 is checked.
(4) It is checked whether any one of the image data R, G, and B signals has a continuous distribution of two gradation levels and has a distribution of 0, that is, a gradation skip. If there is a gradation skip, γ correction is not performed, that is, γ = 1. If there is no gradation skip, the next step is examined for gradation loss.
(5) For each of the image data R, G, and B signals, the number of gradation distributions XD from gradation levels X3 to X4 and the number of gradation distributions YD from gradation levels X4 to X5 are calculated.
(6) Detect the maximum value of the gradation loss degree XD / YD of the image data R, G, B signals.
(7) It is determined whether XD / YD is greater than 1, and if XD / YD is less than 1, γ correction is not performed, that is, γ = 1.
(8) If XD / YD is greater than 1, calculate a γ correction coefficient. That is, γ = −0.25 * (maximum value of XD / YD) +1.25 is calculated.
(9) It is determined whether γ is smaller than 0.5. If γ is larger than 0.5, γ correction is performed using the calculated γ value as it is.
(10) When the calculated value is smaller than 0.5, γ is corrected by setting γ = 0.5.
[0017]
As described above, in the case where the gradation skip has occurred, the γ correction coefficient calculation circuit 11 does not perform the γ correction by setting the γ correction coefficient = 1 regardless of the maximum value of the degree of gradation collapse. Further, only when the gradation skip does not occur, the γ correction coefficient corresponding to the maximum value of the gradation collapse degree is calculated. That is, when XD / YD <1, it is determined that there is no gradation loss, and the γ correction is not performed with the γ correction coefficient = 1. If XD / YD ≧ 1, it is determined that there is gradation loss, and the γ correction amount is determined in accordance with the degree of gradation collapse. If the degree of gradation collapse is large, the γ curve is greatly increased as shown in FIG. 3B, and if the degree of collapse is not so large, the γ curve is slightly raised as shown in FIG. 3C. . When the γ correction coefficient is determined in this way, the gradation in the high gradation part is slightly lost. However, in a backlight image that requires γ correction, correction is necessary from the low gradation part to the middle gradation part. , There is no concern about the gradation loss in the high gradation part. Also, there is no decrease in the contrast of a portion that requires γ correction.
[0018]
The gamma correction coefficients are input to gamma correction circuits 12, 13, and 14, respectively. The image input data R, G, and B are corrected to R ', G', and B ', respectively, by the gamma correction circuit. As a result, the same γ correction coefficient is applied to each signal, which has an excellent characteristic that the color balance is not lost.
[0019]
【The invention's effect】
As described above, according to the present invention, the optimum γ correction can be automatically performed on an image having no false contour by detecting the gradation skipping degree and the gradation loss degree.
[Brief description of the drawings]
FIG. 1 is a block diagram of a gamma correction device according to an embodiment of the present invention; FIG. 2 is a diagram for explaining gradation skipping in an embodiment of the present invention; FIG. 3 is a gamma correction according to an embodiment of the present invention; FIG. 4 is a diagram illustrating a coefficient. FIG. 4 is a diagram illustrating a histogram for explaining the calculation of the degree of gradation loss in the embodiment of the present invention. FIG. 5 is a diagram illustrating the calculation of the degree of gradation loss in the embodiment of the present invention. FIG. 6 is a diagram showing another histogram. FIG. 6 is a flowchart showing steps of a gamma correction device according to an embodiment of the present invention. FIG. 7 is a block diagram showing a gamma correction device in a conventional example.
1, 2, 3 Histogram creation circuit 4, 5, 6 Tone skip detection circuit 7, 8, 9 Tone loss degree detection circuit 10 Tone loss degree maximum value detection circuit 11 γ correction coefficient calculation circuit 12 R signal γ correction circuit 13 G signal gamma correction circuit 14 B signal gamma correction circuit 15, 16, 17 Delay circuit

Claims (2)

入力映像信号であるR、G、B信号の階調分布を示すヒストグラムを作成するヒストグラム作成手段と、前記ヒストグラムから低階調部の階調とびを検出する階調とび検出手段と、前記ヒストグラムからR、G、B信号毎の低階調部の階調つぶれ度合いを検出する階調つぶれ度合い検出手段と、前記R、G、B信号毎に低階調部の階調つぶれ度合いを検出し、そのつぶれ度合いの最大値を計算する階調つぶれ度合い最大値検出手段と、前記階調とびと前記階調つぶれ度合い最大値によりガンマ補正係数を算出するガンマ補正係数算出手段と、前記ガンマ補正係数によりR、G、B信号毎にガンマ補正を行うガンマ補正手段とを具備し、前記階調とび検出手段により階調とびが検出された場合は前記ガンマ補正係数を1とし、階調とびが検出されない時は、前記階調つぶれ度合い最大値に応じたガンマ補正係数を算出するガンマ補正係数算出手段を持つことを特徴とするガンマ補正装置。The input video signal R, G, and histogram creation means for creating a histogram that shows the tone distribution of the B signal, and the gradation jump detecting means for detecting a tone jump in the low gradation part from said histogram from said histogram A gradation crushing degree detecting means for detecting the gradation crushing degree of the low gradation part for each of the R, G, B signals; and detecting the gradation crushing degree of the low gradation part for each of the R, G, B signals, A maximum value of the degree of crushing, which is a maximum value of gradation crushing degree detecting means, a gamma correction coefficient calculating means for calculating a gamma correction coefficient based on the maximum value of the gradation skipping degree, and a gamma correction coefficient calculating means; R, G, and and a gamma correction unit for performing gamma correction for each B signal, when the gradation jump is detected by the tone jump detecting means as one of the gamma correction coefficients, tone jump is detected is When there is no gamma correction device characterized by having a gamma correction coefficient calculating means for calculating the gamma correction factor corresponding to the gradation loss degree maximum. 前記階調つぶれ度合い検出手段は、前記R、G、B信号毎に低階調部を2分割し、その低階調部の低階調側の領域の階調分布数XDと、高階調側の領域の階調分布数YDとから、階調つぶれ度合い=XD/YDの値を算出し、前記ガンマ補正係数算出手段によるガンマ補正係数の値に応じてガンマ補正量を決定することを特徴とする請求項1記載のガンマ補正装置。 The gradation loss degree detecting means divides the low gradation portion into two for each of the R, G, and B signals, and calculates the gradation distribution number XD of the low gradation region of the low gradation portion and the high gradation side. And calculating a value of the gradation collapse degree = XD / YD from the gradation distribution number YD of the region, and determining the gamma correction amount according to the value of the gamma correction coefficient by the gamma correction coefficient calculation means. The gamma correction device according to claim 1, wherein
JP27196796A 1996-10-15 1996-10-15 Gamma correction device Expired - Fee Related JP3551655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27196796A JP3551655B2 (en) 1996-10-15 1996-10-15 Gamma correction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27196796A JP3551655B2 (en) 1996-10-15 1996-10-15 Gamma correction device

Publications (2)

Publication Number Publication Date
JPH10126619A JPH10126619A (en) 1998-05-15
JP3551655B2 true JP3551655B2 (en) 2004-08-11

Family

ID=17507311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27196796A Expired - Fee Related JP3551655B2 (en) 1996-10-15 1996-10-15 Gamma correction device

Country Status (1)

Country Link
JP (1) JP3551655B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7646411B2 (en) 2004-09-10 2010-01-12 Eastman Kodak Company Imaging apparatus

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7251056B2 (en) * 2001-06-11 2007-07-31 Ricoh Company, Ltd. Image processing apparatus, image processing method and information recording medium
JP4867365B2 (en) 2006-01-30 2012-02-01 ソニー株式会社 Imaging control apparatus, imaging apparatus, and imaging control method
US8014602B2 (en) 2006-03-29 2011-09-06 Seiko Epson Corporation Backlight image determining apparatus, backlight image determining method, backlight image correction apparatus, and backlight image correction method
US7916942B1 (en) 2006-06-02 2011-03-29 Seiko Epson Corporation Image determining apparatus, image enhancement apparatus, backlight image enhancement apparatus, and backlight image enhancement method
US7916943B2 (en) 2006-06-02 2011-03-29 Seiko Epson Corporation Image determining apparatus, image determining method, image enhancement apparatus, and image enhancement method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7646411B2 (en) 2004-09-10 2010-01-12 Eastman Kodak Company Imaging apparatus

Also Published As

Publication number Publication date
JPH10126619A (en) 1998-05-15

Similar Documents

Publication Publication Date Title
US7369183B2 (en) Image display apparatus
EP0501728B1 (en) Gradation corrector
JP4411879B2 (en) Signal processing apparatus, signal processing program, and electronic camera
US8942475B2 (en) Image signal processing device to emphasize contrast
US7636472B2 (en) Image quality correction apparatus and image quality correction method
US8280162B2 (en) Image processing apparatus and recording medium recording image processing program
US6915023B2 (en) Contour correction device
JP2008072253A (en) Image processor and processing method
JP3267200B2 (en) Image processing device
US6873373B2 (en) Image emphasizing apparatus and image emphasizing program
JP3551655B2 (en) Gamma correction device
JP3938456B2 (en) Brightness gradation correction device for video signal
JP2004328564A (en) Color correcting apparatus, color correcting method, color correcting program, and digital camera using color correcting apparatus
JP3378601B2 (en) Image processing device
JP4416771B2 (en) Image processing apparatus and method
JPH0678332A (en) Picture processing circuit
JP3874658B2 (en) Contrast correction circuit
JPH05292346A (en) Video signal processing circuit
JP3080019B2 (en) Video signal processing device
JP3334047B2 (en) IMAGE PROCESSING APPARATUS, IMAGE READING APPARATUS AND IMAGE FORMING APPARATUS EQUIPPED WITH THE SAME, IMAGE PROCESSING METHOD, AND COMPUTER-READABLE STORAGE MEDIUM CONTAINING IMAGE PROCESSING PROCEDURE
JPH077675A (en) Picture element defect correction device
JP2000134471A (en) Image processor attended with output correction in inside of character
JP3725609B2 (en) Image input device
JP3359377B2 (en) Background concentration detector
JP3816642B2 (en) Image data contour correction method and apparatus

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees