JP3551212B2 - Assembly method of polarization independent optical isolator - Google Patents

Assembly method of polarization independent optical isolator Download PDF

Info

Publication number
JP3551212B2
JP3551212B2 JP22479095A JP22479095A JP3551212B2 JP 3551212 B2 JP3551212 B2 JP 3551212B2 JP 22479095 A JP22479095 A JP 22479095A JP 22479095 A JP22479095 A JP 22479095A JP 3551212 B2 JP3551212 B2 JP 3551212B2
Authority
JP
Japan
Prior art keywords
polarization
incident
light
collimator
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22479095A
Other languages
Japanese (ja)
Other versions
JPH0949987A (en
Inventor
慎 杉山
聡明 渡辺
和雄 神屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP22479095A priority Critical patent/JP3551212B2/en
Publication of JPH0949987A publication Critical patent/JPH0949987A/en
Application granted granted Critical
Publication of JP3551212B2 publication Critical patent/JP3551212B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、偏波無依存型光アイソレータに関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
偏波無依存型光アイソレータは、レーザの出射部に設けられて反射戻り光を除去する偏波依存型光アイソレータとは異なり、入射光の偏光状態によらずに機能する点が特徴であり、主にErドープファイバを利用した光増幅器に用いられる。このようなタイプの光アイソレータは、従来より各種提案されている(例えば、特公昭58−28561号、特公昭61−58809号公報等)。これら従来の偏波無依存型光アイソレータの構成は、いずれも複屈折性の結晶を用いて入射光を直交する偏波成分に分離し、出射側で再び両光線を一致させているものである。
【0003】
しかし、この種の光アイソレータは、分離された光線の伝搬経路が異なるため、構成によっては出射側で2つの光線が完全に一致しないといった機能部の本質的な問題により、入射光の偏光状態に依存した特性の変動が生じ易い。この偏光状態に依存した特性の変動として代表的なものは、偏波依存損失(PDL:Polarization Dependent Loss)である。PDLは、入射光の偏波状態による順方向損失変動幅の最大値であり、出射時に2つの直交する偏波成分に対応した光線が完全に一致しない場合、両光線の出射側ファイバへの結合効率が異なればPDLは大きくなる。
【0004】
ところで、通常、偏波無依存型光アイソレータを組み立てる場合、順方向に入射側ファイバから光を入れ、順方向損失が最小となるように出射側のコリメータを位置合わせする。その際、入射光の偏波状態は特に問題としないため、ある偏った偏光の光を使用している可能性もある。そのような偏波状態において、損失が最小となるように光アイソレータを組み立てた場合、入射光の偏波状態が変化した時に大きく損失が変動する場合がある。従って、この点の解決が求められる。
【0005】
本発明は、上記事情に鑑みなされたもので、偏波依存損失(PDL)を小さくすることができる偏波無依存型光アイソレータの組立方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、上記目的を達成するため、
(1)入射側光ファイバと、このファイバからの入射光を平行化する入射側コリメータと、この平行光を直交する偏波成分に分離する複屈折性結晶からなる入射側偏光分離素子と、上記偏波成分を45°回転させるファラデー回転子と、この45°回転された偏波成分を再度平行化する複屈折性結晶からなる出射側偏光分離素子と、この平行光を受光側光ファイバに集光する受光側コリメータと、上記受光側光ファイバとを具備する偏波無依存型光アイソレータを組み立てるに際し、上記入射側光ファイバと入射側コリメータとの間に偏光解消素子を介在させて、入射側光ファイバからの入射光をランダムな偏光状態にすると共に、上記出射側偏光分離素子からの平行光の光の損失が順方向で最小となるように上記受光側コリメータを調心して位置合わせすることを特徴とする偏波無依存型光アイソレータの組立方法、及び、
(2)入射側光ファイバと、このファイバからの入射光を平行化する入射側コリメータと、この平行光を直交する偏波成分に分離する複屈折性結晶からなる入射側偏光分離素子と、上記偏波成分を45°回転させるファラデー回転子と、この45°回転された偏波成分を再度平行化する複屈折性結晶からなる出射側偏光分離素子と、この平行光を受光側光ファイバに集光する受光側コリメータと、上記受光側光ファイバとを具備する偏波無依存型光アイソレータを組み立てるに際し、上記入射側光ファイバと入射側コリメータとの間に波長板を介在させて、この波長板を回転させて入射光の偏光状態を変化させると共に、上記出射側偏光分離素子からの平行光の光の損失の変動が最小になるように上記受光側コリメータを調心して位置合わせすることを特徴とする偏波無依存型光アイソレータの組立方法
を提供する。
【0007】
本発明においては、入射側光ファイバに偏光解消素子を挿入して無偏光な状態を作り出し、その状態での損失が最小となるようにコリメータを調心して組み立てを行う。これによって直交する2つの偏波成分に対応した2つの光線は等しい強度となり、この状態で損失が最小となるように組み立てれば2つの光線の出射側光ファイバへの結合効率も等しくなり、順方向の損失は入射光の偏波状態に影響を受けにくくなる。また、別の手段として、入射側光ファイバに挿入した波長板を回転させることによって入射光の偏波状態を変化させ、それによる損失の変動が最小になるようにコリメータの調心を行っても効果が得られるものである。
【0008】
【発明の実施の形態及び実施例】
以下、本発明を図面を参照して具体的に説明する。図1は、本発明の一実施例に係る偏波無依存型光アイソレータを示すもので、1は入射側光ファイバ、2は入射側コリメータ、3は機能部、4は受光側コリメータ、5は受光器(受光側光ファイバ)である。
【0009】
ここで、上記機能部3は、図2に示すように、複屈折性結晶よりなる入射側偏光分離素子3aと、ファラデー回転子3bと、複屈折性結晶よりなる出射側偏光分離素子3cとを具備するものである。
【0010】
上記光アイソレータは、その入射側光ファイバ1からの入射光が入射側コリメータ2で平行化され、この平行光が上記機能部3の入射側偏光分離素子3aで直交する偏波成分に分離され、ファラデー回転子3bにて45°回転され、出射側偏光分離素子3cにより再度平行化され、受光側コリメータ4で集束されて受光側光ファイバ5により受光されるものである。
【0011】
この場合、図2(A)に示すように、順方向の光は第1の複屈折性結晶(入射側偏光分離素子3a)で常光と異常光に分離された後、ファラデー回転子3bによって偏光方向が45°回転される。次に、第2の複屈折性結晶(出射側偏光分離素子3c)によって分離した2つの光線は平行光線に直され、レンズ(受光側コリメータ4)によって受光側光ファイバ5に集光されるものであるが、図2(B)に示すように、逆方向の光はファラデー回転子3bの非相反性により発散光となり、レンズ(入射側コリメータ2)の有効径内には入らないものである。
【0012】
以上の構成では、順方向の上記2つの光線は完全には一点で一致しないものであり、2本の平行光線となる。
【0013】
そこで、本発明においては、図1に示すように、入射側光ファイバ1と入射側コリメータ2との間に偏光解消素子又は波長板6を介在させたものである。即ち、入射光は、上記偏光解消素子6によってランダムな偏光状態とされ、入射側コリメータ2から出射される。順方向に配置した機能部3を通過した光線に対して、結合効率が最大になるよう受光側のコリメータ4を位置合わせする。あるいは、偏光解消素子に代えて波長板(例えば1/4,1/2λ板)を挿入し、両者の回転によって偏光状態を変化させた際の結合効率の変動が最小となるように受光側のコリメータ4を位置合わせするもので、これにより偏波無依存型光アイソレータの機能部3の特性に起因する偏波状態に依存した損失変動が最小限に抑えられるものである。
【0014】
なお、偏光解消板とは直線偏光、楕円偏光といった特定の偏光状態を無偏光、即ちランダムな偏光状態に変えるものであり、複屈折プリズム、表面に凹凸をつけた複屈折板などを用いることができる。また、本発明でコリメータとは、光ファイバとレンズを組み合わせ、光ファイバから発散する光を平行光に直す、又はレンズに入射する平行光を光ファイバに集光する機能を持たせたものである。
【0015】
次に、上記効果を確認するため、1/4,1/2λ板を用い、受光側光ファイバ配置位置にIRカメラ7を配置した図3に示す装置を用い、受光側コリメータ4からの出射光をIRカメラにより観察した。なお、入射光はλ=1.55μmの単色光を用い、上記各偏光分離素子(くさび型の複屈折性結晶)はTiOであり、ファラデー回転子はYIGを用いた。波長板を回転させた際のIRカメラ像の変化を図4(A)〜(E)に示す。ここで、図4(A)〜(E)は、1/2波長板を順次π/8ずつ回転させた結果である。なお、図4(A)〜(E)中、Lは中心線、Sはスポットである。
【0016】
図4の結果では、偏光状態の変化に伴ってスポット位置が右寄りにずれている。つまり、図4(A)の偏光状態で損失が最小である場合、(B)の状態では結合効率が落ちてしまうことになる。このような影響を最小限に抑えるためには、図4(A)及び(B)のスポットが均等になる偏光状態で装置を組み立てればよく、そのような状態は入射光がランダムな偏光状態にあるとき実現される。
【0017】
そこで、図1に示したような偏光解消素子を用いた系で装置の組み立てを行うことにより、従来0.1dB〜0.3dB程度であったPDLを0.1dB以下で再現性よく組み立てられるようになった。また、偏光解消板に代えて波長板を挿入し、その回転による損失変動を最小とするように組み立てても良好な結果が得られた。
【0018】
【発明の効果】
本発明によれば、偏波無依存型光アイソレータの機能部の特性に起因する偏波状態に依存した損失変動を最小限に抑え、PDLの小さい偏波無依存型光アイソレータを確実に作製することができる。
【図面の簡単な説明】
【図1】本発明の偏波無依存型光アイソレータを説明する概略図である。
【図2】同アイソレータの機能部の構成を説明する該略図であり、(A)は順方向、(B)は逆方向の光の進行状態を説明する図である。
【図3】IRカメラによるビームの観察装置を説明する概略図である。
【図4】アイソレータ機能部からの出射ビーム像の説明図であり、(A)〜(E)は1/2波長板を順次π/8ずつ回転させた場合の図である。
【符号の説明】
1 入射側光ファイバ
2 入射側コリメータ
3 機能部
3a 入射側偏光分離素子
3b ファラデー回転子
3c 出射側偏光分離素子
4 受光側コリメータ
5 受光側光ファイバ
6 偏光解消素子又は波長板
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polarization independent optical isolator.
[0002]
Problems to be solved by the prior art and the invention
Polarization-independent optical isolators are characterized by the fact that they function independently of the polarization state of incident light, unlike polarization-dependent optical isolators that are provided in the laser emission section and remove reflected return light. It is mainly used for optical amplifiers using Er-doped fibers. Various types of optical isolators of this type have been conventionally proposed (for example, Japanese Patent Publication No. 58-28561 and Japanese Patent Publication No. 61-58809). All of these conventional polarization-independent optical isolators use a birefringent crystal to separate incident light into orthogonal polarization components, and then match the two rays again on the output side. .
[0003]
However, in this type of optical isolator, the propagation path of the separated light beams is different, and depending on the configuration, an essential problem of the functional unit such that the two light beams do not completely match at the output side may cause a change in the polarization state of the incident light. Variations in dependent characteristics are likely to occur. A typical variation in the characteristics depending on the polarization state is a polarization dependent loss (PDL). The PDL is the maximum value of the forward loss fluctuation width due to the polarization state of the incident light. If the light beams corresponding to the two orthogonal polarization components do not completely match at the time of emission, the two light beams are coupled to the output side fiber. Different efficiencies result in larger PDLs.
[0004]
By the way, when assembling a polarization independent optical isolator, light is normally input from the input side fiber in the forward direction, and the output side collimator is aligned so that the forward loss is minimized. At this time, since the polarization state of the incident light is not particularly problematic, there is a possibility that light having a certain polarization is used. When an optical isolator is assembled such that the loss is minimized in such a polarization state, the loss may fluctuate greatly when the polarization state of the incident light changes. Therefore, a solution to this point is required.
[0005]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method of assembling a polarization independent optical isolator capable of reducing polarization dependent loss (PDL).
[0006]
[Means for Solving the Problems]
The present invention, in order to achieve the above object,
(1) An incident-side optical fiber, an incident-side collimator that collimates the incident light from the fiber, an incident-side polarization separation element made of a birefringent crystal that separates the parallel light into orthogonal polarization components, A Faraday rotator that rotates the polarization component by 45 °, an output-side polarization separation element made of a birefringent crystal that re-parallelizes the polarization component that has been rotated by 45 °, and collects the parallel light into a light-receiving optical fiber. When assembling a polarization-independent optical isolator including a light-receiving collimator that emits light and the light-receiving optical fiber, a depolarizing element is interposed between the incident-side optical fiber and the incident-side collimator to form While the incident light from the optical fiber is in a random polarization state, the light-receiving collimator is aligned so that the loss of parallel light from the output-side polarization splitting element is minimized in the forward direction. A method of assembling a polarization independent optical isolator characterized by positioning, and
(2) an incident-side optical fiber, an incident-side collimator that parallelizes the incident light from the fiber, an incident-side polarization splitting element made of a birefringent crystal that separates the parallel light into orthogonal polarization components, A Faraday rotator that rotates the polarization component by 45 °, an output-side polarization separation element made of a birefringent crystal that re-parallelizes the polarization component that has been rotated by 45 °, and collects the parallel light into a light-receiving optical fiber. When assembling a polarization independent optical isolator including a light-receiving collimator that emits light and the light-receiving optical fiber, a wave plate is interposed between the incident-side optical fiber and the incident-side collimator, and the wavelength plate is Is rotated to change the polarization state of the incident light, and the light-receiving collimator is centered and aligned so that the fluctuation of the loss of the parallel light from the output-side polarization separation element is minimized. And a method of assembling a polarization independent optical isolator.
[0007]
In the present invention, a non-polarized state is created by inserting a depolarizing element into the incident side optical fiber, and the collimator is aligned and assembled so that the loss in that state is minimized. As a result, the two light beams corresponding to the two orthogonal polarization components have the same intensity. In this state, if the two light beams are assembled so that the loss is minimized, the coupling efficiency of the two light beams to the outgoing optical fiber becomes equal, and the forward direction is obtained. Loss is less affected by the polarization state of the incident light. Also, as another means, the polarization state of the incident light is changed by rotating the wave plate inserted into the incident side optical fiber, and the collimator is aligned so that the loss fluctuation due to the change is minimized. An effect can be obtained.
[0008]
Embodiments and Examples of the Invention
Hereinafter, the present invention will be specifically described with reference to the drawings. FIG. 1 shows a polarization independent optical isolator according to one embodiment of the present invention, wherein 1 is an incident side optical fiber, 2 is an incident side collimator, 3 is a functional unit, 4 is a light receiving side collimator, and 5 is a collimator. It is a light receiver (light receiving side optical fiber).
[0009]
Here, as shown in FIG. 2, the functional unit 3 includes an incident-side polarization splitting element 3a made of a birefringent crystal, a Faraday rotator 3b, and an emission-side polarization splitting element 3c made of a birefringent crystal. It is provided.
[0010]
In the optical isolator, the incident light from the incident-side optical fiber 1 is collimated by an incident-side collimator 2, and the parallel light is separated into orthogonal polarization components by an incident-side polarization separating element 3 a of the functional unit 3. The light is rotated by 45 degrees by the Faraday rotator 3b, parallelized again by the output-side polarization separation element 3c, focused by the light-receiving collimator 4, and received by the light-receiving optical fiber 5.
[0011]
In this case, as shown in FIG. 2A, the light in the forward direction is separated into ordinary light and extraordinary light by the first birefringent crystal (incident side polarization separation element 3a), and then polarized by the Faraday rotator 3b. The direction is rotated 45 °. Next, the two light beams separated by the second birefringent crystal (emission-side polarization splitting element 3c) are converted into parallel light beams, which are condensed on a light-receiving side optical fiber 5 by a lens (light-receiving side collimator 4). However, as shown in FIG. 2B, the light in the opposite direction becomes divergent light due to the non-reciprocity of the Faraday rotator 3b and does not enter the effective diameter of the lens (incident collimator 2). .
[0012]
In the above configuration, the two light beams in the forward direction do not completely coincide at one point, and are two parallel light beams.
[0013]
Therefore, in the present invention, as shown in FIG. 1, a depolarizing element or a wave plate 6 is interposed between the incident side optical fiber 1 and the incident side collimator 2. That is, the incident light is made into a random polarization state by the depolarizing element 6 and emitted from the incident side collimator 2. The collimator 4 on the light receiving side is positioned so that the coupling efficiency is maximized with respect to the light beam that has passed through the functional units 3 arranged in the forward direction. Alternatively, a wave plate (for example, a 1/4, 1 / 2λ plate) is inserted in place of the depolarizing element, and the light receiving side is changed so that the change in the coupling efficiency when the polarization state is changed by the rotation of both is minimized. The position of the collimator 4 is adjusted so that the loss fluctuation depending on the polarization state due to the characteristics of the functional unit 3 of the polarization independent optical isolator can be minimized.
[0014]
The depolarizing plate changes a specific polarization state such as linearly polarized light or elliptically polarized light into non-polarized light, that is, a randomly polarized state.A birefringent prism, a birefringent plate having a surface with irregularities, or the like may be used. it can. In the present invention, the collimator is a combination of an optical fiber and a lens, which has a function of converting light diverging from the optical fiber into parallel light or condensing parallel light incident on the lens on the optical fiber. .
[0015]
Next, in order to confirm the above effect, the light emitted from the collimator 4 on the light receiving side was used by using the apparatus shown in FIG. Was observed with an IR camera. The incident light used was a monochromatic light having a wavelength of λ = 1.55 μm, each of the polarization splitting elements (wedge-type birefringent crystal) was TiO 2 , and the Faraday rotator was YIG. FIGS. 4A to 4E show changes in the IR camera image when the wave plate is rotated. Here, FIGS. 4A to 4E show the results obtained by sequentially rotating the half-wave plate by π / 8. 4A to 4E, L is a center line, and S is a spot.
[0016]
In the result of FIG. 4, the spot position is shifted to the right with the change in the polarization state. That is, when the loss is minimum in the polarization state of FIG. 4A, the coupling efficiency is reduced in the state of FIG. In order to minimize such effects, it is sufficient to assemble the device in a polarization state in which the spots in FIGS. 4A and 4B are equal, and in such a state, the incident light becomes a random polarization state. Realized one time.
[0017]
Thus, by assembling the apparatus using a system using a depolarizing element as shown in FIG. 1, it is possible to assemble a PDL, which was conventionally about 0.1 to 0.3 dB, with good reproducibility at 0.1 dB or less. Became. Good results were also obtained by inserting a wave plate instead of the depolarizing plate and assembling it so as to minimize loss fluctuation due to its rotation.
[0018]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the polarization fluctuation | variation which depends on the polarization state resulting from the characteristic of the function part of a polarization independent optical isolator is minimized, and a polarization independent optical isolator with small PDL is reliably manufactured. be able to.
[Brief description of the drawings]
FIG. 1 is a schematic diagram illustrating a polarization independent optical isolator of the present invention.
FIGS. 2A and 2B are schematic diagrams illustrating a configuration of a functional unit of the isolator, wherein FIG. 2A is a diagram illustrating a traveling state of light in a forward direction, and FIG.
FIG. 3 is a schematic diagram illustrating a beam observation device using an IR camera.
FIGS. 4A to 4E are explanatory diagrams of an output beam image from an isolator function unit, in which a half-wave plate is sequentially rotated by π / 8;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Incidence side optical fiber 2 Incident side collimator 3 Function part 3a Incident side polarization separation element 3b Faraday rotator 3c Emission side polarization separation element 4 Light reception side collimator 5 Light reception side optical fiber 6 Depolarization element or wavelength plate

Claims (2)

入射側光ファイバと、このファイバからの入射光を平行化する入射側コリメータと、この平行光を直交する偏波成分に分離する複屈折性結晶からなる入射側偏光分離素子と、上記偏波成分を45°回転させるファラデー回転子と、この45°回転された偏波成分を再度平行化する複屈折性結晶からなる出射側偏光分離素子と、この平行光を受光側光ファイバに集光する受光側コリメータと、上記受光側光ファイバとを具備する偏波無依存型光アイソレータを組み立てるに際し、上記入射側光ファイバと入射側コリメータとの間に偏光解消素子を介在させて、入射側光ファイバからの入射光をランダムな偏光状態にすると共に、上記出射側偏光分離素子からの平行光の光の損失が順方向で最小となるように上記受光側コリメータを調心して位置合わせすることを特徴とする偏波無依存型光アイソレータの組立方法。An incident-side optical fiber, an incident-side collimator that collimates the incident light from the fiber, an incident-side polarization separation element made of a birefringent crystal that separates the parallel light into orthogonal polarization components, and the polarization component Rotator for rotating the polarization component by 45 °, an output-side polarization splitting element made of a birefringent crystal for parallelizing the polarization component rotated by 45 ° again, When assembling the polarization independent optical isolator including the side collimator and the light receiving side optical fiber, a depolarizing element is interposed between the incident side optical fiber and the incident side collimator, and And the light-receiving collimator is aligned so that the loss of parallel light from the output-side polarization splitting element is minimized in the forward direction. A method for assembling a polarization-independent optical isolator. 入射側光ファイバと、このファイバからの入射光を平行化する入射側コリメータと、この平行光を直交する偏波成分に分離する複屈折性結晶からなる入射側偏光分離素子と、上記偏波成分を45°回転させるファラデー回転子と、この45°回転された偏波成分を再度平行化する複屈折性結晶からなる出射側偏光分離素子と、この平行光を受光側光ファイバに集光する受光側コリメータと、上記受光側光ファイバとを具備する偏波無依存型光アイソレータを組み立てるに際し、上記入射側光ファイバと入射側コリメータとの間に波長板を介在させて、この波長板を回転させて入射光の偏光状態を変化させると共に、上記出射側偏光分離素子からの平行光の光の損失の変動が最小になるように上記受光側コリメータを調心して位置合わせすることを特徴とする偏波無依存型光アイソレータの組立方法。An incident-side optical fiber, an incident-side collimator that collimates the incident light from the fiber, an incident-side polarization separation element made of a birefringent crystal that separates the parallel light into orthogonal polarization components, and the polarization component Rotator for rotating the polarization component by 45 °, an output-side polarization splitting element made of a birefringent crystal for parallelizing the polarization component rotated by 45 ° again, In assembling the polarization independent optical isolator including the side collimator and the light receiving side optical fiber, a wave plate is interposed between the incident side optical fiber and the incident side collimator, and the wave plate is rotated. And changing the polarization state of the incident light, and aligning and aligning the collimator on the light receiving side such that the fluctuation of the loss of the parallel light from the polarization splitting element on the output side is minimized. A method for assembling a polarization independent optical isolator characterized by the above-mentioned.
JP22479095A 1995-08-09 1995-08-09 Assembly method of polarization independent optical isolator Expired - Fee Related JP3551212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22479095A JP3551212B2 (en) 1995-08-09 1995-08-09 Assembly method of polarization independent optical isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22479095A JP3551212B2 (en) 1995-08-09 1995-08-09 Assembly method of polarization independent optical isolator

Publications (2)

Publication Number Publication Date
JPH0949987A JPH0949987A (en) 1997-02-18
JP3551212B2 true JP3551212B2 (en) 2004-08-04

Family

ID=16819246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22479095A Expired - Fee Related JP3551212B2 (en) 1995-08-09 1995-08-09 Assembly method of polarization independent optical isolator

Country Status (1)

Country Link
JP (1) JP3551212B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008128926A (en) * 2006-11-24 2008-06-05 Fujifilm Corp Optical tomographic imaging device

Also Published As

Publication number Publication date
JPH0949987A (en) 1997-02-18

Similar Documents

Publication Publication Date Title
US5446578A (en) Polarization preserving optical isolator
US20020005987A1 (en) Polarization beam splitter or combiner
JPH05297321A (en) Unpolarized wave dispersion type optical isolator
JP2001504947A (en) Optical isolator
US7039262B2 (en) Depolarizer
GB2304203A (en) A light amplifier having a multi-stage optical isolator
US6430323B1 (en) Polarization maintaining optical isolators
US6711310B2 (en) High power fiber isolator
JP2002023111A (en) Polarizing beam splitter/combiner
KR100279060B1 (en) High Efficiency Polarization Diversity Receiver System
US6049412A (en) Reflective Faraday-based optical devices including an optical monitoring tap
US6246518B1 (en) Reflection type optical isolator
JP3551212B2 (en) Assembly method of polarization independent optical isolator
JP2000299521A (en) Single dimension self-aligned retroreflecting optical system for wavelength filtering
US6449091B1 (en) Optical isolator
US6608723B2 (en) Integrated pump combining module
JP3161885B2 (en) Optical isolator
US6987896B1 (en) Optical isolator
US6091866A (en) Optical isolator
JP2905847B2 (en) Optical isolator device
US20020191290A1 (en) Integrated micro-optic architecture for combining and depolarizing plural polarized laser beams
US11768329B2 (en) High isolation optical splitter
JPH0667118A (en) Optical coupler
JP2744295B2 (en) Polarization coupler
JP2524881Y2 (en) Optical isolator

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040413

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees