JP3551519B2 - Fuel cell system vehicle mounting structure and fuel cell storage case - Google Patents

Fuel cell system vehicle mounting structure and fuel cell storage case Download PDF

Info

Publication number
JP3551519B2
JP3551519B2 JP02592195A JP2592195A JP3551519B2 JP 3551519 B2 JP3551519 B2 JP 3551519B2 JP 02592195 A JP02592195 A JP 02592195A JP 2592195 A JP2592195 A JP 2592195A JP 3551519 B2 JP3551519 B2 JP 3551519B2
Authority
JP
Japan
Prior art keywords
fuel cell
vehicle
energy absorbing
collision
collision energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02592195A
Other languages
Japanese (ja)
Other versions
JPH08192639A (en
Inventor
剛 高橋
健志 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP02592195A priority Critical patent/JP3551519B2/en
Publication of JPH08192639A publication Critical patent/JPH08192639A/en
Application granted granted Critical
Publication of JP3551519B2 publication Critical patent/JP3551519B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • B60K2001/0405Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion characterised by their position
    • B60K2001/0411Arrangement in the front part of the vehicle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Fuel Cell (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、燃料電池システム車両取付構造および燃料電池収納ケースに関し、詳しくは、車両の前部または後部に配置され衝突によるエネルギを吸収する衝突エネルギ吸収部材を備えた車両に燃料電池と燃料供給装置とからなる燃料電池システムを取り付ける燃料電池システム車両取付構造および単電池を複数積層してなる燃料電池を収納する燃料電池収納ケースに関する。
【0002】
【従来の技術】
移動車両、特に自動車では、通常の走行時の安全対策の他、不慮の事故に対する安全対策が施されるのが通例であり、衝突に対する種々の対策が提案されている。燃料電池を搭載した電気自動車においても、この衝突に対する安全対策を施した構造が提案されており、例えば、乗合車両において、燃料電池発電装置を車両後部に搭載し、この燃料電池発電装置の周囲を囲む帯状の衝撃吸収用梁を設けると共に、燃料電池発電装置の上部および側部を覆う防護隔壁を設ける構造が提案されている(例えば、特開平5−77648号公報等)。この乗合車両では、後部における衝突に対し、衝撃吸収用梁が、衝突エネルギを吸収すると共に燃料電池発電装置を保護する。
【0003】
【発明が解決しようとする課題】
しかしながら、上記の構造は、大型バスにおける構造であるため、小型の電気自動車には適用し難い場合を生じるという問題があった。小型の車両の後部を大型バスの後部と同様な形状とすれば、上記の構造を採用し得るが、車両の形状における設計の自由度が低下し、車両の後部が画一的なものとなってしまう。また、車両の後部をこのような形状として上記の構造とすると、後方の視界が遮られるという問題も生じる。
【0004】
なお、出願人は別途、電気自動車の補機部品配置構造(特開平6−270697号公報)を提案しているが、この構造は、電気自動車に搭載するインバータや補助バッテリ,エアコン用インバータ等の補機部品についての配置構造であり、燃料電池システムが備える燃料電池や燃料供給装置の性状(例えば、供給される燃料の特性等)を考慮して提案されたものではないため、燃料電池システムの取り付けには適用し難い場合がある。
【0005】
本発明の燃料電池システム車両取付構造および燃料電池収納ケースは、こうした問題を解決し、より安全性の高い燃料電池システム車両取付構造を提案することを目的とし、次の構成を採った。
【0006】
【課題を解決するための手段および作用】
本発明の第1の燃料電池システム車両取付構造は、
車両の前部または後部に配置され衝突によるエネルギを吸収する衝突エネルギ吸収部材を備えた車両に、単電池を積層してなる燃料電池と該燃料電池に燃料を供給する燃料供給装置とからなる燃料電池システムを取り付ける燃料電池システム車両取付構造であって、
車両が進行方向に衝突した際、前記衝突エネルギ吸収部材が所定の変形をするよう該衝突エネルギ吸収部材に衝突変形促進部を設け、
少なくとも前記燃料電池を、該燃料電池の積層方向に沿った形成面と前記衝突変形促進部とが対向するよう前記衝突エネルギ吸収部材に取り付けることを要旨とする。
【0007】
以上のように構成された本発明の第1の燃料電池システム車両取付構造は、衝突エネルギ吸収部材に衝突変形促進部を設けることにより、車両が進行方向に衝突した際、衝突エネルギ吸収部材が所定の変形をする。燃料電池を、燃料電池の積層方向に沿った形成面と衝突エネルギ吸収部材に設けられた衝突変形促進部とが対向するよう衝突エネルギ吸収部材に取り付けることにより、衝突エネルギ吸収部材の所定の変形が燃料電池の破壊を促し、燃料電池が破壊しないことによる衝突エネルギ吸収部材の衝突エネルギの吸収の阻害を防止すると共に燃料電池による衝突エネルギの吸収をも可能とする。ここで、所定の変形には、所定の形状に変形する場合や所定の形状を経由して変形する場合、あるいは所定の方向に変形する場合を含む(以下同様)。
【0008】
本発明の第2の燃料電池システム車両取付構造は、
車両の前部または後部に配置され衝突によるエネルギを吸収する衝突エネルギ吸収部材を備えた車両に、単電池を積層してなる燃料電池と該燃料電池に燃料を供給する燃料供給装置とからなる燃料電池システムを取り付ける燃料電池システム車両取付構造であって、
剛性を有し、前記衝突エネルギ吸収部材から車両の中央上部方向に延出した上部材と、
剛性を有し、前記衝突エネルギ吸収部材から車両の中央下部方向に延出した下部材と
を設け
少なくとも前記燃料供給装置を前記下部材に取り付けることを要旨とする。
【0009】
以上のように構成された本発明の第2の燃料電池システム車両取付構造は、剛性を有する上部材を衝突エネルギ吸収部材から車両の中央上部方向に延出し、剛性を有する下部材を衝突エネルギ吸収部材から車両の中央下部方向に延出して設け、下部材に燃料供給装置を取り付けることにより、車両が進行方向に衝突した際、燃料供給装置が破損するのを防止する。
【0010】
ここで、前記第2の燃料電池システム車両取付構造において、車両が進行方向に衝突した際、前記下部材を下方に移動させる下方移動促進部を該下部材の前記衝突エネルギ吸収部材との取付部近傍に設けてなる構成とすることもできる。
【0011】
また、前記第2の燃料電池システム車両取付構造において、
車両が進行方向に衝突した際、前記衝突エネルギ吸収部材が所定の変形をするよう該衝突エネルギ吸収部材に衝突変形促進部を設け、
前記燃料電池を、該燃料電池の積層方向に沿った形成面と前記衝突変形促進部とが対向するよう前記衝突エネルギ吸収部材に取り付ける
構成とすることもできる。
【0012】
本発明の燃料電池収納ケースは、
単電池を複数積層してなる燃料電池を収納するハウジングと、該ハウジングの外側に配置された設置用の少なくとも2以上の支持部とを備える燃料電池収納ケースであって、
前記少なくとも2以上の支持部のうち前記燃料電池の積層方向の異なる位置に設けられた2つの支持部に該燃料電池を積層方向に圧縮する荷重が作用したとき、前記ハウジングが所定の変形をするよう該ハウジングにハウジング変形促進部を形成してなることを要旨とする。
【0013】
以上のように構成された本発明の燃料電池収納ケースは、ハウジングにハウジング変形促進部を形成することにより、燃料電池の積層方向の異なる位置に設けられた2つの支持部に燃料電池を積層方向に圧縮する荷重が作用した際、ハウジングが所定の変形をする。
【0014】
ここで、前記第1または第2の燃料電池システム車両取付構造において、前記燃料電池を、該燃料電池を収納した前記燃料電池収納ケースを介して、該燃料電池収納ケースの前記ハウジング変形促進部と前記衝突変形促進部とが対向するよう前記衝突エネルギ吸収部材に取り付ける構造とすることもできる。
【0015】
【実施例】
以上説明した本発明の構成・作用を一層明らかにするために、以下本発明の好適な実施例について説明する。図1は、本発明の一実施例としての燃料電池システム車両取付構造を電気自動車10のフロント部12に適用した場合の構造の概略を示す説明図である。
【0016】
図示するように、電気自動車10のフロント部12は、車両の両サイドに設けられ車両の曲げや捩りを防止すると共に車両の進行方向の衝突エネルギを変形することにより吸収するフレームサイドメンバ14と、このフレームサイドメンバ14に接合され乗車室11を形成する車室形成メンバ18とを主な骨格とし、この骨格に、フロント部12の上部を覆うフードパネル12aと、フロント部12の側部を覆うサイドパネル12bと、フロント部12の前部を覆うフロントグリル12cとを取り付けて形成される。なお、一点鎖線の円は、前輪13の位置を示す。
【0017】
フレームサイドメンバ14は、車両が進行方向に衝突した際に大きく変形して衝突エネルギーを吸収するエネルギ吸収部14aと、衝突に対して変形が小さい構造(例えば、エネルギ吸収部14aに比して肉厚のボックス構造等)として形成され車室形成メンバ18と共に乗車室11を形成する車室形成部14bとからなる。エネルギ吸収部14aの中央下部には、車両が進行方向に衝突した際、エネルギ吸収部14aが上に凸に屈曲するよう切欠部16が設けられている。また、車室形成メンバ18は、長手方向の圧縮に対する強度が高くなるよう形成されている(例えば、肉厚のボックス構造等)。
【0018】
こうして構成されたフレームサイドメンバ14のエネルギ吸収部14aには、収納ケース30に収納された燃料電池20が、収納ケース30に設けられた支持部38および39を介して取り付けられており、車室形成部14bには、燃料電池20に燃料を供給する燃料供給装置40(例えば、メタノールを改質して水素リッチガスとする改質器等)が取付部材48により取り付けられている。なお、燃料供給装置40は乗車室11の最前部に取り付けられるが、燃料供給装置40の取り付けられる空間と乗車室11の人が乗降する乗員室とは図示しないダッシュパネルにより区切られている。また、エネルギ吸収部14aの車両最前部には、燃料電池システムから発生する熱を外気により冷却するためのラジエタ50と冷却ファン52とが取り付けられている。
【0019】
燃料電池20は、例えば、高分子電解質膜とこの高分子電解質膜を挟持する2つの電極とで形成される単電池を複数積層してなる固体高分子型燃料電池等として構成されている。燃料電池20を収納する収納ケース30の中央には、収納ケース30の上部が矩形で両側部が楔形に開口する切込部32が形成されており、底部中央には、収納ケース30の両側部の切込部32の先端部を直線で結ぶ溝34が形成されている。燃料電池20は、その積層方向が収納ケース30の長手方向となるよう収納ケース30に収納される。エネルギ吸収部14aへの燃料電池20の取り付けは、収納ケース30に形成された溝34とエネルギ吸収部14aに形成された切欠部16とが揃うよう取り付けられる。
【0020】
次にこうした取付構造により燃料電池システムを搭載した電気自動車10が衝突したときの様子について説明する。図2は、電気自動車10が車両進行方向に衝突したときのフロント部12の変形の概略を例示する説明図である。図示するように、電気自動車10の衝突により、フレームサイドメンバ14のエネルギ吸収部14aは、車両進行方向に圧縮変形すると共に、この圧縮荷重に対して切欠部16に応力集中が生じ、上に凸となるよう屈曲変形する。エネルギ吸収部14aの圧縮変形と屈曲変形とにより、収納ケース30の支持部38および39には、燃料電池20を圧縮する方向に荷重が作用する。収納ケース30には切込部32と溝34とが形成されているから、収納ケース30は、エネルギ吸収部14aと同方向に屈曲変形する。ここで、収納ケース30は、溝34がエネルギ吸収部14aに形成された切欠部16と揃うようエネルギ吸収部14aに取り付けられているから、収納ケース30の屈曲変形は、エネルギ吸収部14aの屈曲変形と同じ方向への変形となる。なお、収納ケース30が屈曲変形しない場合でも、エネルギ吸収部14aが屈曲変形して屈曲部の先端が収納ケース30に当接し、上向きの荷重を作用させるから、収納ケース30はエネルギ吸収部14aと同じ方向に屈曲変形する。
【0021】
こうした収納ケース30の屈曲変形に伴い、燃料電池20は、その中央の積層面で2つに分離し、破壊して衝突エネルギの一部を吸収する。ここで、収納ケース30を屈曲変形させて燃料電池20を破壊させるのは、燃料電池20が破壊せずに圧縮方向の荷重に抵抗すると、収納ケース30の支持部38と39の間のエネルギ吸収部14aも圧縮変形し難くなり、エネルギ吸収部14aで十分に衝突エネルギを吸収することができなくなるからである。燃料電池20を構成する単電池の電極は、導電性や形成性等が要求されることから緻密質カーボン等により形成されることが多い。この緻密質カーボンは、脆い材質なので均等な面圧に対してある程度の強度を示すが、点荷重に対しては破損しやすい。したがって、実施例では、燃料電池20をその中央の積層面で分離することにより、分離面に点荷重に相当する応力を作用させて破壊している。なお、衝突エネルギの一部は、燃料電池20が破壊する際にも吸収される。
【0022】
衝突エネルギは、エネルギ吸収部14aの圧縮変形や屈曲変形,収納ケース30の屈曲変形,燃料電池20の破壊およびフロントグリル12cの破損等により吸収されるから、剛性の高い車室形成部14bと車室形成メンバ18は、衝突の程度にもよるが、全く変形しないか僅かな変形に止まり、乗車室11を変形させずに維持する。この結果、乗車室11の最前部に取り付けられた燃料供給装置40は、衝突によっては破損しない。
【0023】
衝突速度が速く衝突エネルギーが大きいときには、エネルギ吸収部14aおよび収納ケース30は、図示する形状への変形を経由して更に変形し、衝突エネルギを吸収する。この場合でも、車室形成部14bと車室形成メンバ18は僅かに変形する程度に止まるから、乗車室11は変形せずに維持される。なお、乗車室11を維持する車室形成メンバ18および車室形成部14bの剛性の程度は、電気自動車10の重量や想定される衝突速度により定められるものである。
【0024】
以上説明した実施例の燃料電池システム車両取付構造によれば、エネルギ吸収部14aの中央下部に設けられた切欠部16と収納ケース30の底部の設けられた溝34とが揃うよう収納ケース30をエネルギ吸収部14aに取り付けたことにより、エネルギ吸収部14aでの圧縮変形と屈曲変形に応じて収納ケース30を屈曲変形させることができる。この結果、燃料電池20を破壊させることができ、エネルギ吸収部14aによる衝突エネルギの吸収を十分に行なうことができると共に、燃料電池20の破壊による衝突エネルギの吸収をもなしうる。また、車室形成部14bおよび車室形成メンバ18の剛性を高くしたので、乗車室11を維持することができ、より安全な構造とすることができる。したがって、乗車室11の一部に取り付けられた燃料供給装置40の破損を防止することができ、燃料供給装置40の破損による燃料の漏れも防止することができる。
【0025】
実施例の収納ケース30によれば、切込部32と溝34とを形成することにより、支持部38と39とに燃料電池20を圧縮する方向に荷重が作用したとき、切込部32が更に開口するよう収納ケース30を屈曲変形させることができる。この結果、燃料電池20の破壊を促進することができ、エネルギ吸収部14aによる衝突エネルギの吸収を十分に行なうことができる。
【0026】
実施例では、エネルギ吸収部14aの中央下部に切欠部16を形成したが、エネルギ吸収部14aが上に凸に屈曲変形すればよいから、エネルギ吸収部14aの上半分を剛性の高い材料で形成し、下半分を剛性の低い材料で形成する構成でもよく、あるいは予めエネルギ吸収部14aに僅かに屈曲を与えておく構成でもよい。また、エネルギ吸収部14aの燃料電池20側を盛り上げるように形成してもよい。
【0027】
また、実施例では、エネルギ吸収部14aの収納ケース30との対面を平らに形成したが、エネルギ吸収部14aの収納ケース30の溝34と対向する位置に突部を形成する構成も好適である。このように突部を形成すれば、衝突の際、直ちに突部が収納ケース30に当接するから、収納ケース30の屈曲変形を促進することができる。この突部を形成する場合、切込部32や溝34が形成されていない収納ケースを用いても、収納ケースをエネルギ吸収部14aと同じ方向に屈曲変形させることができる。
【0028】
次に本発明の第2の実施例について説明する。図3は、第2実施例の燃料電池システム車両取付構造を電気自動車10のフロント部12に適用した場合の構造の概略を示す説明図である。第2実施例の燃料電池システム車両取付構造は、第1実施例の燃料電池システム車両取付構造の収納ケース30に代えて、燃料電池を収納した2つの収納ケース60,62を支持台70を用いてエネルギ吸収部14aに取り付けた構造をしている。第2実施例の燃料電池システム車両取付構造の構成のうち第1実施例の燃料電池システム車両取付構造と同一の構成には同一の符号を付し、その説明を省略する。
【0029】
図示するように、支持台70には屈曲部72が形成されており、この屈曲部72により形成される2つのスロープに、燃料電池を収納した2つの収納ケース60,62が設置されている。支持台70は、支持台70の下部に設けられた支持部78および79によりフレームサイドメンバ14のエネルギ吸収部14aに取り付けられている。
【0030】
次に、こうした第2実施例の燃料電池システムを搭載した電気自動車10が衝突したときの様子について説明する。図4は、第2実施例の電気自動車10が車両進行方向に衝突したときのフロント部12の変形の概略の様子を例示する説明図である。図示するように、電気自動車10の進行方向の衝突により、フレームサイドメンバ14のエネルギ吸収部14aは、第1実施例の取付構造におけるエネルギ吸収部14aと同様に圧縮変形と屈曲変形をする。このエネルギ吸収部14aの圧縮変形と屈曲変形とにより、支持部78および79には支持台70の長手方向に沿って支持台70を圧縮する方向の荷重が作用する。この荷重に対して、支持台70では屈曲部72で曲モーメントが最大になるから、屈曲部72で予め屈曲させた方向に更に屈曲変形する。なお、図示以上の変形に対して、燃料電池を収納した2つの収納ケース60と62には、積層方向に沿った荷重以外の荷重が作用することにより変形しやすくなり、収納した燃料電池も破壊しやすくなる。
【0031】
以上説明した第2実施例の燃料電池システム車両取付構造によれば、エネルギ吸収部14aの圧縮変形および屈曲変形に伴い支持台70も屈曲変形するから、衝突エネルギをエネルギ吸収部14aで十分に吸収することができる。また、支持台70および収納ケース60,62は、第1実施例の収納ケース30に比して積極的に燃料電池を破壊させるものでないため、衝突エネルギが小さい場合には、燃料電池を破壊せずに保持することができる。また、支持台70に屈曲部72を設けることにより収納ケース60,62が傾くから、収納ケース60,62に収納された燃料電池内の電気化学反応により生じる水を容易に排水することができる。衝突エネルギが大きいときには、収納ケース60,62も変形し、収納された燃料電池も破壊するから、燃料電池によっても衝突エネルギを吸収することができる。もとより、車室形成部14bおよび車室形成メンバ18の剛性を高くしたので、乗車室11を維持することができ、燃料供給装置40の破損を防止することができる。
【0032】
次に本発明の第3の実施例について説明する。図5は、第3実施例の燃料電池システム車両取付構造を電気自動車110のフロント部112に適用した場合の構造の概略を示す説明図である。
【0033】
図示するように、電気自動車110のフロント部112は、車両の両サイドに設けられ車両の進行方向の衝突エネルギを変形により吸収すると共に乗車室111を形成するフレームメンバ114と、フレームメンバ114に接合されフレームメンバ114と共に乗車室111を形成する車室形成メンバ117とを主な骨格とし、この骨格に、フロント部112の上部を覆うフードパネル112aと、フロント部112の側部を覆うサイドパネル112bと、フロント部112の前部を覆うフロントグリル112cとを取り付けて形成される。
【0034】
フレームメンバ114は、車両が進行方向に衝突した際に大きく変形して衝突エネルギーを吸収するエネルギ吸収部114aと、衝突に対して変形が小さい構造として形成され乗車室111を形成する車室形成部114bとから構成されており、エネルギ吸収部114aと車室形成部114bとは屈曲部を介して車両前方と上方に延出している。エネルギ吸収部114aの車両前方部には、圧縮変形しやすい構造(例えば、薄肉によるボックス構造やボックス側面に複数の孔を設けた構造等)とした圧縮変形促進部115aが設けられている。また、フレームメンバ114の屈曲部および車室形成部114bの端部には、屈曲変形しすいよう切欠部115b,115cが形成されている。
【0035】
車室形成メンバ117は、その最前部に2カ所の屈曲部を有し、この屈曲部に、屈曲変形しやすいようそれぞれ切欠部117a,117bが形成されている。また、車室形成メンバ117の切欠部117bから乗車室111中央方向に少し離れた位置にも、切欠部117cが形成されている。
【0036】
こうして構成されたフレームメンバ114のエネルギ吸収部114aには、収納ケース130に収納された燃料電池120が、収納ケース130に設けられた支持部138および139を介して取り付けられており、車室形成メンバ117には、燃料電池120に燃料を供給する燃料供給装置140が取付部材148により取り付けられている。なお、燃料供給装置140は乗車室111の最前部に取り付けられるが、燃料供給装置140の取り付けられる空間と乗車室111の人が乗降する乗員室とは図示しないダッシュパネルにより区切られている。また、エネルギ吸収部114aの車両最前部には、燃料電池システムから発生する熱を外気により冷却するためのラジエタ50と冷却ファン52とが取り付けられている。
【0037】
燃料電池120および収納ケース130は、支持部138,139を除いて第1実施例の燃料電池20および収納ケース30と同一の構成をしている。すなわち、燃料電池120は単電池を積層してなり、収納ケース130は第1実施例の収納ケース30の切込部32および溝34と同一の切込部132および溝134を備える。収納ケース130の支持部138,139は、電気自動車110の通常の動作では、取り付けられたエネルギ吸収部114aから離れることはないが、大きな衝突エネルギが作用したときには、支持部138および139が破損してエネルギ吸収部114aから離れるように支持部138および139の強度が設定されている。なお、支持部138および139の強度は、燃料電池120および収納ケース130の重量や衝突エネルギ等により定められる。
【0038】
次にこうした取付構造により燃料電池システムを搭載した電気自動車110が衝突したときの様子について説明する。図6は、電気自動車110が車両進行方向に衝突したときのフロント部112の変形の概略を例示する説明図である。図示するように、電気自動車110の衝突により、フレームメンバ114のエネルギ吸収部114aは、車両進行方向に大きく圧縮変形して、衝突エネルギを吸収する。また、フレームメンバ114に切欠部115b,115cを設け、車室形成メンバ117に切欠部117a,117b,117cを設けたので、フレームメンバ114および車室形成メンバ117は、この切欠部115b,115c,117a,117b,117cが形成された部位で屈曲して衝突エネルギを吸収する。
【0039】
こうしたフレームメンバ114の圧縮変形により、収納ケース130は、第1実施例の収納ケース30と同様に屈曲変形し、燃料電池120も第1実施例の燃料電池120と同様にその中央の積層面で2つに分離して破壊する。また、衝突エネルギが大きいときには、支持部138および139が破損して収納ケース130がエネルギ吸収部14aから離れる。このため、エネルギ吸収部114aは、燃料電池120および収納ケース130によって圧縮変形が妨げられなることがないから、十分に衝突エネルギを吸収することができる。
【0040】
また、車室形成メンバ117の切欠部117a,117b,117cが形成された部位は、図示するように、切欠部117bと切欠部117cとの間を下方に移動させるよう変形するから、燃料供給装置140は下方に移動する。このように燃料供給装置140は、電気自動車110の衝突による衝突エネルギから逃げるように移動するから、衝突によっては破損しない。
【0041】
以上説明した第3実施例の燃料電池システム車両取付構造によれば、車室形成メンバ117に2つの屈曲部と切欠部117a,117b,117cとを設けることにより、車室形成メンバ117が、車両の衝突時に燃料供給装置140を下方に逃がすように変形するから、衝突による燃料供給装置140の破損を防止することができる。また、衝突エネルギが大きいときには、収納ケース130の支持部138,139が破損し、収納ケース130がエネルギ吸収部114aから離れるから、エネルギ吸収部114aで十分に衝突エネルギを吸収することができる。もとより、収納ケース130に切込部132および溝134を設けたので、エネルギ吸収部114aの圧縮変形に伴い収納ケース130を屈曲変形させることができ、燃料電池120を破壊させることができる。
【0042】
なお、第3実施例では、衝撃エネルギが大きいときに収納ケース130の支持部138および139が破損し、収納ケース130がエネルギ吸収部114aから離れる構成としたが、支持部138,139が破損せず収納ケース130がエネルギ吸収部114aから離れない構成としても差し支えない。
【0043】
以上本発明の実施例について説明したが、本発明はこうした実施例に何等限定されるものではなく、例えば、燃料電池システムを車両の後部に取り付ける際の構造に適用する構成など、本発明の要旨を逸脱しない範囲内において、種々なる態様で実施し得ることは勿論である。
【0044】
【発明の効果】
以上説明したように本発明の第1の燃料電池システム車両取付構造によれば、衝突エネルギ吸収部材に衝突変形促進部を設け、燃料電池を、積層方向に沿った形成面と衝突変形促進部とが対向するよう衝突エネルギ吸収部材に取り付けることにより、衝突エネルギ吸収部材を所定の変形とし、この変形により燃料電池の破壊を促すことができる。この結果、衝突エネルギ吸収部材で衝突エネルギを十分に吸収することができると共に、燃料電池によっても衝突エネルギを吸収することができる。
【0045】
本発明の第2の燃料電池システム車両取付構造によれば、剛性を有する上部材と下部材とを設け、下部材に燃料供給装置を取り付けることにより、車両が進行方向に衝突した際でも、上部材および下部材が変形しないから、燃料供給装置の破損を防止することができる。
【0046】
本発明の燃料電池収納ケースによれば、ハウジングにハウジング変形促進部を形成することにより、燃料電池の積層方向の異なる位置に設けられた2つの支持部に燃料電池を積層方向に圧縮する荷重が作用した際、ハウジングを所定の変形とすることができる。この結果、収納した燃料電池の破壊を促進することができる。
【図面の簡単な説明】
【図1】本発明の一実施例としての燃料電池システム車両取付構造を電気自動車10のフロント部12に適用した場合の構造の概略を示す説明図である。
【図2】電気自動車10が車両進行方向に衝突したときのフロント部12の変形の概略の様子を例示する説明図である。
【図3】第2実施例の燃料電池システム車両取付構造を電気自動車10のフロント部12に適用した場合の構造の概略を示す説明図である。
【図4】第2実施例の電気自動車10が車両進行方向に衝突したときのフロント部12の変形の概略の様子を例示する説明図である。
【図5】第3実施例の燃料電池システム車両取付構造を電気自動車110のフロント部112に適用した場合の構造の概略を示す説明図である。
【図6】第3実施例の電気自動車110が車両進行方向に衝突したときのフロント部112の変形の概略の様子を例示する説明図である。
【符号の説明】
10…電気自動車
11…乗車室
12…フロント部
12a…フードパネル
12b…サイドパネル
12c…フロントグリル
13…前輪
14…フレームサイドメンバ
14a…エネルギ吸収部
14b…車室形成部
16…切欠部
18…車室形成メンバ
20…燃料電池
30…収納ケース
32…切込部
34…溝
38…支持部
40…燃料供給装置
48…取付部材
50…ラジエタ
52…冷却ファン
60,62…収納ケース
70…支持台
72…屈曲部
78…支持部
110…電気自動車
111…乗車室
112…フロント部
112a…フードパネル
112b…サイドパネル
112c…フロントグリル
114…フレームメンバ
114a…エネルギ吸収部
114b…車室形成部
115a…圧縮変形促進部
115b,115c…切欠部
117…車室形成メンバ
117a,117b,117c…切欠部
120…燃料電池
130…収納ケース
132…切込部
134…溝
138,139…支持部
140…燃料供給装置
148…取付部材
[0001]
[Industrial applications]
The present invention relates to a fuel cell system vehicle mounting structure and a fuel cell storage case, and more particularly, to a vehicle provided with a collision energy absorbing member arranged at a front or rear portion of the vehicle and absorbing energy due to a collision. The present invention relates to a fuel cell system vehicle mounting structure for mounting a fuel cell system comprising: and a fuel cell storage case for storing a fuel cell formed by stacking a plurality of unit cells.
[0002]
[Prior art]
In general, a mobile vehicle, particularly an automobile, is provided with a safety measure against an unexpected accident in addition to a safety measure at the time of ordinary traveling, and various measures against a collision are proposed. Also in electric vehicles equipped with a fuel cell, a structure that takes safety measures against this collision has been proposed.For example, in a shared vehicle, a fuel cell power generator is mounted at the rear of the vehicle, and the periphery of the fuel cell power generator is A structure has been proposed in which a surrounding strip-like shock absorbing beam is provided and a protective partition is provided to cover the upper and side portions of the fuel cell power generator (for example, Japanese Patent Application Laid-Open No. Hei 5-77648). In this vehicle, the shock absorbing beam absorbs the collision energy and protects the fuel cell power generator against a collision at the rear.
[0003]
[Problems to be solved by the invention]
However, since the above-described structure is a structure for a large bus, there is a problem that it may be difficult to apply to a small electric vehicle. If the rear part of a small vehicle has the same shape as the rear part of a large bus, the above structure can be adopted.However, the degree of freedom in designing the shape of the vehicle is reduced, and the rear part of the vehicle becomes uniform. Would. Further, if the rear portion of the vehicle is formed in the above-described structure with such a shape, there is a problem that a rear view is obstructed.
[0004]
The applicant has separately proposed a structure for arranging auxiliary components of an electric vehicle (Japanese Patent Application Laid-Open No. Hei 6-270697). This structure is based on an inverter mounted on the electric vehicle, an auxiliary battery, an inverter for an air conditioner, and the like. It is an arrangement structure for accessory parts, and is not proposed in consideration of the properties of the fuel cell and the fuel supply device included in the fuel cell system (for example, the characteristics of the supplied fuel). It may be difficult to apply for mounting.
[0005]
The fuel cell system vehicle mounting structure and the fuel cell storage case of the present invention have the following configurations to solve these problems and to propose a more secure fuel cell system vehicle mounting structure.
[0006]
Means and action for solving the problem
The first fuel cell system vehicle mounting structure of the present invention includes:
A fuel comprising a fuel cell in which unit cells are stacked on a vehicle provided with a collision energy absorbing member disposed at a front or rear portion of the vehicle and absorbing energy due to a collision, and a fuel supply device for supplying fuel to the fuel cell A fuel cell system vehicle mounting structure for mounting a battery system,
When the vehicle collides in the traveling direction, the collision energy absorbing member is provided with a collision deformation promoting portion so that the collision energy absorbing member performs a predetermined deformation,
The gist is that at least the fuel cell is attached to the collision energy absorbing member such that a formation surface of the fuel cell along the stacking direction faces the collision deformation promoting portion.
[0007]
According to the first fuel cell system vehicle mounting structure of the present invention configured as described above, the collision energy absorbing member is provided with the collision deformation promoting portion, so that when the vehicle collides in the traveling direction, the collision energy absorbing member is in a predetermined position. To transform. By mounting the fuel cell on the collision energy absorbing member such that the formation surface along the stacking direction of the fuel cell and the collision deformation promoting portion provided on the collision energy absorbing member are opposed to each other, predetermined deformation of the collision energy absorbing member can be prevented. It promotes the destruction of the fuel cell, prevents the collision energy absorbing member from being hindered from absorbing the collision energy due to the failure of the fuel cell, and also enables the fuel cell to absorb the collision energy. Here, the predetermined deformation includes a case of deforming into a predetermined shape, a case of deforming via a predetermined shape, and a case of deforming in a predetermined direction (the same applies hereinafter).
[0008]
The second fuel cell system vehicle mounting structure of the present invention includes:
A fuel comprising a fuel cell in which unit cells are stacked on a vehicle provided with a collision energy absorbing member disposed at a front or rear portion of the vehicle and absorbing energy due to a collision, and a fuel supply device for supplying fuel to the fuel cell A fuel cell system vehicle mounting structure for mounting a battery system,
An upper member having rigidity and extending from the collision energy absorbing member toward the upper center of the vehicle;
A lower member having rigidity and extending from the collision energy absorbing member toward the lower center of the vehicle;
Provided
The gist is that at least the fuel supply device is attached to the lower member.
[0009]
In the second fuel cell system vehicle mounting structure of the present invention configured as described above, the rigid upper member extends from the collision energy absorbing member toward the upper center of the vehicle, and the rigid lower member absorbs the collision energy. The fuel supply device is provided extending from the member toward the lower center of the vehicle, and the fuel supply device is attached to the lower member, thereby preventing the fuel supply device from being damaged when the vehicle collides in the traveling direction.
[0010]
Here, in the second fuel cell system vehicle mounting structure, when the vehicle collides in the advancing direction, a downward movement promoting portion for moving the lower member downward is attached to the lower member with the collision energy absorbing member. A configuration provided in the vicinity may be adopted.
[0011]
Further, in the second fuel cell system vehicle mounting structure,
When the vehicle collides in the traveling direction, the collision energy absorbing member is provided with a collision deformation promoting portion so that the collision energy absorbing member performs a predetermined deformation,
The fuel cell is attached to the collision energy absorbing member such that a formation surface of the fuel cell along the stacking direction and the collision deformation promoting portion face each other.
It can also be configured.
[0012]
The fuel cell storage case of the present invention,
A fuel cell storage case including a housing for housing a fuel cell formed by stacking a plurality of unit cells, and at least two or more support portions for installation disposed outside the housing,
When a load compressing the fuel cell in the stacking direction is applied to two of the at least two or more support sections provided at different positions in the stacking direction of the fuel cell, the housing deforms in a predetermined manner. The gist is that the housing is formed with a housing deformation promoting portion.
[0013]
In the fuel cell storage case of the present invention configured as described above, by forming the housing deformation accelerating portion in the housing, the fuel cell can be mounted on the two supporting portions provided at different positions in the stacking direction of the fuel cell. When a compressive load is applied to the housing, the housing undergoes a predetermined deformation.
[0014]
Here, in the first or second vehicle mounting structure of the fuel cell system, the fuel cell is connected to the housing deformation promoting portion of the fuel cell storage case via the fuel cell storage case storing the fuel cell. It is also possible to adopt a structure that is attached to the collision energy absorbing member such that the collision deformation promoting portion faces the collision energy absorbing member.
[0015]
【Example】
Preferred embodiments of the present invention will be described below to further clarify the configuration and operation of the present invention described above. FIG. 1 is an explanatory view schematically showing a structure in which a fuel cell system vehicle mounting structure as one embodiment of the present invention is applied to a front portion 12 of an electric vehicle 10.
[0016]
As shown, a front portion 12 of the electric vehicle 10 includes frame side members 14 provided on both sides of the vehicle to prevent bending and torsion of the vehicle and absorb collision energy in a traveling direction of the vehicle by deforming the collision energy. The vehicle body forming member 18 joined to the frame side member 14 to form the passenger compartment 11 has a main skeleton, and the skeleton includes a hood panel 12 a that covers an upper part of the front part 12 and a side part of the front part 12. It is formed by attaching a side panel 12b and a front grille 12c that covers the front part of the front part 12. Note that the dashed-dotted circle indicates the position of the front wheel 13.
[0017]
The frame side member 14 has an energy absorbing portion 14a that largely deforms when the vehicle collides in the traveling direction and absorbs the collision energy, and a structure that is less deformable with respect to the collision (for example, a thinner than the energy absorbing portion 14a). And a vehicle compartment forming portion 14b that forms the passenger compartment 11 together with the vehicle compartment forming member 18. A notch 16 is provided at a lower center portion of the energy absorbing portion 14a so that the energy absorbing portion 14a is bent upward when the vehicle collides in the traveling direction. The casing member 18 is formed so as to have high strength against compression in the longitudinal direction (for example, a thick box structure or the like).
[0018]
The fuel cell 20 housed in the storage case 30 is attached to the energy absorbing portion 14a of the frame side member 14 thus configured via the support portions 38 and 39 provided in the storage case 30. A fuel supply device 40 (for example, a reformer that reforms methanol to produce a hydrogen-rich gas) that supplies fuel to the fuel cell 20 is attached to the formation unit 14b by an attachment member 48. Although the fuel supply device 40 is mounted at the forefront of the passenger compartment 11, the space in which the fuel supply device 40 is mounted is separated from the passenger compartment where the passengers in the passenger compartment 11 get on and off by a dash panel (not shown). A radiator 50 and a cooling fan 52 for cooling the heat generated from the fuel cell system by the outside air are attached to the frontmost portion of the energy absorbing unit 14a.
[0019]
The fuel cell 20 is configured as, for example, a solid polymer fuel cell or the like formed by stacking a plurality of unit cells formed of a polymer electrolyte membrane and two electrodes sandwiching the polymer electrolyte membrane. At the center of the storage case 30 for storing the fuel cell 20, a cut portion 32 is formed in which the upper part of the storage case 30 is rectangular and both sides open in a wedge shape. A groove 34 is formed to connect the leading end of the cut portion 32 with a straight line. The fuel cells 20 are stored in the storage case 30 so that the stacking direction is the longitudinal direction of the storage case 30. The fuel cell 20 is attached to the energy absorbing portion 14a such that the groove 34 formed in the storage case 30 and the cutout portion 16 formed in the energy absorbing portion 14a are aligned.
[0020]
Next, a description will be given of a state in which the electric vehicle 10 equipped with the fuel cell system has a collision due to such a mounting structure. FIG. 2 is an explanatory diagram illustrating an outline of deformation of the front portion 12 when the electric vehicle 10 collides in the vehicle traveling direction. As shown in the drawing, due to the collision of the electric vehicle 10, the energy absorbing portion 14a of the frame side member 14 is compressed and deformed in the traveling direction of the vehicle, and stress is generated in the notch 16 due to the compressive load, so that the upwardly convex portion. It bends and deforms so that Due to the compression deformation and the bending deformation of the energy absorbing portion 14a, a load acts on the support portions 38 and 39 of the storage case 30 in the direction of compressing the fuel cell 20. Since the cut portion 32 and the groove 34 are formed in the storage case 30, the storage case 30 is bent and deformed in the same direction as the energy absorbing portion 14a. Here, since the storage case 30 is attached to the energy absorbing portion 14a so that the groove 34 is aligned with the cutout portion 16 formed in the energy absorbing portion 14a, the bending deformation of the storage case 30 is caused by the bending of the energy absorbing portion 14a. The deformation is in the same direction as the deformation. Even when the storage case 30 does not bend and deform, the energy absorbing portion 14a bends and deforms, and the tip of the bent portion contacts the storage case 30 to apply an upward load. It bends and deforms in the same direction.
[0021]
Along with such bending deformation of the storage case 30, the fuel cell 20 separates into two parts at the central lamination surface, breaks down, and absorbs part of the collision energy. Here, the reason why the storage case 30 is bent and deformed to break the fuel cell 20 is that if the fuel cell 20 does not break and resists a load in the compression direction, the energy absorption between the support portions 38 and 39 of the storage case 30 will occur. This is because the portion 14a is also less likely to be compressed and deformed, and the energy absorbing portion 14a cannot sufficiently absorb the collision energy. The electrodes of the unit cells constituting the fuel cell 20 are often formed of dense carbon or the like because of the required conductivity, formability, and the like. Since this dense carbon is a brittle material, it exhibits a certain strength against an even surface pressure, but is easily damaged by a point load. Therefore, in the embodiment, the fuel cell 20 is separated at the center stacking surface, so that a stress corresponding to a point load is applied to the separation surface and the fuel cell 20 is broken. Note that part of the collision energy is also absorbed when the fuel cell 20 is broken.
[0022]
The collision energy is absorbed by the compression deformation and the bending deformation of the energy absorbing portion 14a, the bending deformation of the storage case 30, the destruction of the fuel cell 20, the damage of the front grill 12c, and the like. Depending on the degree of collision, the chamber forming member 18 does not deform at all or only slightly deforms, and maintains the passenger compartment 11 without deformation. As a result, the fuel supply device 40 mounted at the forefront of the passenger compartment 11 is not damaged by the collision.
[0023]
When the collision speed is high and the collision energy is large, the energy absorbing portion 14a and the storage case 30 are further deformed through deformation into the illustrated shape, and absorb the collision energy. Even in this case, the passenger compartment 11 is maintained without being deformed because the passenger compartment forming portion 14b and the passenger compartment forming member 18 are stopped to such a degree that they are slightly deformed. The degree of rigidity of the cabin forming member 18 and the cabin forming portion 14b for maintaining the passenger compartment 11 is determined by the weight of the electric vehicle 10 and the assumed collision speed.
[0024]
According to the fuel cell system vehicle mounting structure of the embodiment described above, the storage case 30 is aligned so that the notch 16 provided at the lower center of the energy absorbing portion 14a and the groove 34 provided at the bottom of the storage case 30 are aligned. By being attached to the energy absorbing portion 14a, the storage case 30 can be bent and deformed according to the compression deformation and the bending deformation in the energy absorbing portion 14a. As a result, the fuel cell 20 can be destroyed, the collision energy can be sufficiently absorbed by the energy absorbing portion 14a, and the collision energy due to the breakdown of the fuel cell 20 can be absorbed. Further, since the rigidity of the vehicle interior forming portion 14b and the vehicle interior forming member 18 is increased, the passenger compartment 11 can be maintained, and a more secure structure can be achieved. Therefore, damage to the fuel supply device 40 attached to a part of the passenger compartment 11 can be prevented, and leakage of fuel due to damage to the fuel supply device 40 can also be prevented.
[0025]
According to the storage case 30 of the embodiment, the notch 32 and the groove 34 are formed so that when a load is applied to the support portions 38 and 39 in the direction of compressing the fuel cell 20, the notch 32 is formed. Further, the storage case 30 can be bent and deformed so as to open. As a result, the destruction of the fuel cell 20 can be promoted, and the collision energy can be sufficiently absorbed by the energy absorbing portion 14a.
[0026]
In the embodiment, the notch 16 is formed at the lower center of the energy absorbing portion 14a. However, since the energy absorbing portion 14a may be bent to be convex upward, the upper half of the energy absorbing portion 14a is formed of a material having high rigidity. Alternatively, the lower half may be formed of a material having low rigidity, or the energy absorbing portion 14a may be slightly bent in advance. Further, the energy absorbing portion 14a may be formed so that the fuel cell 20 side is raised.
[0027]
Further, in the embodiment, the surface of the energy absorbing portion 14a facing the storage case 30 is formed flat, but a configuration in which the protrusion is formed at a position facing the groove 34 of the storage case 30 of the energy absorbing portion 14a is also preferable. . If the projection is formed in this way, the projection immediately comes into contact with the storage case 30 at the time of a collision, so that bending deformation of the storage case 30 can be promoted. When the projection is formed, the storage case can be bent and deformed in the same direction as the energy absorbing portion 14a even if a storage case in which the cutout portion 32 and the groove 34 are not used is used.
[0028]
Next, a second embodiment of the present invention will be described. FIG. 3 is an explanatory diagram showing an outline of a structure when the fuel cell system vehicle mounting structure of the second embodiment is applied to the front part 12 of the electric vehicle 10. The fuel cell system vehicle mounting structure of the second embodiment uses a support base 70 instead of the storage case 30 of the fuel cell system vehicle mounting structure of the first embodiment, instead of two storage cases 60 and 62 storing fuel cells. And is attached to the energy absorbing portion 14a. In the configuration of the fuel cell system vehicle mounting structure of the second embodiment, the same components as those of the fuel cell system vehicle mounting structure of the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
[0029]
As shown in the drawing, a bent portion 72 is formed on the support base 70, and two storage cases 60 and 62 that store the fuel cells are installed on two slopes formed by the bent portion 72. The support 70 is attached to the energy absorbing portion 14a of the frame side member 14 by support portions 78 and 79 provided below the support 70.
[0030]
Next, a situation when the electric vehicle 10 equipped with the fuel cell system of the second embodiment collides will be described. FIG. 4 is an explanatory diagram illustrating an outline of the deformation of the front portion 12 when the electric vehicle 10 of the second embodiment collides in the vehicle traveling direction. As shown in the drawing, due to the collision of the electric vehicle 10 in the traveling direction, the energy absorbing portion 14a of the frame side member 14 undergoes compression deformation and bending deformation similarly to the energy absorbing portion 14a in the mounting structure of the first embodiment. Due to the compression deformation and the bending deformation of the energy absorbing portion 14a, a load acts on the support portions 78 and 79 in a direction of compressing the support table 70 along the longitudinal direction of the support table 70. In response to this load, the bending moment at the bent portion 72 of the support base 70 is maximized, so that the bending is further performed in the direction bent in advance at the bent portion 72. It should be noted that the two storage cases 60 and 62 in which the fuel cells are stored are easily deformed by a load other than the load along the stacking direction, and the stored fuel cells are destroyed. Easier to do.
[0031]
According to the fuel cell system vehicle mounting structure of the second embodiment described above, the support base 70 is also bent and deformed in accordance with the compression deformation and the bending deformation of the energy absorbing portion 14a, so that the collision energy is sufficiently absorbed by the energy absorbing portion 14a. can do. Further, since the support base 70 and the storage cases 60 and 62 do not actively destroy the fuel cell as compared with the storage case 30 of the first embodiment, when the collision energy is small, the fuel cell can be destroyed. It can be held without. Further, since the storage cases 60 and 62 are inclined by providing the bent portion 72 on the support base 70, water generated by the electrochemical reaction in the fuel cells stored in the storage cases 60 and 62 can be easily drained. When the collision energy is large, the storage cases 60 and 62 are also deformed and the stored fuel cell is destroyed, so that the collision energy can be absorbed by the fuel cell. In addition, since the rigidity of the compartment forming part 14b and the compartment forming member 18 is increased, the passenger compartment 11 can be maintained and the fuel supply device 40 can be prevented from being damaged.
[0032]
Next, a third embodiment of the present invention will be described. FIG. 5 is an explanatory view schematically showing a structure in which the fuel cell system vehicle mounting structure of the third embodiment is applied to the front portion 112 of the electric vehicle 110.
[0033]
As shown in the figure, a front portion 112 of an electric vehicle 110 is provided on both sides of the vehicle and absorbs collision energy in the traveling direction of the vehicle by deformation and forms a passenger compartment 111 and is joined to the frame member 114. The vehicle body forming member 117 that forms the passenger compartment 111 together with the frame member 114 is used as a main skeleton. The skeleton includes a hood panel 112a that covers an upper part of the front part 112 and a side panel 112b that covers a side part of the front part 112. And a front grille 112c that covers the front part of the front part 112.
[0034]
The frame member 114 is largely deformed when the vehicle collides in the traveling direction and absorbs the collision energy. The energy absorbing portion 114a and the vehicle interior forming portion 114b extend forward and upward of the vehicle via a bent portion. A compression deformation accelerating portion 115a having a structure which is easily compressed and deformed (for example, a thin-walled box structure or a structure having a plurality of holes on the side surface of the box) is provided at a front portion of the energy absorbing portion 114a. Notches 115b and 115c are formed at the bent portion of the frame member 114 and at the end of the vehicle compartment forming portion 114b so as to bend and deform.
[0035]
The vehicle-chamber forming member 117 has two bent portions at the foremost portion, and cutout portions 117a and 117b are formed in the bent portions so as to be easily bent and deformed. A notch 117c is also formed at a position slightly away from the notch 117b of the cabin forming member 117 in the center of the passenger compartment 111.
[0036]
The fuel cell 120 stored in the storage case 130 is attached to the energy absorbing portion 114a of the frame member 114 configured in this manner via the support portions 138 and 139 provided in the storage case 130 to form a vehicle compartment. A fuel supply device 140 that supplies fuel to the fuel cell 120 is attached to the member 117 by an attachment member 148. Although the fuel supply device 140 is mounted at the forefront of the passenger compartment 111, a space where the fuel supply device 140 is mounted is separated from a passenger compartment in which the person in the passenger compartment 111 gets on and off by a dash panel (not shown). A radiator 50 and a cooling fan 52 for cooling the heat generated from the fuel cell system by the outside air are attached to the front of the vehicle in the energy absorbing unit 114a.
[0037]
The fuel cell 120 and the storage case 130 have the same configuration as the fuel cell 20 and the storage case 30 of the first embodiment except for the support portions 138 and 139. That is, the fuel cell 120 is formed by stacking unit cells, and the storage case 130 includes the same cut portions 132 and grooves 134 as the cut portions 32 and the grooves 34 of the storage case 30 of the first embodiment. The support portions 138 and 139 of the storage case 130 do not separate from the attached energy absorbing portion 114a in a normal operation of the electric vehicle 110, but when a large collision energy acts, the support portions 138 and 139 are damaged. The strength of the supporting portions 138 and 139 is set so as to be away from the energy absorbing portion 114a. The strength of the support portions 138 and 139 is determined by the weight of the fuel cell 120 and the storage case 130, the collision energy, and the like.
[0038]
Next, a description will be given of a state in which the electric vehicle 110 equipped with the fuel cell system has a collision by the mounting structure. FIG. 6 is an explanatory diagram illustrating an outline of deformation of the front portion 112 when the electric vehicle 110 collides in the vehicle traveling direction. As shown in the figure, due to the collision of the electric vehicle 110, the energy absorbing portion 114a of the frame member 114 is largely compressed and deformed in the vehicle traveling direction to absorb the collision energy. Further, the cutouts 115b and 115c are provided in the frame member 114, and the cutouts 117a, 117b and 117c are provided in the vehicle compartment forming member 117. Therefore, the frame member 114 and the vehicle compartment forming member 117 are provided with the cutouts 115b, 115c, It bends at the portions where 117a, 117b, and 117c are formed to absorb the collision energy.
[0039]
Due to the compression deformation of the frame member 114, the storage case 130 bends and deforms in the same manner as the storage case 30 of the first embodiment, and the fuel cell 120 also has a central laminated surface similarly to the fuel cell 120 of the first embodiment. Destroy in two. When the collision energy is large, the support portions 138 and 139 are damaged, and the storage case 130 is separated from the energy absorbing portion 14a. For this reason, the energy absorbing portion 114a can sufficiently absorb the collision energy since the compression deformation is not hindered by the fuel cell 120 and the storage case 130.
[0040]
Further, as shown in the drawing, the portion of the casing forming member 117 where the cutouts 117a, 117b, and 117c are formed is deformed so as to move downward between the cutouts 117b and 117c. 140 moves downward. As described above, the fuel supply device 140 moves so as to escape from the collision energy caused by the collision of the electric vehicle 110, and thus is not damaged by the collision.
[0041]
According to the fuel cell system vehicle mounting structure of the third embodiment described above, the vehicle compartment forming member 117 is provided with the two bent portions and the cutouts 117a, 117b, and 117c. In the event of a collision, the fuel supply device 140 is deformed so as to escape downward, so that damage to the fuel supply device 140 due to the collision can be prevented. When the collision energy is large, the support portions 138 and 139 of the storage case 130 are damaged, and the storage case 130 is separated from the energy absorbing portion 114a, so that the energy absorbing portion 114a can sufficiently absorb the collision energy. In addition, since the cut portion 132 and the groove 134 are provided in the storage case 130, the storage case 130 can be bent and deformed due to the compression deformation of the energy absorbing portion 114a, and the fuel cell 120 can be broken.
[0042]
In the third embodiment, the support portions 138 and 139 of the storage case 130 are damaged when the impact energy is large, and the storage case 130 is separated from the energy absorbing portion 114a. However, the support portions 138 and 139 are damaged. Alternatively, the storage case 130 may not be separated from the energy absorbing portion 114a.
[0043]
Although the embodiments of the present invention have been described above, the present invention is not limited to such embodiments at all. For example, the gist of the present invention includes a configuration applied to a structure for mounting a fuel cell system to a rear part of a vehicle. Of course, the present invention can be implemented in various modes without departing from the scope of the present invention.
[0044]
【The invention's effect】
As described above, according to the first fuel cell system vehicle mounting structure of the present invention, the collision energy absorbing member is provided with the collision deformation promoting portion, and the fuel cell is formed with the forming surface along the stacking direction and the collision deformation promoting portion. By attaching the collision energy absorbing member to the collision energy absorbing member so that the fuel cell faces each other, the collision energy absorbing member can be deformed in a predetermined manner, and this deformation can promote the breakage of the fuel cell. As a result, the collision energy absorbing member can sufficiently absorb the collision energy, and the fuel cell can also absorb the collision energy.
[0045]
According to the second fuel cell system vehicle mounting structure of the present invention, the upper member and the lower member having rigidity are provided, and the fuel supply device is mounted on the lower member. Since the member and the lower member are not deformed, damage to the fuel supply device can be prevented.
[0046]
According to the fuel cell storage case of the present invention, by forming the housing deformation accelerating portion in the housing, the load for compressing the fuel cell in the stacking direction can be applied to the two support portions provided at different positions in the stacking direction of the fuel cell. When actuated, the housing can be deformed in a predetermined manner. As a result, the destruction of the stored fuel cell can be promoted.
[Brief description of the drawings]
FIG. 1 is an explanatory view schematically showing a structure when a fuel cell system vehicle mounting structure as one embodiment of the present invention is applied to a front portion 12 of an electric vehicle 10. FIG.
FIG. 2 is an explanatory view exemplifying a schematic state of deformation of a front section 12 when an electric vehicle 10 collides in a vehicle traveling direction.
FIG. 3 is an explanatory view schematically showing a structure in a case where a fuel cell system vehicle mounting structure according to a second embodiment is applied to a front portion 12 of an electric vehicle 10.
FIG. 4 is an explanatory view exemplifying a schematic state of deformation of a front portion 12 when an electric vehicle 10 of the second embodiment collides in a vehicle traveling direction.
FIG. 5 is an explanatory view schematically showing a structure in a case where a fuel cell system vehicle mounting structure according to a third embodiment is applied to a front portion 112 of an electric vehicle 110.
FIG. 6 is an explanatory view exemplifying a schematic state of deformation of a front portion 112 when the electric vehicle 110 of the third embodiment collides in the vehicle traveling direction.
[Explanation of symbols]
10 ... Electric car
11 ... Riding room
12 Front part
12a: Food panel
12b ... Side panel
12c ... front grill
13 ... front wheel
14… Frame side member
14a: Energy absorbing part
14b: vehicle compartment forming part
16 Notch
18… Cabin formation member
20 ... Fuel cell
30 ... storage case
32 ... notch
34 ... groove
38 ... Support
40 ... Fuel supply device
48 ... Mounting member
50 ... radiator
52 ... Cooling fan
60, 62 ... storage case
70 ... Support
72 ... Bend
78 ... Support
110 ... Electric car
111 ... Riding room
112 ... Front
112a ... Hood panel
112b ... Side panel
112c ... Front grill
114 ... frame member
114a: Energy absorbing part
114b: compartment forming part
115a: Compression deformation accelerating part
115b, 115c: Notch
117… Cabin formation member
117a, 117b, 117c: Notch
120 ... Fuel cell
130 ... storage case
132 ... notch
134 ... groove
138, 139: Supporting part
140 ... Fuel supply device
148 ... Mounting member

Claims (6)

車両の前部または後部に配置され衝突によるエネルギを吸収する衝突エネルギ吸収部材を備えた車両に、単電池を積層してなる燃料電池と該燃料電池に燃料を供給する燃料供給装置とからなる燃料電池システムを取り付ける燃料電池システム車両取付構造であって、
車両が進行方向に衝突した際、前記衝突エネルギ吸収部材が所定の変形をするよう該衝突エネルギ吸収部材に衝突変形促進部を設け、
少なくとも前記燃料電池を、該燃料電池の積層方向に沿った形成面と前記衝突変形促進部とが対向するよう前記衝突エネルギ吸収部材に取り付ける
燃料電池システム車両取付構造。
A fuel comprising a fuel cell in which unit cells are stacked on a vehicle provided with a collision energy absorbing member disposed at a front or rear portion of the vehicle and absorbing energy due to a collision, and a fuel supply device for supplying fuel to the fuel cell A fuel cell system vehicle mounting structure for mounting a battery system,
When the vehicle collides in the traveling direction, the collision energy absorbing member is provided with a collision deformation promoting portion so that the collision energy absorbing member performs a predetermined deformation,
A vehicle mounting structure for a fuel cell system, wherein at least the fuel cell is mounted on the collision energy absorbing member such that a formation surface of the fuel cell in a stacking direction and the collision deformation promoting portion face each other.
車両の前部または後部に配置され衝突によるエネルギを吸収する衝突エネルギ吸収部材を備えた車両に、単電池を積層してなる燃料電池と該燃料電池に燃料を供給する燃料供給装置とからなる燃料電池システムを取り付ける燃料電池システム車両取付構造であって、
剛性を有し、前記衝突エネルギ吸収部材から車両の中央上部方向に延出した上部材と、
剛性を有し、前記衝突エネルギ吸収部材から車両の中央下部方向に延出した下部材と
を設け
少なくとも前記燃料供給装置を前記下部材に取り付ける
燃料電池システム車両取付構造。
A fuel comprising a fuel cell in which unit cells are stacked on a vehicle provided with a collision energy absorbing member disposed at a front or rear portion of the vehicle and absorbing energy due to a collision, and a fuel supply device for supplying fuel to the fuel cell A fuel cell system vehicle mounting structure for mounting a battery system,
An upper member having rigidity and extending from the collision energy absorbing member toward the upper center of the vehicle;
A lower member having rigidity and extending from the collision energy absorbing member toward a lower center direction of the vehicle, and at least the fuel supply device is attached to the lower member.
車両が進行方向に衝突した際、前記下部材を下方に移動させる下方移動促進部を該下部材の前記衝突エネルギ吸収部材との取付部近傍に設けてなる請求項2記載の燃料電池システム車両取付構造。3. The fuel cell system vehicle mounting according to claim 2, wherein a downward movement promoting portion for moving the lower member downward when the vehicle collides in the traveling direction is provided near a mounting portion of the lower member with the collision energy absorbing member. Construction. 請求項2または3記載の燃料電池システム車両取付構造であって、
車両が進行方向に衝突した際、前記衝突エネルギ吸収部材が所定の変形をするよう該衝突エネルギ吸収部材に衝突変形促進部を設け、
前記燃料電池を、該燃料電池の積層方向に沿った形成面と前記衝突変形促進部とが対向するよう前記衝突エネルギ吸収部材に取り付ける
燃料電池システム車両取付構造。
The fuel cell system vehicle mounting structure according to claim 2 or 3, wherein:
When the vehicle collides in the traveling direction, the collision energy absorbing member is provided with a collision deformation promoting portion so that the collision energy absorbing member performs a predetermined deformation,
A vehicle mounting structure for a fuel cell system, wherein the fuel cell is mounted on the collision energy absorbing member such that a formation surface of the fuel cell in a stacking direction and the collision deformation promoting portion face each other.
単電池を複数積層してなる燃料電池を収納するハウジングと、該ハウジングの外側に配置された設置用の少なくとも2以上の支持部とを備える燃料電池収納ケースであって、
前記少なくとも2以上の支持部のうち前記燃料電池の積層方向の異なる位置に設けられた2つの支持部に該燃料電池を積層方向に圧縮する荷重が作用したとき、前記ハウジングが所定の変形をするよう該ハウジングにハウジング変形促進部を形成してなる燃料電池収納ケース。
A fuel cell storage case including a housing for housing a fuel cell formed by stacking a plurality of unit cells, and at least two or more support portions for installation disposed outside the housing,
When a load compressing the fuel cell in the stacking direction is applied to two of the at least two or more support sections provided at different positions in the stacking direction of the fuel cell, the housing deforms in a predetermined manner. A fuel cell storage case in which a housing deformation promoting portion is formed in the housing.
前記燃料電池を、該燃料電池を収納した請求項5記載の燃料電池収納ケースを介して、該燃料電池収納ケースの前記ハウジング変形促進部と前記衝突変形促進部とが対向するよう前記衝突エネルギ吸収部材に取り付ける請求項1ないし4いずれか記載の燃料電池システム車両取付構造。6. The collision energy absorption device according to claim 5, wherein the fuel cell is housed in the fuel cell storage case, and the housing deformation promotion portion and the collision deformation promotion portion of the fuel cell storage case face each other. The fuel cell system vehicle mounting structure according to any one of claims 1 to 4, which is mounted on a member.
JP02592195A 1995-01-19 1995-01-19 Fuel cell system vehicle mounting structure and fuel cell storage case Expired - Fee Related JP3551519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02592195A JP3551519B2 (en) 1995-01-19 1995-01-19 Fuel cell system vehicle mounting structure and fuel cell storage case

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02592195A JP3551519B2 (en) 1995-01-19 1995-01-19 Fuel cell system vehicle mounting structure and fuel cell storage case

Publications (2)

Publication Number Publication Date
JPH08192639A JPH08192639A (en) 1996-07-30
JP3551519B2 true JP3551519B2 (en) 2004-08-11

Family

ID=12179251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02592195A Expired - Fee Related JP3551519B2 (en) 1995-01-19 1995-01-19 Fuel cell system vehicle mounting structure and fuel cell storage case

Country Status (1)

Country Link
JP (1) JP3551519B2 (en)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19962685C2 (en) * 1999-12-23 2002-01-17 Siemens Ag Fuel cell system as a drive unit of a vehicle
CA2353210C (en) 2000-07-19 2006-07-11 Toyota Jidosha Kabushiki Kaisha Fuel cell apparatus
JP3923280B2 (en) * 2001-06-13 2007-05-30 本田技研工業株式会社 Mounting structure for vehicle equipment
JP4626097B2 (en) * 2001-06-15 2011-02-02 トヨタ自動車株式会社 In-vehicle fuel cell system
JP3893965B2 (en) * 2001-12-13 2007-03-14 トヨタ自動車株式会社 Electric car
JP3842204B2 (en) 2002-11-11 2006-11-08 本田技研工業株式会社 Front body structure
JP3746758B2 (en) 2002-11-11 2006-02-15 本田技研工業株式会社 Piping structure for fuel cell vehicles
JP3792640B2 (en) 2002-11-12 2006-07-05 本田技研工業株式会社 Body layout structure of fuel cell system
JP2004288499A (en) * 2003-03-24 2004-10-14 Equos Research Co Ltd Fuel cell device
US7070015B2 (en) 2003-05-12 2006-07-04 Ford Global Technologies Llc Battery mounting system for automotive vehicle
JP4649849B2 (en) 2004-03-02 2011-03-16 トヨタ自動車株式会社 Storage mechanism mounting structure
JP4523362B2 (en) 2004-08-20 2010-08-11 本田技研工業株式会社 Fuel cell vehicle
JP4754321B2 (en) * 2004-11-26 2011-08-24 本田技研工業株式会社 Fuel cell vehicle
JP4334501B2 (en) * 2005-04-28 2009-09-30 三洋電機株式会社 Power supply for vehicle
JP4804969B2 (en) 2006-03-16 2011-11-02 本田技研工業株式会社 Front structure of a fuel cell vehicle
JP4940966B2 (en) * 2007-01-30 2012-05-30 日産自動車株式会社 Battery mounting structure
JP4978316B2 (en) * 2007-06-04 2012-07-18 トヨタ自動車株式会社 Automotive electronic unit
JP5056558B2 (en) * 2008-04-16 2012-10-24 トヨタ自動車株式会社 All-solid lithium secondary battery
FR2938483B1 (en) * 2008-11-14 2011-10-21 Peugeot Citroen Automobiles Sa DEVICE FOR MOVING A RIGID ELEMENT, AND VEHICLE EQUIPPED WITH SUCH A DEVICE
DE112010005267B4 (en) * 2010-02-15 2016-11-03 Toyota Jidosha Kabushiki Kaisha Movable body equipped with a fuel cell
JP5510168B2 (en) * 2010-08-06 2014-06-04 トヨタ自動車株式会社 vehicle
US9130359B2 (en) 2012-03-06 2015-09-08 Sabic Global Technologies B.V. Energy absorbing system for electric vehicle charging station and methods for making and using the same
CN103847488A (en) * 2012-12-06 2014-06-11 北汽福田汽车股份有限公司 Collision safety device of pure electric automobile and pure electric automobile
JP6063406B2 (en) 2014-03-06 2017-01-18 本田技研工業株式会社 Fuel cell stack mounting structure
JP6213331B2 (en) * 2014-03-24 2017-10-18 トヨタ自動車株式会社 Electric vehicle
JP5831597B1 (en) * 2014-06-06 2015-12-09 トヨタ自動車株式会社 Electric vehicle
JP6363656B2 (en) 2016-06-23 2018-07-25 株式会社Subaru Automotive battery
JP6581067B2 (en) 2016-11-02 2019-09-25 トヨタ自動車株式会社 Fuel cell vehicle
JP6562224B2 (en) * 2017-01-19 2019-08-21 トヨタ自動車株式会社 Fuel cell vehicle
JP6852531B2 (en) * 2017-04-07 2021-03-31 トヨタ自動車株式会社 Fuel cell vehicle
JP6939040B2 (en) 2017-04-18 2021-09-22 トヨタ自動車株式会社 vehicle
JP6844400B2 (en) * 2017-04-21 2021-03-17 トヨタ自動車株式会社 Fuel cell vehicle
JP7148338B2 (en) * 2018-09-19 2022-10-05 本田技研工業株式会社 Fuel cell module and its mounting method
JP7095556B2 (en) * 2018-10-29 2022-07-05 トヨタ自動車株式会社 Fuel cell vehicle
JP7255546B2 (en) * 2020-04-28 2023-04-11 トヨタ自動車株式会社 vehicle

Also Published As

Publication number Publication date
JPH08192639A (en) 1996-07-30

Similar Documents

Publication Publication Date Title
JP3551519B2 (en) Fuel cell system vehicle mounting structure and fuel cell storage case
US10486516B2 (en) Battery mounting structure
JP6766745B2 (en) vehicle
US9834079B2 (en) Fuel cell vehicle
KR101380476B1 (en) Automobile having vehicle drive motor
JP5257718B2 (en) vehicle
KR100597023B1 (en) Car
US10978760B2 (en) Structural component, battery housing, and motor vehicle with such a battery housing
EP1951554B1 (en) Harness routing structure
JP4637666B2 (en) Fuel cell vehicle
JP2017185948A (en) Battery mounting structure for vehicle
CN113246707A (en) Attachment device for an electrical energy source for providing traction for a vehicle, preferably an electric vehicle
US10640005B2 (en) Bracket attachment structure having an internal plate
JP6310989B1 (en) Battery module fixing structure
JP6798310B2 (en) Battery pack for vehicle mounting
US20240010080A1 (en) Fuel cell vehicle
CN113246706A (en) Attachment device for providing traction for a vehicle, in particular an electric vehicle, i.e. an electric energy source for driving the vehicle
KR102635097B1 (en) Fuel cell vehicle
JP2021126955A (en) Vehicle body
JP2024017329A (en) Transaxle case loading structure
CN115207543A (en) Battery module mounting case for vehicle
JP2024125754A (en) Underbody structure
JP2020157806A (en) vehicle
JP2023003549A (en) battery pack structure
JP2021109570A (en) Energy storage module fixing structure

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees