JP3550727B2 - Improved chlorohydrin hydrolysis method from protein hydrochloride hydrolyzate - Google Patents

Improved chlorohydrin hydrolysis method from protein hydrochloride hydrolyzate Download PDF

Info

Publication number
JP3550727B2
JP3550727B2 JP12533994A JP12533994A JP3550727B2 JP 3550727 B2 JP3550727 B2 JP 3550727B2 JP 12533994 A JP12533994 A JP 12533994A JP 12533994 A JP12533994 A JP 12533994A JP 3550727 B2 JP3550727 B2 JP 3550727B2
Authority
JP
Japan
Prior art keywords
temperature
chlorohydrin
hydrolyzate
protein
alkali
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12533994A
Other languages
Japanese (ja)
Other versions
JPH07330793A (en
Inventor
安部  聡
佳津彦 国田
昭吾 丸山
誠治 豊吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP12533994A priority Critical patent/JP3550727B2/en
Publication of JPH07330793A publication Critical patent/JPH07330793A/en
Application granted granted Critical
Publication of JP3550727B2 publication Critical patent/JP3550727B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、蛋白質塩酸加水分解物に含まれるクロロヒドリン化合物を加水分解する方法に関する。更に詳しくは、蛋白質塩酸分解物とアルカリを、一定の温度とpHになるように同時に滴下混合し、滴下に引続き混合液の温度を保持する、クロロヒドリンの加水分解法に関する。
【0002】
【従来の技術】
従来、蛋白塩酸加水分解物は、蛋白原料の濃塩酸による高温加水分解、アルカリでのpH5付近までの中和、ヒューマス等の不溶物濾過、濃縮という工程を経て製造される。また、これらの工程の間に、水蒸気蒸留、樹脂や活性炭での吸着処理、分解液の高温処理(pH4〜9)等を行うこともある(特公昭47−24748)。
【0003】
蛋白原料を塩酸で加水分解する際に、モノクロロプロパンジオール等のクロロヒドリン化合物が生成することが知られている。ところが近年、これらクロロヒドリン化合物には好ましくない物質が含まれていることが判明した。
【0004】
クロロヒドリン化合物が水酸化ナトリウム等のアルカリで分解されることは古くから知られている。例えば、1968年に出版された「Alcoholes」(Reinhold Book Corporation)という教科書の389頁に、モノクロロプロパンジオール(MCP)から水酸化ナトリウム等のアルカリにより2,3−エポキシプロパノールが生成すること、およびジクロロプロパノール(DCP)よりエピクロロヒドリンが生成することが記載されている。また、1957年に出版された有機化学の教科書「INTRODUCTION TO ORGANIC CHEMISTRY」(丸善)の95頁にも、グリセロールの製法として、MCPにアルカリとしてソーダライムを用いて2,3−エポキシプロパノールを生成させ、加水分解してグリセロールを生成する反応が示されている。また、特公昭62−224256の本文中に「30〜50ppmのDCPは過剰中和、特に苛性ソーダの添加により破壊できる」ことも示されている。
【0005】
【発明が解決しようとする課題】
工業生産設備規模で実施するには、反応槽の滞留時間を短縮すること、即ち送液、反応時間を短くすることが生産性向上につながる。例えば、100m程度のタンクであればタンク内液を送液するのに通常数時間要す。また、酸分解液とアルカリを混合すると発熱するが、発熱により突沸することがある。工業プラントにおいては、タンク内に一定量送り込まれるまでポンプで送液するのが通常の方法であり、突沸を防ぐためには、熟練した作業者に常時監視させねばならない。このような問題から、滞留時間を短縮する方法、反応液の温度管理を容易にする方法が望まれていた。
【0006】
【課題を解決するための手段】
本発明者らは、蛋白質塩酸加水分解物とアルカリを同時に、温度とpHを一定範囲内に保つように反応槽に送液し、送液終了後に引続き混合液の温度を保持することにより上記の問題点を解決出来ることを見いだしたのである。
さらに詳しくは、本発明の方法は、蛋白質塩酸加水分解物とアルカリを同時に送液し、混合することにより反応槽への原料液の送液時間を短縮しつつ、さらに送液並びに混合中に温度とpHを一定範囲内に保ち、送液並びに混合時間中にもクロロヒドリン化合物の分解を行い、混合終了後に引続き混合液の温度を保持することにより、クロロヒドリン化合物をさらに分解することを特徴とする、蛋白質塩酸加水分解物中のクロロヒドリン化合物の加水分解方法に関するものである。
【0007】
蛋白質塩酸加水分解物とアルカリを送液するには、ラインミキサーのような混合手段で混合して反応槽へ送液するか、または別々の導入口から反応槽へ送液する。その際、混合液のpHが所望の範囲内に収まるように、蛋白塩酸加水分解物およびアルカリの比率を設定する。また、蛋白塩酸加水分解物(本発明の方法に於て用いられるものは酸分解直後の未中和の液でも、中和後の液でも可能だが、未中和液を用いることの方が多い)とアルカリを混合すると中和熱、希釈熱により発熱するが、混合時に突沸しなければ、混合前の蛋白塩酸加水分解物、アルカリの液温、混合比率は任意に設定可能である。また、必要に応じて冷却、加熱を組み合せて所望の温度にすることも可能である。このようにして反応槽へ蛋白塩酸加水分解物とアルカリを張り込み終ったら、必要に応じてpHの再調整や微調整、加熱、冷却等を行い混合液を所定のpHおよび温度に保持する。
【0008】
クロロヒドリン化合物の分解促進のためには、混合液を、高温、高pHに保つことが好ましく、温度を70℃以上に、pHを8以上に保つことがより好ましい。
【0009】
混合液は、上述したように発熱により温度が上昇するが、所望の温度に達しない場合は加熱することができる。蛋白塩酸加水分解物、アルカリを片方のみ、両方、またはミキサーで混合してから加熱することも可能である。加熱には、ジャケット、コイル、蒸気吹き込み、外部循環式熱交換機、等あらゆる手段を用いることが可能である。また、温度が上昇しすぎる場合は、冷却することもできる。
【0010】
本発明で用いられる蛋白質塩酸加水分解物としては、酵母蛋白、動物蛋白、植物蛋白などあらゆる蛋白源を原料とした塩酸加水分解物が使用可能である。
【0011】
蛋白質塩酸加水分解物の中和に用いられるアルカリとしては、有機アミン類等の有機アルカリ化合物、アンモニア、水酸化カルシウム、水酸化ナトリウム、炭酸ナトリウム等の無機アルカリ化合物などあらゆるものが単独で、または組み合せて使用可能である。通常、蛋白加水分解物の最終製品に食塩が含まれたものを望むことが多いので、そのような場合は無機アルカリナトリウム塩が用いられる。
【0012】
混合液の反応槽内への張り込み終了後に、この混合液を必要に応じて所定の時間保持することができるが、保持される温度、時間は、クロロヒドリン化合物が所望の濃度になるように任意に決めることが可能である。クロロヒドリン化合物は、一般に検出されないことが好ましいので、上記混合液に含まれるクロロヒドリン化合物が1ppm以下になるまで、混合液を70℃以上、pHを8以上に保つことが望ましい。一般に分解速度は高温程大きくなる為、70℃以上の温度で保持することが好ましい。クロロヒドリン化合物の分解という観点からすると長時間の分解がよいのであるが、弱アルカリ性より高いpH域では通常20時間以下で実施可能である。
【0013】
【実施例】
以下、実施例によって本発明をさらに詳しく説明する。
【0014】
実施例1
大豆フレーク2620g、グルテンミール375gに35%塩酸2070gと水を、6Lになるまで添加混合した。この混合液をオートクレーブで105℃、30時間加熱して加水分解反応を行った。この加水分解物を濾過して以後の実験に用いた。(以後分解濾液と略す)分解濾液は3ーモノクロロプロパンジオール(3MCP)を47.5ppm、TNを4.36g/dl、アミノ酸を23.9g/dlの濃度で含んでいた。
湯浴で加温した1Lセパラブルフラスコ(攪拌機、コンデンサーを備えている)に、分解濾液と31%NaOH水溶液を2時間かけて連続的に滴下混合した。滴下量はそれぞれ500ml、235mlであった。滴下中の反応槽内温は95℃であり、突沸はなかった。滴下終了時のpHは9.2(30℃まで冷却して測定)で、3MCPは0.4ppmまで低減されていた。滴下後に、引続き98℃で保持したところ、30分後(滴下開始より2時間半)には3MCPは検出されなかった。3MCPの減少曲線を図1に示した。(3MCPの検出限界は0.05ppmである。)
【0015】
実施例2
湯浴で加温した1Lセパラブルフラスコ(攪拌機、コンデンサーを備えている)に、分解濾液と31%NaOH水溶液を2時間かけて連続的に滴下混合した。滴下量はそれぞれ500ml、220mlであった。滴下中の反応槽内温は98℃であり、突沸はなかった。滴下終了時のpHは8.3(30℃まで冷却して測定)で、3MCPは5.3ppmまで低減されていた。滴下後に、引続き98℃で保持したところ、3MCP濃度は2時間後には0.2ppmで、3時間後(滴下開始より5時間)には検出されなかった。3MCPの減少曲線を図1に示した。
【0016】
比較例1
湯浴で加温した1Lセパラブルフラスコ(攪拌機、コンデンサーを備えている)に、分解濾液を500ml入れ、31%NaOH水溶液220mlを2時間かけて連続的に滴下した。滴下中の反応槽内温は98℃であり、突沸はなかった。滴下終了時のpHは8.3(30℃まで冷却して測定)で、3MCP濃度はあまり減少しておらず、30ppmであった。滴下後に、引続き98℃で保持したところ、2時間後の3MCP濃度は0.5ppmで、3時間後(滴下開始より7時間)でも0.1ppm検出された。3MCPの減少曲線を図1に示した。
【0017】
実施例3
実施例1と同様の方法で調製した蛋白質塩酸加水分解物を分解液として用いた。分解液27.6KL、31%NaOH11.1KLをそれぞれ35m/Hr、14.2m/Hrの流速で50m3の反応槽にポンプで給液した。給液中のpHは8.6、温度は98℃で一定であった。給液に要した時間は47分であった。さらにその温度を維持したところ、給液終了より33分経過した時点での3MCP濃度は3.57ppmで、0.1ppmまで濃度低下したのは、給液終了より133分目(張り込み開始より180分経過)であった。
【0018】
実施例4
実施例1と同様の方法で調製した蛋白質塩酸加水分解物を分解液として用いた。分解液27.6KL、31%NaOH11.1KLをそれぞれ35m/Hr、14.7m/Hrの流速で50m3の反応槽にポンプで給液した。給液中のpHは8.9、温度は98℃で一定であった。給液に要した時間は分解液は47分、31%NaOHは45分であった。さらにその温度を維持したところ、給液終了より33分経過した時点での3MCP濃度は1.67ppmで、0.1ppmまで濃度低下したのは、給液終了より108分目(張り込み開始より155分経過)であった。
【0019】
比較例2
実施例1と同様の方法で調製した蛋白質塩酸加水分解物を分解液として用いた。分解液27.6KLを35m3/Hrで47分かけて張り込み、分解液の張り込み開始から31分目より、31%NaOH11.1KLを18m/Hrの流速で50mの反応槽にポンプで給液した。給液中のpHと温度は31%NaOHを添加しはじめてから徐々に上昇し、最終的にpH8.6、98℃となった。給液に要した時間は72分であった。さらにその温度を維持したところ、給液終了より33分経過した時点での3MCP濃度は3.74ppmで、0.1ppmまで濃度低下したのは、給液終了より138分目(張り込み開始より210分経過)であった。
【0020】
【発明の効果】
本発明の方法を用いれば、従来より反応槽への送液時間、クロロヒドリン化合物の分解反応時間共に短縮され、生産性向上が可能である。また、混合液の温度が容易にコントロールでき、工程管理も容易になる。
【図面の簡単な説明】
【図1】実施例1、実施例2および比較例1の3MCPの減少曲線と操作時間について表したものである。
[0001]
[Industrial applications]
The present invention relates to a method for hydrolyzing a chlorohydrin compound contained in a protein hydrolyzate. More specifically, the present invention relates to a method for hydrolyzing chlorohydrin, in which a hydrolyzate of protein hydrochloride and an alkali are simultaneously dropped and mixed at a given temperature and pH so that the temperature of the mixed solution is maintained after the dropping.
[0002]
[Prior art]
Conventionally, protein hydrochloride hydrolyzate is produced through steps of high-temperature hydrolysis of protein raw material with concentrated hydrochloric acid, neutralization with an alkali to about pH 5, filtration of insoluble substances such as fumes, and concentration. During these steps, steam distillation, adsorption treatment with a resin or activated carbon, high-temperature treatment of a decomposition solution (pH 4 to 9), and the like may be performed (Japanese Patent Publication No. 47-24748).
[0003]
It is known that chlorohydrin compounds such as monochloropropanediol are generated when a protein material is hydrolyzed with hydrochloric acid. However, it has recently been found that these chlorohydrin compounds contain undesirable substances.
[0004]
It has long been known that a chlorohydrin compound is decomposed by an alkali such as sodium hydroxide. For example, on page 389 of the textbook "Alcoholes" (Reinhold Book Corporation) published in 1968, it was found that monochloropropanediol (MCP) produces 2,3-epoxypropanol from alkali such as sodium hydroxide, It is described that epichlorohydrin is produced from propanol (DCP). Also, on page 95 of the textbook of organic chemistry “INTRODUCTION TO ORGANIC CHEMISTRY” (Maruzen) published in 1957, as a method for producing glycerol, 2,3-epoxypropanol was produced using soda lime as an alkali for MCP. , A reaction that produces glycerol upon hydrolysis. It is also shown in the text of Japanese Patent Publication No. 62-224256 that "30 to 50 ppm of DCP can be destroyed by excessive neutralization, particularly by adding caustic soda."
[0005]
[Problems to be solved by the invention]
In order to carry out the process on an industrial production facility scale, shortening the residence time of the reaction tank, that is, shortening the liquid sending and reaction times leads to an improvement in productivity. For example, in the case of a tank of about 100 m 3 , it usually takes several hours to feed the liquid in the tank. In addition, heat is generated when the acid decomposition solution and the alkali are mixed, but the heat generated may cause bumping. In an industrial plant, the usual method is to pump liquid until a certain amount is fed into a tank, and to prevent bumping, a skilled worker must constantly monitor. From such a problem, a method for reducing the residence time and a method for easily controlling the temperature of the reaction solution have been desired.
[0006]
[Means for Solving the Problems]
The present inventors have simultaneously sent the protein hydrolyzate hydrolyzate and the alkali to the reaction tank so as to maintain the temperature and pH within a certain range, and after the completion of the liquid transfer, continuously maintain the temperature of the mixed solution, thereby They found that they could solve the problem.
More specifically, the method of the present invention is a method for simultaneously sending and mixing a protein hydrolyzate hydrolyzate and an alkali, thereby shortening the time required to feed the raw material liquid to the reaction tank, and further reducing the temperature during the liquid sending and mixing. And maintaining the pH within a certain range, decomposing the chlorohydrin compound even during the feeding and mixing time, and further decomposing the chlorohydrin compound by continuously maintaining the temperature of the mixed solution after the completion of mixing. The present invention relates to a method for hydrolyzing a chlorohydrin compound in a protein hydrolyzate.
[0007]
In order to send the protein hydrolyzate hydrolyzate and the alkali, they are mixed by a mixing means such as a line mixer and sent to the reaction tank, or sent to the reaction tank from separate inlets. At that time, the ratio of the protein hydrochloride hydrolyzate to the alkali is set so that the pH of the mixed solution falls within a desired range. In addition, protein hydrochloride hydrolyzate (the one used in the method of the present invention may be an unneutralized solution immediately after acid decomposition or a solution after neutralization, but an unneutralized solution is more often used. ) And an alkali generate heat due to the heat of neutralization and the heat of dilution. However, if the mixture does not boil during mixing, the temperature of the hydrolyzed protein hydrochloride and the alkali before mixing and the mixing ratio can be arbitrarily set. Further, if desired, cooling and heating can be combined to achieve a desired temperature. When the hydrolyzate of protein hydrochloride and the alkali have been charged into the reaction tank in this way, the pH of the mixture is maintained at a predetermined pH and temperature by performing readjustment, fine adjustment, heating, cooling, etc., as necessary.
[0008]
In order to promote the decomposition of the chlorohydrin compound, the mixture is preferably kept at a high temperature and a high pH, more preferably at a temperature of 70 ° C. or more and a pH of 8 or more.
[0009]
As described above, the temperature of the mixed solution increases due to heat generation. However, if the desired temperature is not reached, the mixed solution can be heated. It is also possible to heat the protein hydrolyzate hydrolyzate or alkali after mixing only one, both, or a mixer. For heating, any means such as a jacket, a coil, steam blowing, an external heat exchanger, and the like can be used. If the temperature rises too high, it can be cooled.
[0010]
As the hydrolyzed protein hydrochloride used in the present invention, a hydrolyzed hydrochloride obtained from any protein source such as yeast protein, animal protein, and plant protein can be used.
[0011]
As the alkali used for neutralizing the protein hydrochloride hydrolyzate, any one of organic alkali compounds such as organic amines, inorganic alkali compounds such as ammonia, calcium hydroxide, sodium hydroxide, and sodium carbonate can be used alone or in combination. Can be used. Usually, it is often desired that the final product of the protein hydrolyzate contains salt, and in such a case, an inorganic alkali sodium salt is used.
[0012]
After the mixture has been charged into the reaction tank, the mixture can be held for a predetermined time if necessary.However, the temperature and time to be held are arbitrarily set so that the chlorohydrin compound has a desired concentration. It is possible to decide. Since it is generally preferable that the chlorohydrin compound is not detected, it is desirable to maintain the mixture at 70 ° C. or more and the pH at 8 or more until the chlorohydrin compound contained in the mixture becomes 1 ppm or less. In general, the decomposition rate increases as the temperature increases, and it is therefore preferable to maintain the temperature at 70 ° C. or higher. From the viewpoint of the decomposition of the chlorohydrin compound, the decomposition for a long time is good, but in a pH range higher than weak alkalinity, it can be usually carried out in 20 hours or less.
[0013]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
[0014]
Example 1
To 2620 g of soybean flakes and 375 g of gluten meal, 2070 g of 35% hydrochloric acid and water were added and mixed until the volume became 6 L. This mixture was heated in an autoclave at 105 ° C. for 30 hours to carry out a hydrolysis reaction. This hydrolyzate was filtered and used in subsequent experiments. The digested filtrate (hereinafter abbreviated as the digested filtrate) contained 3-monochloropropanediol (3MCP) at a concentration of 47.5 ppm, TN at 4.36 g / dl, and amino acids at a concentration of 23.9 g / dl.
The decomposition filtrate and a 31% NaOH aqueous solution were continuously dropped and mixed into a 1 L separable flask (equipped with a stirrer and a condenser) heated in a hot water bath over 2 hours. The dripping amounts were 500 ml and 235 ml, respectively. During the addition, the temperature inside the reaction tank was 95 ° C., and there was no bumping. The pH at the end of the dropwise addition was 9.2 (measured by cooling to 30 ° C.), and 3MCP was reduced to 0.4 ppm. After the dropping, the temperature was kept at 98 ° C., and after 30 minutes (2 and a half hours from the start of dropping), 3MCP was not detected. The decrease curve of 3MCP is shown in FIG. (The detection limit of 3MCP is 0.05 ppm.)
[0015]
Example 2
The decomposition filtrate and a 31% NaOH aqueous solution were continuously dropped and mixed into a 1 L separable flask (equipped with a stirrer and a condenser) heated in a hot water bath over 2 hours. The drop amounts were 500 ml and 220 ml, respectively. During the addition, the temperature inside the reaction tank was 98 ° C., and there was no bumping. The pH at the end of the dropwise addition was 8.3 (measured by cooling to 30 ° C.), and 3MCP was reduced to 5.3 ppm. When the temperature was maintained at 98 ° C. after the dropping, the 3MCP concentration was 0.2 ppm after 2 hours, and was not detected after 3 hours (5 hours from the start of dropping). The decrease curve of 3MCP is shown in FIG.
[0016]
Comparative Example 1
500 ml of the decomposition filtrate was put into a 1 L separable flask (equipped with a stirrer and a condenser) heated in a hot water bath, and 220 ml of a 31% NaOH aqueous solution was continuously dropped over 2 hours. During the addition, the temperature inside the reaction tank was 98 ° C., and there was no bumping. The pH at the end of the dropwise addition was 8.3 (measured by cooling to 30 ° C.), and the 3MCP concentration was not so reduced, and was 30 ppm. When the temperature was maintained at 98 ° C. after the dropping, the 3MCP concentration after 2 hours was 0.5 ppm, and 0.1 ppm was detected after 3 hours (7 hours from the start of dropping). The decrease curve of 3MCP is shown in FIG.
[0017]
Example 3
A hydrolyzed protein hydrochloride prepared in the same manner as in Example 1 was used as a decomposition solution. Degradation solution 27.6KL, the fed liquid by a pump to the reactor 50m3 of 31% NaOH11.1KL at a flow rate of each 35m 3 /Hr,14.2m 3 / Hr. The pH during feeding was 8.6 and the temperature was constant at 98 ° C. The time required for liquid supply was 47 minutes. When the temperature was further maintained, the 3MCP concentration at the time when 33 minutes had passed from the end of the liquid supply was 3.57 ppm, and the concentration decreased to 0.1 ppm at 133 minutes after the end of the liquid supply (180 minutes after the start of the filling). Progress).
[0018]
Example 4
A hydrolyzed protein hydrochloride prepared in the same manner as in Example 1 was used as a decomposition solution. Degradation solution 27.6KL, the fed liquid by a pump to the reactor 50m3 of 31% NaOH11.1KL at a flow rate of each 35m 3 /Hr,14.7m 3 / Hr. The pH during feeding was 8.9 and the temperature was constant at 98 ° C. The time required for supplying the solution was 47 minutes for the decomposition solution and 45 minutes for 31% NaOH. When the temperature was further maintained, the 3MCP concentration at the point 33 minutes after the end of the liquid supply was 1.67 ppm, and the concentration decreased to 0.1 ppm at the 108th minute from the end of the liquid supply (155 minutes after the start of the filling). Progress).
[0019]
Comparative Example 2
A hydrolyzed protein hydrochloride prepared in the same manner as in Example 1 was used as a decomposition solution. Imposition over decomposing solution 27.6KL 47 minutes 35 m3 / Hr and from 31 min after Zoletile injection from imposition onset of decomposition liquid, the liquid supply pump to 31% NaOH11.1KL reactor, 50 m 3 at a flow rate of 18m 3 / Hr did. The pH and temperature in the feed increased gradually after the addition of 31% NaOH, and finally reached pH 8.6 and 98 ° C. The time required for liquid supply was 72 minutes. When the temperature was further maintained, the 3MCP concentration at the time when 33 minutes had passed from the end of the liquid supply was 3.74 ppm, and the concentration decreased to 0.1 ppm at 138 minutes after the end of the liquid supply (210 minutes after the start of the filling). Progress).
[0020]
【The invention's effect】
By using the method of the present invention, both the time for feeding the solution to the reaction tank and the time for the decomposition reaction of the chlorohydrin compound can be shortened, and the productivity can be improved. Further, the temperature of the mixed solution can be easily controlled, and the process control can be easily performed.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 shows a decrease curve and operation time of 3MCP of Example 1, Example 2, and Comparative Example 1.

Claims (2)

蛋白質塩酸加水分解物とアルカリを温度が70℃〜100℃、pHが8以上になるように同時に滴下混合することにより、蛋白質塩酸加水分解物中に含まれるクロロヒドリン化合物を分解し、次に得られた混合液中に含まれる未分解のクロロヒドリン化合物が減少するまで、得られた混合液の温度を70℃以上、pHを8以上に保つことを特徴とする、蛋白質塩酸加水分解物中のクロロヒドリン化合物の加水分解方法。The chlorohydrin compound contained in the protein hydrolyzate is decomposed by simultaneously dropping and mixing the protein hydrolyzate and the alkali so that the temperature is 70 ° C. to 100 ° C. and the pH is 8 or more, and then the obtained product is obtained. Maintaining the temperature of the resulting mixture at 70 ° C. or higher and the pH at 8 or higher until the amount of the undecomposed chlorohydrin compound contained in the mixed solution decreases, characterized in that the chlorohydrin compound in the protein hydrochloride hydrolyzate is maintained. Hydrolysis method. 蛋白質塩酸加水分解物とアルカリを温度が90℃〜100℃、pHが8〜9になるように同時に滴下混合することにより、蛋白質塩酸加水分解物中に含まれるクロロヒドリン化合物を分解し、次に得られた混合液中に含まれる未分解のクロロヒドリン化合物が減少するまで、得られた混合液の温度を90℃〜100℃、pHを8〜9に保つことを特徴とする、蛋白質塩酸加水分解物中のクロロヒドリン化合物の加水分解方法。The chlorohydrin compound contained in the protein hydrolyzate is decomposed by simultaneously adding the protein hydrolyzate hydrolyzate and the alkali dropwise at a temperature of 90 ° C. to 100 ° C. and at a pH of 8 to 9 to decompose the chlorohydrin compound. Maintaining the temperature of the obtained mixture at 90 ° C. to 100 ° C. and maintaining the pH at 8 to 9 until the amount of undecomposed chlorohydrin compounds contained in the obtained mixture decreases. For hydrolyzing chlorohydrin compounds in water.
JP12533994A 1994-06-07 1994-06-07 Improved chlorohydrin hydrolysis method from protein hydrochloride hydrolyzate Expired - Lifetime JP3550727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12533994A JP3550727B2 (en) 1994-06-07 1994-06-07 Improved chlorohydrin hydrolysis method from protein hydrochloride hydrolyzate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12533994A JP3550727B2 (en) 1994-06-07 1994-06-07 Improved chlorohydrin hydrolysis method from protein hydrochloride hydrolyzate

Publications (2)

Publication Number Publication Date
JPH07330793A JPH07330793A (en) 1995-12-19
JP3550727B2 true JP3550727B2 (en) 2004-08-04

Family

ID=14907676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12533994A Expired - Lifetime JP3550727B2 (en) 1994-06-07 1994-06-07 Improved chlorohydrin hydrolysis method from protein hydrochloride hydrolyzate

Country Status (1)

Country Link
JP (1) JP3550727B2 (en)

Also Published As

Publication number Publication date
JPH07330793A (en) 1995-12-19

Similar Documents

Publication Publication Date Title
KR101857509B1 (en) Method for preparing a complex of an acid and a metal
JP2007099778A (en) Process for producing methionine and salt thereof
FI83426B (en) FOERFARANDE FOER KONTINUERLIG FRAMSTAELLNING AV MICROCRYSTALLINE KITOSAN.
CN104892440A (en) Clean production method of glycine and derivatives thereof
CN104910031B (en) The combine production method and device of glycine and hydantoins
CN108623489B (en) Method for synthesizing glycine by continuously and rapidly alkaline hydrolyzing aminoacetonitrile
JP3550727B2 (en) Improved chlorohydrin hydrolysis method from protein hydrochloride hydrolyzate
CN109438283B (en) Synthesis method and device of beta-aminopropionitrile
CN101265196B (en) Method of synthesizing monoisopropanolamine
JP4426104B2 (en) Process for producing hydroxymethylthiobutyric acid
CN106748839B (en) A kind of clean preparation method of glycine and iminodiacetic acid coproduction
US3668221A (en) A process for producing {60 -amino acids
EP0505800B1 (en) Process for reducing hydrolysed protein chlorohydrin content
JP2006036817A5 (en)
CN109879786B (en) Process for continuously and rapidly synthesizing methionine by cyanohydrin method
CN113460985A (en) Continuous production method and system of soluble hypophosphite
WO1981002728A1 (en) Preparation of dihydroxyaluminium sodium carbonate
KR101789290B1 (en) Method and apparatus for recycling by-products of carboxylic acid amide compound manufacturing process
CN113024401A (en) Preparation process of amino acid surfactant capable of reducing byproducts
US3066171A (en) Purification of crude pentaerythritol
JPS61200103A (en) Production of acrylamide polymer decomposed by hofmann decomposition
JPH0570418A (en) Production of n-long-chain acyl-beta-alanine
US4746443A (en) Bentazon containing wastewater treatment
US4824561A (en) Wastewater treatment
CN116462599A (en) Co-production method of glycine and iminodiacetic acid

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040412

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term