JP3550696B2 - Bubble generator - Google Patents

Bubble generator Download PDF

Info

Publication number
JP3550696B2
JP3550696B2 JP21728093A JP21728093A JP3550696B2 JP 3550696 B2 JP3550696 B2 JP 3550696B2 JP 21728093 A JP21728093 A JP 21728093A JP 21728093 A JP21728093 A JP 21728093A JP 3550696 B2 JP3550696 B2 JP 3550696B2
Authority
JP
Japan
Prior art keywords
switching means
air
pipe
bubble
return pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21728093A
Other languages
Japanese (ja)
Other versions
JPH0767929A (en
Inventor
和則 曽根高
雄一 江村
和男 久保
行則 尾崎
祐 河合
邦夫 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP21728093A priority Critical patent/JP3550696B2/en
Publication of JPH0767929A publication Critical patent/JPH0767929A/en
Application granted granted Critical
Publication of JP3550696B2 publication Critical patent/JP3550696B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Percussion Or Vibration Massage (AREA)
  • Bathtub Accessories (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、水を循環させるポンプによって、水槽内に微細気泡、大気泡を発生させる機能を有する気泡発生装置の制御に関するものである。
【0002】
【従来の技術】
従来、この種の微細気泡を発生させる気泡発生装置(噴流浴装置)として、特公平3−14464号公報の開示例を図9〜図12に示す。浴槽101内に温水102を循環させるポンプ103を備えたポンプユニット104と、ポンプ103の吸入側管路105に連結された温水102の吸入器106およびポンプ103の吐出側管路107に2方弁108を介して分岐連結された低圧噴流ノズル109並びに高圧噴流ノズル110を備えたノズルユニット111で構成されている。
【0003】
また、ポンプ103の吸入側管路105にはジェット通路112が設けられ、吐出側管路107からジェット通路112の間にはシャトルバルブ113を介して分岐通路114を配管している。前記シャトルバルブ113は図10の如くスプリング115に付勢された円錐弁116と、この円錐弁116に連結された弁棒117、空気取り入れ通路118、空気通路119で構成されている。さらに高圧噴流ノズル110は図11の如く螺旋通路120、121を交互に備えた気液混合器122と、スプリング123によって付勢された弁体124および噴流吐出口125を備えたレリーフバルブ126で構成されている。
【0004】
また、低圧噴流ノズル109は、図12の如く流動通路127と、この流動通路127の外周に形成された空気流入通路128を備え、流動通路127の下流には細い通路129、広い室130、ノズル131が構成されている。また空気流入通路128は細い通路132を介して広い室130に連通している。
【0005】
次に動作を説明すると、微細気泡の発生時には図9において、ポンプ103を運転すると温水102は吸入器106から吸入側管路105を介してポンプ103に吸引され、その後ポンプ103から吐出側管路107を介して高圧噴流ノズル110から微細気泡が噴出される。この時にはポンプ103の吐出圧力は分岐管路114に作用し、吐出圧力が大きくなり、弁棒117に連結した円錐弁116がスプリング115の付勢力に打ち勝って、円錐弁116に開成する。
【0006】
その結果、空気取り入れ通路118、円錐弁116、空気通路119を介してジェット通路112に空気が吸引され、ポンプ103に吸引される。吸引された空気は高圧力でポンプ103、吐出側管路107および高圧噴流ノズル110内の気液混合器122に送られ加圧溶解されて、高圧噴流ノズル110の弁体124および噴流吐出口125から微細気泡が浴槽101に吐出される。一方、大気泡発生時には図9の2方弁108が切り替わり、ポンプ103からの温水は低圧噴流ノズル109から大気泡が浴槽101に噴出される。
【0007】
【発明が解決しようとする課題】
しかしながら上記構成では、微細気泡発生の運転時において、2方弁108を高圧噴流ノズル110側に切り替え、ポンプ103が作動すると温水102が吸入器106から吸入側管路105を介してポンプ103に吸入する。温水102が吸入すると、レリーフバルブ126が吐出抵抗となり、ポンプ103、吐出側管路107、シャトルバルブ113がほぼ瞬間的に高圧状態になる。一方、大気泡発生の運転時において、2方弁108を低圧噴流ノズル109に切り替え、ポンプ103が作動すると温水102が微細気泡発生の運転時と同様の流入経路、すなわち吸入器106から吸入側管路105、ジェット通路112を介してポンプ103に吸入している。
【0008】
このように微細気泡、大気泡運転時に温水102を同一経路で流入することは、特に大気泡発生では、大流量が必要で有るにもかかわらず、図10のシャトルバルブ113のジェット通路112が空気吸引のエジェクタ作用の機能を発揮させるため、一般的に言われているノズルとデュフューザとを兼用した構成としている。そのため開口面積が小さく、その結果として抵抗が大きくなり、ポンプ103の吸入負圧が大きくなり、大流量を確保することができない。
【0009】
また、微細気泡発生の運転時、シャトルバルブ113は電気的な制御がなくても空気を自動吸入する優れた方式の1つであるが、シャトルバルブ113に設けた弁棒117が高出力により作動し、前記弁棒117に連結した円錐弁116がスプリング115の付勢力に打ち勝って、円錐弁116が開成し、空気を流入する構成である。このため高出力の変化、すなわち図11のレリーフバルブ126のスプリング123によって付勢された弁体124からの噴流状態によって、前記弁体124に加わる付勢力が連続的に不安定に変化する。
【0010】
このため前記弁体124が不安定に開成することは、前記弁棒117に加わる付勢力も不安定となり、吸引される空気量が変化することになる。その結果として、安定した微細気泡の発生ができなくなる。すなわち従来の技術では、大気泡、微細気泡ともに上述したような実用上の課題があった。
【0011】
本発明は、このような上記課題を解決するもので、大気泡発生、及び微細気泡発生をともに安定化するものである。
【0012】
【課題を解決するための手段】
上記目的を達成するために本発明の気泡発生装置は、水槽と、この水槽に設けられた微細気泡発生部と大気泡発生部とからなる気泡噴流装置と、前記水槽の水を循環するポンプと、このポンプの吐出部と吸入部の間に設けたバイパス回路と、このバイパス回路から分岐し、大気泡発生部へ連通した第1往き管および微細気泡発生部へ連通した第2往き管前記第1往き管に設け、大気泡発生時に第1往き管と第2往き管、また微細気泡発生に第2往き管へ切り替える第1切り替え手段と、前記バイパス回路に設けた水流入部と空気流入部を有するエジェクタ部と、このエジェクタ部の上流に設けたバイパス水を制御する第2切り替え手段と、前記エジェクタの一部に設け水と空気を負圧流入させる抵抗部と、空気流入部に設けた空気逆流防止装置、この空気逆流防止装置と連通し空気量を調節する空気制御装置と、この空気制御装置の上流に設けた空気流入手段Bと、前記水槽の水をポンプの吸入部に吸入する戻り管と、この戻り管から分岐し、大気泡発生時にポンプの吸入部に連通した第1戻り管とエジェクタ部の水流入部に連通した第2戻り管に切り替え、微細気泡発生時に前記第2戻り管へと流れを切り替える第3切り替え手段と、前記大気泡発生部へ連通した空気流入手段Aと、大気泡 発生動作及び微細気泡発生動作の制御を行う制御手段とを備え、前記制御手段は、大気泡発生動作中に微細気泡発生動作への変更指示がなされたときは、空気流入手段Aの閉成動作を優先的に行い、その後、第1切り替え手段を第2往き管側に、第3切り替え手段を第2戻り管側に、第2切り替え手段をバイパス回路開成側の順番で切り替え、その後、空気流入手段Bを開成するようにし、また、微細気泡発生動作中に大気泡発生動作への変更指示がなされたときは、空気流入手段Bの閉成動作を優先的に行い、その後、第2切り替え手段をバイパス回路閉成側に、第3切り替え手段を第1戻り管と第2戻り管側に、第1切り替え手段を第1往き管と第2往き管側の順番で切り替え、その後、空気流入手段Aを開成するようにしたものである。
【0013】
また、本発明の気泡発生装置における第2技術手段は、上記第1技術手段の制御手段を、大気泡発生動作から微細気泡発生動作へ変更するとき、空気流入手段Aの閉成動作後、第1切り替え手段を切り替え、その後、第3切り替え手段と第2切り替え手段を同時に切り替え、その後、空気流入手段Bを開成するようにし、微細気泡発生動作から大気泡発生動作へ変更するとき、空気流入手段Bの閉成動作後、第2切り替え手段と第3切り替え手段を同時に切り替え、その後、第1切り替え手段を切り替え、空気流入手段Aを開成するようにしたものである。
【0014】
さらに、本発明の気泡発生装置における第3技術手段は上記第1技術手段の制御手段を、大気泡発生の運転スイッチを「切」にすると、ポンプを停止し、空気流入手段Bを開成してなるものである。
【0015】
さらにまた、本発明の気泡発生装置における第4技術手段は上記第1技術手段の制御手段を、微細気泡発生の運転スイッチを「切」にすると、空気流入手段Bを閉成し、第2切り替え手段をバイパス回路閉成側に、第3切り替え手段を第1戻り管と第2戻り管側に、第1切り替え手段を第1往き管と第2往き管側の順位で切り替えるか、また第2切り替え手段と第3切り替え手段を同時優先し、第1切り替え手段を切り替え、一定時間遅効させてポンプを停止し、空気流入手段Bを開成してなるものである。
【0016】
また、本発明の気泡発生装置における第5技術手段は上記第1技術手段の制御手段を、気泡発生運転前の切り替え手段の設定として、第1切り替え手段を第1往き管と第2往き管側に、第2切り替え手段をバイパス回路閉成側に、第3切り替え手段を第1戻り管と第2戻り管側としてなるものである。
【0017】
またさらに、本発明の気泡発生装置における第6技術手段は上記第1技術手段の制御手段を、第2往き管または第2戻り管に流量検知装置を備え、微細気泡運転開始時および微細気泡発生時に、前記流量検知装置の検知信号により正常か異常を判定して運転を制御する制御手段をそなえるものである。
【0018】
【作用】
上記第1、2技術手段において、制御手段により、(a)大気泡から微細気泡に変更された時、第1切り替え手段を第2往き管側に、第3切り替え手段を第2戻り管側に、第2切り替え手段をバイパス回路閉成側の順番で切り替え接続するか、または第1切り替え手段を第2往き管側に、その後、第3切り替え手段と第2切り替え手段を同時に切り替えることにより、バイパス回路に設けエジェクタ部の空気流入部および水流入部の負圧を小さくすることができる。
【0019】
すなわち、第1切り替え手段を第1往き管と第2往き管側の状態で第3切り替え手段を第2戻り管側に切り替えると、前記水流入部に設けた水と空気を負圧流入させる絞り構成の抵抗部が抵抗となり負圧が大きくなる。負圧が大きくなると空気流入部に連通した空気流入手段Bの開成トルクが大きくなり、開成不能になることがあること、また空気流入手段Bの耐久性を悪化するなどの問題が発生する。また、第3切り替え手段よりも先に第2切り替え手段をバイパス回路開成側にして第3切り替え手段を第2戻り管側に切り替えても、同様に負圧が大きくなる。
【0020】
次に(b)微細気泡から大気泡に変更された時、第2切り替え手段をバイパス回路閉成側に、第3切り替え手段を第1戻り管と第2戻り管側に、第1切り替え手段を第1往き管と第2往き管側の順位で切り替え接続するか、また第2切り替え手段と第3切り替え手段を同時優先し、第1切り替え手段を切り替えることにより、上述した(a)と同様の作用によりエジェクタ部の空気流入部および水流入部の負圧を小さくすることができる。
【0021】
また、(a)大気泡から微細気泡に変更された時、および(b)微細気泡から大気泡に変更された時は、上記各切り替え手段の切り替え動作に優先して、これまで流入していた空気流入手段Aまたは空気流入手段Bを閉成せしめることによって、微細気泡発生時に空気流入手段Aからの空気の流入が無くなり、微細気泡の消泡作用を防止できる。一方、大気泡発生時に空気流入手段Bからの空気の流入が無くなり、ポンプがエアーがみすることなく安定した作動をすることができること、またポンプの耐久性を向上することができる。
【0022】
上記第3技術手段において、大気泡発生の運転スイッチを「切」にすると、ポンプを停止し、空気流入手段Bを開成することによって、空気流入手段Bにかかっている負圧を大気圧に戻すことができる。エジェクタ部の空気流入部に設けた空気流入手段Bが閉成した状態では、ポンプの吸入部の負圧がそのまま空気流入部から空気流入手段Bの間にかかることになる。運転を「切」、すなわちポンプの作動がOFFしても空気流入部に設けた空気逆流防止装置が働き閉成する。このとき空気逆流防止装置と連通し空気量を調節する空気制御装置、空気流入手段Bの間が、前記負圧の状態のままとなる。
【0023】
この負圧が大きくなる条件として、大気泡運転を連続使用(すなわち微細気泡運転をしないで)すると負圧が加算されるため、前記空気流入手段Bの開成に大トルクが必要となり、開成不能状態になりやすい。そのため大気泡発生の運転スイッチを「切」にすると、ポンプを停止後毎に、空気流入手段Bを開成することにより、負圧を大気圧に戻すことによって、微細気泡発生の運転スイッチを「入」にすると、小トルクで空気流入手段Bを開成できることになり、安定して微細気泡を発生することができる。
【0024】
上記第4技術手段において、微細気泡発生の運転スイッチを「切」にすると、空気流入手段Bを閉成し、第2切り替え手段をバイパス回路閉成側に、第3切り替え手段を第1戻り管と第2戻り管側に、第1切り替え手段を第1往き管と第2往き管側の順位で切り替えるか、また第2切り替え手段と第3切り替え手段を同時優先し、第1切り替え手段を切り替え、一定時間遅効させてポンプを停止し、空気流入手段Bを開成することによって、ポンプ、第1往き管および第2往き管内の未溶解の空気を水槽に排出させることにより、次の大気泡発生、微細気泡発生の安定化、すなわちポンプ作動の立ち上がりをスムーズすることができる。次にポンプを停止後、空気流入手段Bを一定時間開成することにより、上述の如く、小トルクで空気流入手段Bを開成することができる。
【0025】
上記第5技術手段において、気泡発生運転前の切り替え手段の設定として、第1切り替え手段を第1往き管と第2往き管側に、第2切り替え手段をバイパス回路閉成側に、第3切り替え手段を第1戻り管と第2戻り管側することよって、特に気泡の主機能であるマッサージ効果、温熱効果等の目的を大気泡発生の運転スイッチ「入」にすると、ポンプの作動と空気流入手段Aの開成で、すぐに大気泡を発生しすることができる。
【0026】
上記第6技術手段において、第2往き管または第2戻り管に流量検知装置を備え、微細気泡運転開始時および微細気泡発生時に、前記流量検知装置の検知信号により正常か異常を判定して運転を制御することによって、特に微細気泡発生における異常を検知、すなわちポンプのエアーがみによる流量低下や切り替え手段の異常による流量低下、上昇や微細気泡発生部と第2往き管の目詰まり等を検出することができる。また異常検知の検知信号を出力し、ポンプのエアーパージや目詰まりクリーニング操作、使用者に異常を知らせる等を容易に制御操作することができる。
【0027】
【実施例】
以下本発明の一実施例につき、図1(a)大気泡発生時、(b)微細気泡発生時の配管回路図にしたがい説明する。1は気泡を水中に生じさせる浴槽等の水槽、2は水槽1の水中に微細気泡を生じさせる微細気泡発生部で、直列一体化した大気泡発生部3を介して水槽1に通じる。大気泡発生部3は水槽1に取付け、空気流入手段A25に連通し水中に大気泡を生じさせる。5は水槽1の水4を循環させるポンプで、吐出部6と吸入部7を有する。
【0028】
8はバイパス回路で、一端をポンプ5の吐出部6に、他端を吸入部7に接続するとともに、途中に第1切り替え手段10で、モータ式の2方弁を設けた第1往き管9と第2往き管11に分岐する分岐部12、13を備え、この分岐部12、13の下流側にバイパス回路8を開成と閉成する第2切り替え手段14で、モータ式の2方弁よりなる。15は第2切り替え手段14とポンプ5の吸入部7の間に接続したエジェクタ部で、微細気泡発生時のみ空気を流入せしめる空気流入部16と微細気泡発生時と大気泡発生時に水槽1の水4を流入する水流入部17を備えている。
【0029】
18は水流入部17またはその近傍の第2戻り管21の管径を絞って形成した抵抗部で、エジェクタ部15に水と空気を負圧流入させるためのものである。19は水槽1の水4をポンプ5の吸入部7に連通した戻り管で、この戻り管19は微細気泡発生時に第2戻り管21に、大気泡発生時に第1戻り管20と第2戻り管21に戻り水を切り替える第3切り替え手段22で、モータ式の3方弁よりなる。
【0030】
23は空気流入部16またはその近傍に備えた空気逆流防止装置で、この空気逆流防止装置23は微細気泡発生時に空気量を制御する空気制御装置24に逆流する空気と水を防止し安定して空気を流入させるもので、空気流入手段B26に連通している。28はポンプ5、第1切り替え手段10、第2切り替え手段14、第3切り替え手段22、空気流入手段A25、空気流入手段B26にそれぞれ結線した制御手段27に行う操作部で、大気泡用釦と微細気泡用釦を備えている。
【0031】
以下、実施例の気泡発生の動作を簡単に説明する。
【0032】
(a)大気泡発生の運転操作部28で大気泡発生の指示をし、大気泡スイッチを「入」にすると制御手段27により次のように制御される。第2切り替え手段14をバイパス回路8閉成側に、第3切り替え手段22を第1戻り管20と第2戻り管21側に、第1切り替え手段10を開成し第1往き管9と第2往き管11に各々切り替える。そして、ポンプ5が運転を開始すると、水槽1の水4が戻り管19から第1戻り管20と第2戻り管21の2経路を通り、ポンプ5の吸入部7に吸入される。
【0033】
この時2経路から吸入することは、大気泡発生に必要な大水量を確保するためである。そしてポンプ5の吐出部6からバイパス回路8に吐出される。吐出された水4は第2切り替え手段14によりバイパス回路8が閉成されているため、分岐部12から第1往き管9に、分岐部13から第2往き管11にと2経路を通り、大気泡発生部3からいきよいよく吐出される。そしてこの吐出力により、既にポンプ運転と同時に開成している空気流入手段A25から流入してきた空気が水に混入して水槽1に広がり大気泡が発生する。
【0034】
この時、第2往き管に水を流す理由は大気泡発生に必要な大水量を確保すること、また微細気泡発生部2が細孔で構成されているため、前記細孔が目詰まりしやすいことから大気泡発生時毎に洗浄操作をして微細気泡を安定して発生させることができるようにしたものである。
【0035】
(b)微細気泡発生の運転 操作部28で微細気泡発生の指示をし、微細気泡スイッチを「入」にすると制御手段27により次のように制御される。第1切り替え手段10を閉成し第2往き管11側に、第3切り替え手段22を第2戻り管21側に、第2切り替え手段14をバイパス回路8開成側に各々切り替える。そして、ポンプ5が運転を開始すると、水槽1の水4が戻り管19から第2戻り管21を通り、エジェクタ部15の水流入部18から負圧吸入される。そして、この水4がポンプ5の吸入部7に吸入されると、ポンプ5の吸入側の圧力が上昇するとともに吐出部6側の圧力も昇圧される。
【0036】
すなわち、微細気泡発生部2の吐出口が細孔で構成されているので、ポンプ5は略締切運転の状態で動作しているので、吸入部7側の圧力が上昇した上にポンプ5の締切圧力が加わり圧力上昇が得られ、ポンプ5、バイパス回路8、第2往き管11が昇圧される。このような運転状態においてポンプ5の運転と同時に開成している空気流入手段B26から空気を流入し、空気制御装置24により一定の安定した空気量にして空気逆流防止装置23を介して空気流入部16よりエジェクタ部15に吸引され、そして吸入部7からポンプ5に入り吐出部6からバイパス回路8側と分岐部13から第2往き管11の両方に流れる。
【0037】
この時、バイパス回路8、第2往き管11は高圧に昇圧されているため、先に吸引された空気は溶解された状態にある。そして空気の溶解された水が微細気泡発生部2を通過すると急激に減圧されて溶解していた空気が微細気泡となって大気泡発生部3を経て水槽1に乳白色と広がる。前記流入された空気はポンプ5の吸入部から吸入され、ポンプ5の高速回転翼により微細空気化され、気液接触効率が大きくなり、ポンプ5を含む高圧化された水回路で、ほぼ瞬間的に加圧溶解される。
【0038】
また、未溶解の空気はバイパス回路8に設けた分岐部13から吐出する水量Q1と再循環水Q2とエジェクタ部15の水流入部18から流入する水量Q3とした場合、Q1=Q3、すなわち微細気泡発生部2から吐出した水量はQ1となり、吐出した水量Q1分のみをQ3分として流入させる。一方、バイパス回路8に再循環する水量Q2は可能な限り多くすることが望ましい。なぜならQ2/Q1比を仮に循環回数とすると、この循環比を大とすることにより、未溶解空気をバイパス回路8でさらに加圧溶解することができる。
【0039】
図2は大気泡発生から微細気泡に変更(a)および微細気泡から大気泡に変更(b)する場合のフローチャートにしたがい説明する。ただし大気泡スイッチを「入」のS1から空気流入手段A25の開成S6、微細気泡スイッチを「入」のS13から空気流入手段B26の開成S18はすでに上述しているので説明を省略する。
【0040】
(a)の如く大気泡発生中から微細気泡発生に操作部28により変更を指示、すなわち微細気泡スイッチを「入」にすると(S7)、優先的に制御手段27が空気流入手段A25を閉成する(S8)。次に第1切り替え手段10を閉成して(S9)、第2往き管11に通水するように切り替える。その後第3切り替え手段22を第2戻り管21に切り替え(S10)、第2切り替え手段14を開成して(S11)、バイパス回路8に水を循環させる。そして空気流入手段B26を開成し(S12)、微細気泡発生の運転に入る。
【0041】
このようなシーケンスにすることによって、まず大気泡から微細気泡に気泡変更しても、大気泡発生部3にも上述した水量Q1か流れるため、前記大気泡発生部3に設けたエジェクタ作用により、前記空気流入手段A25が開成したままであると空気が流入し、微細気泡と混合されて、微細気泡の発生量が減少する。このため、空気流入手段25を優先的に閉成するものである。
【0042】
さらに、第1切り替え手段10を優先的に閉成することにより、微細気泡発生部2が細孔構成のためポンプ5が略締切状態となり、水量が著しく低下するため、ポンプ5の吸入部7を異常負圧、すなわち高負圧になることを防止できる。このことは空気流入手段B26の開成トルクが小トルクでよく安定、確実に開成できるものである。さらにまた第3切り替え手段22を第2切り替え手段14よりも先に切り替え動または同時に切り替えすることにより、ポンプ5の吸入部7をより低負圧化することができる。
【0043】
前記高負圧状態になる条件は、第1切り替え手段10を開成のままで、かつ第3切り替え手段22を第2戻り管に切り替えると、エジェクタ部15の水流入部のみの流入水となるために高負圧状態が生じる。また高負圧になると上述の開成トルクを大トルクにする必要があること、水回路や空気流入回路等の接続部から異常な空気が流入することになる。さらにポンプ5から異常音が発生するなどの問題が生じ、これを避けるため、上記のような制御が必須条件となる。
【0044】
一方、(b)の如く微細気泡発生中から大気泡発生に操作部28により変更を指示、大気泡スイッチを「入」にすると(S19)、優先的に制御手段27が空気流入手段B26を閉成する(S20)。次に第2切り替え手段14を閉成して(S20)、バイパス回路8の循環を停止させる。そして第3切り替え手段22を第1戻り管20と第2戻り管21に切り替え(S22)、第1切り替え手段10を開成して(S23)、第1往き管9と第2往き管11に通水するように切り替える。そして空気流入手段A25を開成し(S24)、大気泡発生の運転に入る。
【0045】
このようなシーケンスにすることによって、まず微細気泡から大気泡に気泡変更しても、前記空気流入手段B26が開成していると、バイパス回路8に水が循環しているため、エジェクタ部15が負圧状態のままとなり、空気が常時流入してポンプ5が大気泡になっても常にエアーがみ状態で運転することになる。このため、空気流入手段B26を優先的に閉成するものである。
【0046】
さらに、第2切り替え手段14を優先的に閉成してバイパス回路8の循環を停止すると、微細気泡発生部2が細孔構成のためポンプ5の吐出流量が多くならないため、ポンプ5の吸入部7が異常負圧、すなわち高負圧になることを防止できる。さらにまた第3切り替え手段22を第1切り替え手段109よりも先に切り替えるか、または同時に切り替えすることにより、ポンプ5の吸入部7をより低負圧化することができる。
【0047】
前記高負圧状態になる条件は、第3切り替え手段22を第2戻り管21のままで、第2切り替え手段14を閉成し、かつ第1切り替え手段10を開成すると、エジェクタ部15の水流入部のみの流入水となるために高負圧状態が生じる。また高負圧になると第3切り替え手段22の切り替えトルクを大トルクにする必要があること、水回路や空気流入回路等の接続部から異常な空気が流入することになる。さらにポンプ5から異常音が発生するなどの問題が生じ、これを避けるため、上記のような制御が必須条件となる。
【0048】
図3は大気泡発生の停止後のフローチャートを示す。S1〜S6は図2と同一制御手段であるから説明は省略する。大気泡スイッチを「切」にする(S25)と、ポンプ5が停止し(S26)、空気流入手段A25が閉成する(S27)。
【0049】
その後、空気流入手段B26を開成する(S28)。このような制御手段を行うことによって、大気泡発生時に生じるエジェクタ部15の空気流入部16の空気逆流防止装置23から気泡流入手段B26までの高負圧状態を大気圧に戻すことができる。
【0050】
このことは微細気泡発生時に空気流入手段B26の開成トルクを小さくすることができ、常に安定した開成作動ができる。大気泡発生時にエジェクタ部15内が高負圧状態になる要因として、ポンプ5の吸入部7までの抵抗が大きいこと、すなわち第3切り替え手段22、第1戻り管20、第2戻り管21および戻り管19等の総抵抗によって決定される。しかしながら、前記第3切り替え手段22の3方弁のボール径を大きくして抵抗を小さくすることは可能であるが、コスト高となる。
【0051】
また、各戻り管19、20、21の管径を大きくして抵抗を小さくすることも可能であるが、これもコスト高と経済的でなくなる。このように経済性を考慮すると、高負圧状態は避けることができない。さらに、もし大気泡発生を連続して使用すると、大気泡発生毎に負圧が増加し、エジェクタ部15の接続部から異常な空気が流入しやすくなり、ポンプ5がエアーがみが生じ、気泡発生が安定して運転することができなくなるなどの問題が発生する。
【0052】
図4は微細気泡発生の停止後のフローチャートを示す。S13〜S18は図2と同一の制御手段であるから説明は省略する。微細気泡スイッチを「切」にする(S29)と、空気流入手段Bを閉成し(S30)、その後第2切り替え手段14を閉成する(S31)。そして第3切り替え手段22を第1戻り管20と第2戻り管21に切り替え(S32)、第1切り替え手段10を開成する(S33)。その後、ポンプ5を一定時間t作動させた後(S34)、ポンプ5を停止し(S35)、そして空気流入手段B26を開成する(S36)。
【0053】
このような制御手段を行うことによって、ポンプ5、バイパス回路8、第2往き管11の未溶解空気を水槽1に排出させると同時に、微細気泡発生部2の細孔部を洗浄することができる。また操作時に生じるエジェクタ部15の空気流入部16の空気逆流防止装置23から気泡流入手段B26までの高負圧状態を大気圧に戻すことができる。このことは図3で詳述したような微細気泡発生時に空気流入手段B26の開成トルクを小さくできる。上記S32〜S33の制御手段は、エジェクタ部15の負圧を最少限度にし、高負圧の上昇を抑えるためである。
【0054】
図5は気泡運転前の各々の切り替え手段設定について、微細気泡発生時を代表例としたフローチャートを示し説明したもので、微細気泡スイッチ「切」後の動作が上記図4で説明したものと異なるが、図5はあくまで気泡運転前の第1及び第2及び第3切り替え手段の切り替え設定を主体に説明したもので、微細気泡スイッチ「切」後の詳細動作は図4で説明した通りである。S13〜S18は図2と同一の制御手段であるから説明は省略する。微細気泡スイッチを「切」にする(S37)と、空気流入手段B26を閉成する(S38)とともに、ポンプ5を停止する(S39)。その後、第2切り替え手段14を閉成(S40)、第3切り替え手段22を第1戻り管20、第2戻り管21側に(S41)、第1切り替え手段10を開成する(S42)ように切り替える。
【0055】
このような制御手段を行うことによって、特に気泡の主機能であるマッサージ効果、温熱効果等の目的を大気泡発生の運転スイッチ「入」にすると、ポンプ5の作動と空気流入手段A25の開成で、すぐに大気泡を発生することができる。
【0056】
図6は図1の変形例で、第2往き管11に流量検知装置29を設け、微細気泡発生時を代表例とした配管回路図を示す。図1の実施例と同一構造で同一作用をする部分には同一符号を付して詳細な説明を省略し、異なる部分を中心に説明する。
【0057】
微細気泡運転開始時および微細気泡発生時に、前記流量検知装置29の検知信号により正常か異常を判定して運転を制御することによって、特に微細気泡発生における異常を検知、すなわちポンプ5のエアーがみによる流量低下や各々の切り替え手段10、14、22の切り替え異常による流量低下や流量上昇や微細気泡発生部2、第2往き管21、戻り管19、第2戻り管21、バイパス回路15等の目詰まりを検出することができる。
【0058】
また、異常検知の検知信号を出力し、ポンプ5のエアーパージや各々の配管目詰まりクリーニング操作、使用者に異常を知らせる等を容易に制御操作できる極めて有効な手段である。図中では詳述していないが、第2戻り管21に流量検知装置29を設けても同様の効果を有する。
【0059】
図7は図1の第2変形例、第3切り替え手段22のモータ式の3方弁を、モータ式の2方弁からなる第3切り替え手段32とし、微細気泡発生時を代表例とした配管回路図を示す。図1の実施例と同一構造で同一作用をする部分には同一符号を付して詳細な説明を省略し、異なる部分を中心に説明する。
【0060】
戻り管19に分岐部31を備え、この分岐部31から第1戻り管33と第2戻り管34を分岐している。前記第1戻り管33とバイパス回路8との間に、第3切り替え手段32を設け、微細気泡発生時には、前記第2戻り管34からエジェクタ部15の水流入部17のみから水を流入するように、第3切り替え手段32を閉成している。
【0061】
この第3切り替え手段32をモータ式の2方弁にすることによって、低コスト化と、図中では詳述していないが、図1の配管回路図と比較してもわかるように、大気泡発生時にポンプ5の吸入部7へ流入量が多くなり、吸入抵抗を低減が可能となる。また制御手段27は図2と同一であることから、動作説明は省略する。
【0062】
図8は図1の第3変形例で、微細気泡発生部2と大気泡発生部3が直列一体化したものから、水槽1に並列分離化し、微細気泡発生部35と大気泡発生部36に分離し、微細気泡発生時を代表例とした配管回路図を示す。図1の実施例と同一構造で同一作用をする部分には同一符号を付して詳細な説明を省略し、異なる部分を中心に説明する。
【0063】
微細気泡発生部35に第2往き管38を、また大気泡発生部36に第1往き管37、戻り管19および空気流入手段A25をそれぞれ連結している。微細気泡発生時には、バイパス回路8で空気を加圧溶解した水は分岐部13から第2往き管38を通り、細孔構成からなる微細気泡発生部35で急激に減圧され、水槽1に微細気泡に吐出される。図中では詳述していないが、大気泡発生時には第1往き管36と第2往き管37の両方に流れ、大気泡発生部36から吐出する水量はやや減少する。
【0064】
しかしながら、図8の配管回路図の構成は、特にユニットバス等の施工時、浴槽とユニット壁との距離が狭く、図1のような直列一体化の発生装置が施工できない場合に有効な手段である。また制御手段27は図2と同一であることから、動作説明は省略する。
【0065】
【発明の効果】
このように本発明の請求項1、2記載の気泡発生装置は、(a)大気泡から微細気泡に変更された時、(b)微細気泡から大気泡に変更された時、エジェクタ部の空気流入部の負圧を小さくして空気流入手段Bの開成トルクを小トルクで開成ができ、安定して気泡発生ができる。
【0066】
また、微細気泡発生時に空気流入手段Aからの空気の流入が無くなり、微細気泡の消泡作用を防止できる。また大気泡発生時に空気流入手段Bからの空気の流入が無くなり、ポンプがエアーがみすることなく安定した作動をすることができること、またポンプの耐久性を向上することができる。
【0067】
また、本発明の請求項3記載の気泡発生装置は、大気泡発生の運転スイッチを「切」にし、空気流入手段Bを開成することによって、空気流入手段Bにかかっている負圧を大気圧に戻すことによって、微細気泡発生の運転スイッチを「入」にすると、小トルクで空気流入手段Bを開成できることになり、安定して微細気泡を発生することができる。
【0068】
また、本発明の請求項4記載の気泡発生装置は、微細気泡発生の運転スイッチを「切」にし、空気流入手段Bを閉成し、第2切り替え手段をバイパス回路閉成側に、第3切り替え手段を第1戻り管と第2戻り管側に、第1切り替え手段を第1往き管と第2往き管側の順位で切り替えるか、また第2切り替え手段と第3切り替え手段を同時優先し、第1切り替え手段を切り替え、一定時間遅効させてポンプを停止し、空気流入手段Bを開成することによって、ポンプ、第1往き管および第2往き管内の未溶解の空気を水槽に排出できる。
【0069】
また、次の大気泡発生、微細気泡発生の安定化、すなわちポンプ作動の立ち上がりをスムーズすることができる。さらに次にポンプを停止後、空気流入手段Bを一定時間開成することにより、小トルクで空気流入手段Bを開成することができる。
【0070】
また、本発明の請求項5記載の気泡発生装置は、気泡発生運転前の切り替え手段の設定として、第1切り替え手段を第1往き管と第2往き管側に、第2切り替え手段をバイパス回路閉成側に、第3切り替え手段を第1戻り管と第2戻り管側することよって、特に気泡の主機能であるマッサージ効果、温熱効果等の目的を大気泡発生の運転スイッチ「入」にすると、ポンプの作動と空気流入手段Aの開成で、迅速に大気泡を発生することができる。
【0071】
さらに、本発明の請求項6記載の気泡発生装置は、第2往き管または第2戻り管に流量検知装置を備えることによって、微細気泡運転開始時および微細気泡発生時に、正常か異常を判定して運転を制御することができる。特に微細気泡発生における異常を検知、すなわちポンプのエアーがみによる流量低下や切り替え手段の異常による流量低下、流量上昇や微細気泡発生部と第2往き管の目詰まり等を検出することができる。また異常検知の検知信号を出力し、ポンプのエアーパージ操作や目詰まりクリーニング操作、使用者に異常を知らせる等を容易に制御操作することができる。
【図面の簡単な説明】
【図1】(a)本発明の一実施例における気泡発生装置の大気泡発生時を示す構成図
(b)同装置の微細気泡発生時を示す構成図
【図2】(a)同装置の大気泡発生から微細気泡発生に変更する制御手段の動作フローチャート
(b)同装置の微細気泡発生から大気泡発生に変更する制御手段の動作フローチャート
【図3】同装置の大気泡発生停止後の制御手段の動作フローチャート
【図4】同装置の微細気泡発生停止後の制御手段の動作フローチャート
【図5】同装置の微細気泡発生停止後の切り替え手段設定の制御手段の動作フローチャート
【図6】同装置の第1変形例における微細気泡発生時を示す構成図
【図7】同装置の第2変形例における微細気泡発生時を示す構成図
【図8】同装置の第3変形例における微細気泡発生時を示す構成図
【図9】従来の噴流浴装置を示すシステム構成図
【図10】同装置のシャトルバルブの断面図
【図11】同装置のレリーフバルブの断面図
【図12】同装置の低圧噴流ノズルの断面図
【符号の説明】
1 水槽
2、35 微細気泡発生部
3、36 大気泡発生部
5 ポンプ
6 吐出部
7 吸入部
8 バイパス回路
9 第1往き管
10、37 第1切り替え手段
11、38 第2往き管
12、13、31 分岐部
14 第2切り替え手段
15 エジェクタ部
16 空気流入部
17 水流入部
18 抵抗部
19 戻り管
20、33 第1戻り管
21、34 第2戻り管
22、32 第3切り替え手段
23 空気逆流防止装置
24 空気制御装置
25 空気流入手段A
26 空気流入手段B
27、30 制御手段
28 操作部
29 流量検知装置
[0001]
[Industrial applications]
The present invention relates to control of a bubble generator having a function of generating fine bubbles and large bubbles in a water tank by a pump that circulates water.
[0002]
[Prior art]
Conventionally, as a bubble generating device (jet bath device) for generating such fine bubbles, a disclosed example of Japanese Patent Publication No. 3-14464 is disclosed.9 to 12Shown in A pump unit 104 having a pump 103 for circulating hot water 102 in a bathtub 101; a two-way valve for an inhaler 106 for hot water 102 connected to a suction side pipe 105 of the pump 103 and a discharge side pipe 107 of the pump 103; It comprises a nozzle unit 111 having a low-pressure jet nozzle 109 and a high-pressure jet nozzle 110 branched and connected via 108.
[0003]
Further, a jet passage 112 is provided in the suction-side conduit 105 of the pump 103, and a branch passage 114 is provided between the discharge-side conduit 107 and the jet passage 112 via a shuttle valve 113. The shuttle valve 113FIG., A conical valve 116 urged by a spring 115, a valve rod 117 connected to the conical valve 116, an air intake passage 118, and an air passage 119. Furthermore, the high pressure jet nozzle 110FIG.And a relief valve 126 provided with a valve element 124 and a jet outlet 125 urged by a spring 123.
[0004]
Also, the low pressure jet nozzle 109 isFIG., An air inflow passage 128 formed on the outer periphery of the flow passage 127, and a narrow passage 129, a wide chamber 130, and a nozzle 131 are formed downstream of the flow passage 127. The air inflow passage 128 communicates with the wide chamber 130 through a narrow passage 132.
[0005]
Next, the operation will be described.FIG.In this case, when the pump 103 is operated, the hot water 102 is sucked into the pump 103 from the inhaler 106 via the suction side pipe 105, and then fine bubbles are ejected from the high pressure jet nozzle 110 from the pump 103 via the discharge side pipe 107. You. At this time, the discharge pressure of the pump 103 acts on the branch pipe line 114, and the discharge pressure increases, so that the conical valve 116 connected to the valve rod 117 overcomes the urging force of the spring 115 and opens the conical valve 116.
[0006]
As a result, air is sucked into the jet passage 112 via the air intake passage 118, the conical valve 116, and the air passage 119, and is sucked by the pump 103. The sucked air is sent under high pressure to the pump 103, the discharge side pipeline 107 and the gas-liquid mixer 122 in the high-pressure jet nozzle 110, where the air is dissolved under pressure, and the valve element 124 and the jet outlet 125 of the high-pressure jet nozzle 110 are dissolved. , The fine bubbles are discharged into the bathtub 101. On the other hand, when large bubbles occurFIG.The two-way valve 108 is switched, and large bubbles of hot water from the pump 103 are ejected from the low-pressure jet nozzle 109 into the bathtub 101.
[0007]
[Problems to be solved by the invention]
However, in the above configuration, during the operation of generating fine bubbles, the two-way valve 108 is switched to the high-pressure jet nozzle 110 side, and when the pump 103 operates, the hot water 102 is sucked from the inhaler 106 into the pump 103 via the suction-side pipe 105. I do. When the hot water 102 is sucked, the relief valve 126 becomes a discharge resistance, and the pump 103, the discharge side pipeline 107, and the shuttle valve 113 are almost instantaneously brought into a high pressure state. On the other hand, during the operation for generating large bubbles, the two-way valve 108 is switched to the low-pressure jet nozzle 109, and when the pump 103 is operated, the hot water 102 flows in the same way as in the operation for generating fine bubbles, that is, from the inhaler 106 to the suction side pipe. The air is sucked into the pump 103 through the passage 105 and the jet passage 112.
[0008]
As described above, the flow of the warm water 102 along the same path during the operation of the fine bubbles and the large bubbles is particularly large when large bubbles are generated, although a large flow rate is required.FIG.In order for the jet passage 112 of the shuttle valve 113 to exhibit the function of an ejector function for sucking air, the shuttle valve 113 is configured so as to commonly use both a nozzle and a diffuser. Therefore, the opening area is small, and as a result, the resistance increases, the suction negative pressure of the pump 103 increases, and a large flow rate cannot be secured.
[0009]
In addition, during operation of generation of microbubbles, the shuttle valve 113 is one of the excellent systems for automatically sucking air without electric control, but the valve rod 117 provided in the shuttle valve 113 operates by high output. The conical valve 116 connected to the valve stem 117 overcomes the urging force of the spring 115, so that the conical valve 116 is opened and air flows in. For this reason, the change in high output,FIG.The urging force applied to the valve body 124 continuously and unstablely changes depending on the jet state from the valve body 124 urged by the spring 123 of the relief valve 126.
[0010]
Therefore, when the valve element 124 is opened in an unstable manner, the urging force applied to the valve rod 117 becomes unstable, and the amount of air to be sucked changes. As a result, stable generation of fine bubbles cannot be achieved. That is, in the prior art, both large bubbles and fine bubbles have the above-described practical problems.
[0011]
The present invention solves the above-mentioned problem, and stabilizes both generation of large bubbles and generation of fine bubbles.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the bubble generating device of the present invention is a water tank, a bubble jet device including a fine bubble generating section and a large bubble generating section provided in the water tank, and a pump for circulating water in the water tank. , Between the discharge part and the suction part of this pumpEstablishedA bypass circuit and the bypass circuitFromThe first trip that branches off and communicates with the large bubble generatorTubeSecond pipe connected to the microbubble generatorWhen,Provided in the first going pipe,The first going pipe and the second going pipe when large bubbles are generated, and the second going pipe when fine bubbles are generatedSwitch toThe first switching means and the bypass circuitEstablishedAn ejector section having a water inflow section and an air inflow section, and an upstream side of the ejector section.EstablishedA second switching means for controlling bypass water, and a part of the ejector;EstablishmentA resistance section that allows water and air to enter under negative pressure, and an air inflow sectionEstablishedAir backflow prevention deviceWhenAn air control device that communicates with the air backflow prevention device and regulates the amount of air;EstablishedAir inflow means B, a return pipe for sucking water from the water tank into a suction portion of a pump, and the return pipeFromIt branches into a first return pipe communicating with the suction part of the pump when large bubbles are generated, and a second return pipe communicating with the water inflow part of the ejector part.switching, When fine bubbles occurSaidThird switching means for switching the flow to the second return pipe, and air inflow means A communicating with the large bubble generatorAnd a large bubble Control means for controlling the generation operation and the fine bubble generation operation, wherein the control means closes the air inflow means A when a change instruction to the fine bubble generation operation is issued during the large bubble generation operation. Priority, and thenThe first switching means is on the second outgoing pipe side, the third switching means is on the second return pipe side, and the second switching means is on the bypass circuit opening side.OrderSwitch with,afterwards,Open air inflow means BAsAnd alsoWhen a change instruction to the large bubble generation operation is issued during the fine bubble generation operation, the closing operation of the air inflow means B is performed preferentially, and thereafter,The second switching means is on the bypass circuit closing side, the third switching means is on the first return pipe and the second return pipe side, and the first switching means is on the first going pipe and the second going pipe side.OrderTo switch,afterwards,Open air inflow means ADidThings.
[0013]
Further, the second technical means in the air bubble generating device of the present invention, the control means of the first technical means,When changing from the large bubble generating operation to the fine bubble generating operation, the first switching means is switched after the air inflow means A is closed, and then the third switching means and the second switching means are simultaneously switched. When the means B is opened and the operation is changed from the fine bubble generation operation to the large bubble generation operation, the second switching means and the third switching means are simultaneously switched after the air inflow means B is closed, and then the first switching is performed. The means is switched so that the air inflow means A is opened.Things.
[0014]
Further, the third technical means in the bubble generating apparatus of the present invention turns off the pump and opens the air inflow means B when the control means of the first technical means turns off the operation switch for large bubble generation. It becomes.
[0015]
Still further, the fourth technical means in the bubble generating apparatus of the present invention closes the air inflow means B when the control means of the first technical means is turned off, and the operation switch for fine bubble generation is turned off. Means for switching to the bypass circuit closing side, third switching means for the first return pipe and the second return pipe, first switching means for the first outgoing pipe and the second outgoing pipe, or The switching means and the third switching means have the same priority, the first switching means is switched, the pump is stopped after a certain time delay, and the air inflow means B is opened.
[0016]
Further, the fifth technical means in the bubble generating apparatus of the present invention is such that the control means of the first technical means is set as the switching means before the bubble generation operation, and the first switching means is on the side of the first going pipe and the second going pipe. Further, the second switching means is provided on the bypass circuit closing side, and the third switching means is provided on the first return pipe and the second return pipe side.
[0017]
Still further, the sixth technical means in the bubble generating apparatus of the present invention includes the control means of the first technical means, a flow detecting device provided in the second going pipe or the second return pipe, at the start of the fine bubble operation and the fine bubble generation. In some cases, the apparatus further comprises a control means for judging whether the operation is normal or abnormal based on the detection signal of the flow rate detection device and controlling the operation.
[0018]
[Action]
The first, 2In the technical means, (a) when the large bubbles are changed to fine bubbles by the control means, the first switching means is on the second outgoing pipe side, the third switching means is on the second return pipe side, and the second switching means is provided. The bypass circuit closed sideOrderSwitch connection or use the first switching meansOn the second outgoing pipe side, thenBy simultaneously switching the third switching means and the second switching means, it is possible to reduce the negative pressure of the air inflow part and the water inflow part of the ejector unit provided in the bypass circuit.
[0019]
That is, when the first switching means is switched to the first return pipe and the second return pipe and the third switching means is switched to the second return pipe, the throttle provided in the water inflow section for allowing the water and air to flow in a negative pressure. The resistance part of the structure becomes a resistance, and the negative pressure increases. When the negative pressure is increased, the opening torque of the air inflow means B communicating with the air inflow section is increased, so that the air inflow means B may not be able to be opened, and the durability of the air inflow means B may be deteriorated. Further, even if the second switching means is switched to the bypass circuit opening side before the third switching means and the third switching means is switched to the second return pipe side, the negative pressure similarly increases.
[0020]
Next, (b) when the fine bubbles are changed to large bubbles, the second switching means is on the bypass circuit closing side, the third switching means is on the first return pipe and the second return pipe side, and the first switching means is on the side of the first return pipe and the second return pipe. Similar to (a) described above, by switching and connecting in the order of the first and second outgoing pipes, or by simultaneously giving priority to the second and third switching means and switching the first switching means. By the action, the negative pressure of the air inflow section and the water inflow section of the ejector section can be reduced.
[0021]
Also,(A) When the bubble is changed from the large bubble to the fine bubble, and (b) when the bubble is changed from the fine bubble to the large bubble, the switching operation of each switching unit is prioritized,The air inflow means A or the air inflow means B which has flowed so far.CloseBy doing so, the inflow of air from the air inflow means A at the time of generation of the fine bubbles is eliminated, and the defoaming action of the fine bubbles can be prevented. On the other hand, when large bubbles are generated, the inflow of air from the air inflow means B is eliminated, so that the pump can operate stably without seeing air, and the durability of the pump can be improved.
[0022]
In the third technical means, when the operation switch for generating large air bubbles is turned off, the pump is stopped, and the negative pressure applied to the air inflow means B is returned to the atmospheric pressure by opening the air inflow means B. be able to. In a state where the air inflow means B provided in the air inflow section of the ejector section is closed, the negative pressure of the suction section of the pump is directly applied between the air inflow section and the air inflow means B. Even if the operation is turned off, that is, even if the operation of the pump is turned off, the air backflow prevention device provided in the air inflow section operates and closes. At this time, the space between the air control device that communicates with the air backflow prevention device and adjusts the amount of air and the air inflow means B remains at the negative pressure.
[0023]
As a condition for increasing the negative pressure, if the large bubble operation is continuously used (that is, the fine bubble operation is not performed), the negative pressure is added. Therefore, a large torque is required to open the air inflow means B, and the air cannot be opened. Easy to be. Therefore, when the operation switch for generating large bubbles is turned off, the operation switch for generating fine bubbles is turned on by returning the negative pressure to the atmospheric pressure by opening the air inflow means B every time the pump is stopped. ", The air inflow means B can be opened with a small torque, and fine bubbles can be stably generated.
[0024]
In the fourth technical means, when the operation switch for generating fine bubbles is turned off, the air inflow means B is closed, the second switching means is on the bypass circuit closing side, and the third switching means is the first return pipe. The first switching means is switched to the first and second return pipes in the order of the first going pipe and the second going pipe, or the second switching means and the third switching means are given priority simultaneously and the first switching means is switched. By stopping the pump after a certain period of time and stopping the pump and opening the air inflow means B, the undissolved air in the pump, the first going pipe and the second going pipe is discharged to the water tank, and the next large bubble is generated. In addition, it is possible to stabilize the generation of fine bubbles, that is, to smoothly start the operation of the pump. Next, after stopping the pump, the air inflow means B can be opened with a small torque by opening the air inflow means B for a certain period of time as described above.
[0025]
In the fifth technical means, as the setting of the switching means before the bubble generation operation, the first switching means is on the first and second outgoing pipe sides, the second switching means is on the bypass circuit closing side, and the third switching means is on. By setting the means on the first return pipe side and the second return pipe side, especially when the purpose of the main effect of the bubble, such as the massage effect and the heating effect, is set to the operation switch for generating large bubbles, the operation of the pump and the air inflow By opening the means A, large bubbles can be generated immediately.
[0026]
In the sixth technical means, a flow detecting device is provided in the second going pipe or the second return pipe, and at the time of starting the fine bubble operation and at the time of generating the fine bubble, the operation is determined by judging normal or abnormal by the detection signal of the flow detecting device. To detect abnormalities especially in the generation of microbubbles, that is, to detect a decrease in the flow rate due to the air in the pump, a decrease in the flow rate due to an abnormality in the switching means, an increase, and the clogging of the microbubble generator and the second going pipe. can do. In addition, a detection signal of abnormality detection is output, and an air purge of the pump, a clogging cleaning operation, a notification of an abnormality to a user, and the like can be easily controlled.
[0027]
【Example】
Hereinafter, an embodiment of the present invention will be described with reference to the piping circuit diagram of FIG. 1 (a) when large bubbles are generated and (b) when fine bubbles are generated. Reference numeral 1 denotes a water tank such as a bathtub for generating bubbles in water, and 2 denotes a fine bubble generating section for generating fine bubbles in the water of the water tank 1, which communicates with the water tank 1 via a large bubble generating section 3 integrated in series. The large bubble generating section 3 is attached to the water tank 1 and communicates with the air inflow means A25 to generate large bubbles in water. Reference numeral 5 denotes a pump for circulating the water 4 in the water tank 1 and has a discharge unit 6 and a suction unit 7.
[0028]
Reference numeral 8 denotes a bypass circuit, one end of which is connected to the discharge part 6 of the pump 5 and the other end of which is connected to the suction part 7, and a first switching means 10 provided with a motor-operated two-way valve 9 on the way. And a second switching means 14 for opening and closing the bypass circuit 8 on the downstream side of the branch portions 12 and 13 by a motor-operated two-way valve. Become. Reference numeral 15 denotes an ejector connected between the second switching means 14 and the suction part 7 of the pump 5. An air inflow part 16 which allows air to flow only when fine bubbles are generated, and a water in the water tank 1 when fine bubbles are generated and when large bubbles are generated. 4 is provided.
[0029]
Reference numeral 18 denotes a resistance portion formed by narrowing the diameter of the water return portion 17 or the second return pipe 21 in the vicinity thereof, and serves to cause water and air to flow into the ejector portion 15 under a negative pressure. Reference numeral 19 denotes a return pipe connecting the water 4 of the water tank 1 to the suction portion 7 of the pump 5. The return pipe 19 is connected to the second return pipe 21 when fine bubbles are generated, and to the first return pipe 20 and the second return pipe 20 when large bubbles are generated. The third switching means 22 for returning water to the pipe 21 and switching the water comprises a motor type three-way valve.
[0030]
Reference numeral 23 denotes an air backflow prevention device provided at or near the air inflow portion 16. The air backflow prevention device 23 prevents air and water from flowing back to the air control device 24 that controls the amount of air when fine bubbles are generated, and stably prevents the air and water from flowing back. The air is allowed to flow in and communicates with the air inflow means B26. Reference numeral 28 denotes an operation unit for the control unit 27 connected to the pump 5, the first switching unit 10, the second switching unit 14, the third switching unit 22, the air inflow unit A25, and the air inflow unit B26. It has a button for microbubbles.
[0031]
Hereinafter, the operation of generating bubbles in the embodiment will be briefly described.
[0032]
(A) The large-bubble generation operation operation unit 28 gives an instruction to generate a large bubble, and when the large-bubble switch is turned “ON”, the control means 27 controls as follows. The second switching means 14 is on the bypass circuit 8 closing side, the third switching means 22 is on the first return pipe 20 and the second return pipe 21 side, the first switching means 10 is open, and the first going pipe 9 and the second Each is switched to the outgoing pipe 11. When the pump 5 starts operating, the water 4 in the water tank 1 is sucked from the return pipe 19 through the two paths of the first return pipe 20 and the second return pipe 21 to the suction part 7 of the pump 5.
[0033]
At this time, the inhalation from the two paths is to secure a large amount of water necessary for generating large bubbles. Then, the fluid is discharged from the discharge part 6 of the pump 5 to the bypass circuit 8. Since the bypass circuit 8 is closed by the second switching means 14, the discharged water 4 passes through two paths from the branch part 12 to the first going pipe 9 and from the branch part 13 to the second going pipe 11. The large-bubble generating section 3 discharges the ink in a vivid and good manner. Due to this discharge force, the air that has flowed in from the air inflow means A25 that has already been opened at the same time as the operation of the pump is mixed into the water and spreads in the water tank 1 to generate large bubbles.
[0034]
At this time, the reason for flowing the water through the second going pipe is to secure a large amount of water necessary for the generation of large bubbles, and because the fine bubble generation part 2 is composed of pores, the pores are easily clogged. For this reason, the washing operation is performed every time a large bubble is generated, so that fine bubbles can be stably generated.
[0035]
(B) Operation of generation of microbubbles When the generation of microbubbles is instructed by the operation unit 28 and the microbubble switch is turned on, the control means 27 controls as follows. The first switching means 10 is closed, and the third switching means 22 is switched to the second return pipe 21 side, and the second switching means 14 is switched to the bypass circuit 8 open side, respectively. Then, when the pump 5 starts operating, the water 4 in the water tank 1 passes through the return pipe 19 through the second return pipe 21, and is sucked at a negative pressure from the water inflow section 18 of the ejector section 15. When the water 4 is sucked into the suction section 7 of the pump 5, the pressure on the suction side of the pump 5 increases and the pressure on the discharge section 6 side also increases.
[0036]
That is, since the discharge port of the microbubble generating section 2 is constituted by a fine hole, the pump 5 operates in a substantially shut-off operation state. The pressure is applied to increase the pressure, and the pressure of the pump 5, the bypass circuit 8, and the second going pipe 11 is increased. In such an operation state, air flows in from the air inflow means B26 which is opened at the same time as the operation of the pump 5, and is made to have a constant and stable air volume by the air control device 24. The liquid is sucked into the ejector unit 15 from the ejector 16, enters the pump 5 from the suction unit 7, and flows from the discharge unit 6 to both the bypass circuit 8 side and the branch unit 13 to both the second going pipe 11.
[0037]
At this time, since the bypass circuit 8 and the second going pipe 11 are pressurized to a high pressure, the air previously sucked is in a dissolved state. Then, when the water in which the air is dissolved passes through the fine bubble generating section 2, the pressure is rapidly reduced and the dissolved air becomes fine bubbles and spreads to the water tank 1 via the large bubble generating section 3 as milky white. The introduced air is supplied to a suction portion of a pump 5.7And the air is finely pulverized by the high-speed rotating blades of the pump 5, the gas-liquid contact efficiency is increased, and the pressure is dissolved almost instantaneously in the high-pressure water circuit including the pump 5.
[0038]
When the amount of undissolved air is the water amount Q1 discharged from the branch portion 13 provided in the bypass circuit 8, the recirculated water Q2, and the water amount Q3 flowing from the water inflow portion 18 of the ejector section 15, Q1 = Q3, The amount of water discharged from the bubble generation unit 2 is Q1, and only the amount of discharged water Q1 flows in as Q3. On the other hand, it is desirable to increase the amount of water Q2 recirculated to the bypass circuit 8 as much as possible. Because, if the Q2 / Q1 ratio is assumed to be the number of circulations, by increasing the circulation ratio, the undissolved air can be further pressurized and dissolved in the bypass circuit 8.
[0039]
FIG. 2 will be described according to a flowchart in the case of changing from the occurrence of large bubbles to fine bubbles (a) and the case of changing from fine bubbles to large bubbles (b). However, since the large-bubble switch is "ON", the opening S6 of the air inflow means A25 is started, and the fine-bubble switch is turned "ON" from S13 to the opening S18 of the air inflow means B26.
[0040]
As shown in (a), when the operation unit 28 instructs a change to the generation of fine bubbles during the generation of large bubbles, that is, when the fine bubble switch is turned on (S7), the control means 27 closes the air inflow means A25 preferentially. (S8). Next, the first switching means 10 is closed (S9), and switching is performed so that water flows through the second going pipe 11. Thereafter, the third switching means 22 is switched to the second return pipe 21 (S10), the second switching means 14 is opened (S11), and water is circulated through the bypass circuit 8. Then, the air inflow means B26 is opened (S12), and the operation for generating fine bubbles is started.
[0041]
With such a sequence, even if the bubble is changed from a large bubble to a fine bubble first, since the water amount Q1 flows into the large bubble generating section 3 as well, the ejector action provided in the large bubble generating section 3 If the air inflow means A25 is kept open, air flows in and is mixed with the fine bubbles, so that the amount of generated fine bubbles is reduced. Therefore, the air inflow means 25 is preferentially closed.
[0042]
Furthermore, by closing the first switching means 10 preferentially, the pump 5 is substantially shut off because the microbubble generating section 2 has a fine pore structure, and the amount of water is significantly reduced. An abnormal negative pressure, that is, a high negative pressure can be prevented. This means that the opening torque of the air inflow means B26 can be opened stably and reliably with a small torque. Further, by switching or simultaneously switching the third switching means 22 before the second switching means 14, the suction section 7 of the pump 5 can have a lower negative pressure.
[0043]
The condition for the high negative pressure state is that if the first switching means 10 is kept open and the third switching means 22 is switched to the second return pipe, the water will flow into only the water inflow portion of the ejector section 15. A high negative pressure condition occurs. When the pressure becomes high negative, the opening torque needs to be large, and abnormal air flows in from a connection portion such as a water circuit or an air inflow circuit. Further, a problem such as occurrence of an abnormal sound from the pump 5 occurs. In order to avoid such a problem, the above control is an essential condition.
[0044]
On the other hand, as shown in (b), a change is instructed by the operation unit 28 to generate large bubbles from the generation of fine bubbles, and when the large bubble switch is turned on (S19), the control means 27 closes the air inflow means B26 with priority. (S20). Next, the second switching means 14 is closed (S20), and the circulation of the bypass circuit 8 is stopped. Then, the third switching means 22 is switched between the first return pipe 20 and the second return pipe 21 (S22), the first switching means 10 is opened (S23), and the first return pipe 9 and the second return pipe 11 are passed through. Switch to water. Then, the air inflow means A25 is opened (S24), and the operation for generating large bubbles starts.
[0045]
With such a sequence, even if the air bubbles are changed from the fine air bubbles to the large air bubbles first, since the water is circulating in the bypass circuit 8 when the air inflow means B26 is open, the ejector unit 15 Even if the pump 5 remains in a negative pressure state and the air constantly flows in and the pump 5 becomes a large bubble, the operation is always performed with the air being seen. Therefore, the air inflow means B26 is preferentially closed.
[0046]
Further, when the second switching means 14 is closed preferentially and the circulation of the bypass circuit 8 is stopped, the discharge flow rate of the pump 5 does not increase because the microbubble generating section 2 has a pore structure. 7 can be prevented from becoming an abnormal negative pressure, that is, a high negative pressure. Furthermore, by switching the third switching means 22 before the first switching means 109 or simultaneously, the suction section 7 of the pump 5 can be further reduced in negative pressure.
[0047]
The condition for the high negative pressure state is as follows. When the second switching means 14 is closed and the first switching means 10 is opened while the third switching means 22 remains the second return pipe 21, the water in the ejector unit 15 A high negative pressure condition occurs because the inflow is only at the inflow section. Further, when the pressure becomes high negative, the switching torque of the third switching means 22 needs to be increased, and abnormal air flows in from a connection portion such as a water circuit or an air inflow circuit. Further, a problem such as occurrence of an abnormal sound from the pump 5 occurs. In order to avoid such a problem, the above control is an essential condition.
[0048]
FIG. 3 shows a flowchart after the stop of the generation of large bubbles. S1 to S6 are the same control means as those in FIG. When the large bubble switch is turned off (S25), the pump 5 stops (S26), and the air inflow means A25 is closed (S27).
[0049]
Thereafter, the air inflow means B26 is opened (S28). By performing such control means, the high negative pressure state from the air backflow prevention device 23 of the air inflow section 16 of the ejector section 15 to the bubble inflow means B26, which is generated when large bubbles are generated, can be returned to the atmospheric pressure.
[0050]
This makes it possible to reduce the opening torque of the air inflow means B26 at the time of generation of fine bubbles, and to always perform a stable opening operation. The reason why the inside of the ejector unit 15 is in a high negative pressure state when large bubbles are generated is that the resistance to the suction unit 7 of the pump 5 is large, that is, the third switching means 22, the first return pipe 20, the second return pipe 21, It is determined by the total resistance of the return pipe 19 and the like. However, although it is possible to reduce the resistance by increasing the ball diameter of the three-way valve of the third switching means 22, the cost increases.
[0051]
It is also possible to reduce the resistance by increasing the diameter of each of the return pipes 19, 20, and 21, but this also becomes costly and uneconomical. Considering the economics, a high negative pressure state cannot be avoided. Furthermore, if the large bubble generation is used continuously, the negative pressure increases each time a large bubble is generated, so that abnormal air tends to flow in from the connection portion of the ejector unit 15, and the pump 5 generates air. Problems such as the inability to operate stably occur.
[0052]
FIG. 4 shows a flowchart after the generation of fine bubbles is stopped. Steps S13 to S18 are the same control means as in FIG. When the microbubble switch is turned off (S29), the air inflow means B is closed (S30), and then the second switching means 14 is closed (S31). Then, the third switching means 22 is switched between the first return pipe 20 and the second return pipe 21 (S32), and the first switching means 10 is opened (S33). Then, after the pump 5 is operated for a predetermined time t (S34), the pump 5 is stopped (S35), and the air inflow means B26 is opened (S36).
[0053]
By performing such control means, the undissolved air in the pump 5, the bypass circuit 8, and the second outgoing pipe 11 can be discharged into the water tank 1, and at the same time, the pores of the fine bubble generating section 2 can be washed. . In addition, the high negative pressure state from the air backflow prevention device 23 of the air inflow portion 16 of the ejector portion 15 to the bubble inflow means B26, which occurs during operation, can be returned to the atmospheric pressure. This can reduce the opening torque of the air inflow means B26 at the time of generation of fine bubbles as described in detail in FIG. The control means in S32 to S33 is for minimizing the negative pressure of the ejector unit 15 and suppressing the rise of the high negative pressure.
[0054]
FIG. 5 shows each switching means before the bubble operation.ofThe setting is shown in the flow chart when the generation of microbubbles is a representative example.Although the operation after the microbubble switch is turned off is different from that described with reference to FIG. 4, FIG. 5 is mainly concerned with the switching setting of the first, second, and third switching means before the bubble operation. The detailed operation after the microbubble switch is turned off is as described with reference to FIG.Steps S13 to S18 are the same control means as in FIG. When the microbubble switch is turned off (S37), the air inflow means B26 is closed (S38) and the pump 5 is stopped (S39). Thereafter, the second switching means 14 is closed (S40), the third switching means 22 is on the first return pipe 20, the second return pipe 21 side (S41), and the first switching means 10 is opened (S42). Switch.
[0055]
By performing such control means, when the operation switch for generating large bubbles is turned “on” especially for the purposes of the massage effect and the thermal effect, which are the main functions of the bubbles, the operation of the pump 5 and the opening of the air inflow means A25 are performed. , Can generate large bubbles immediately.
[0056]
FIG. 6 is a modified example of FIG. 1, in which a flow detection device 29 is provided in the second going pipe 11, and a piping circuit diagram showing a typical example when fine bubbles are generated is shown. Parts having the same structure and the same function as those in the embodiment of FIG. 1 are denoted by the same reference numerals, detailed description thereof will be omitted, and different parts will be mainly described.
[0057]
At the start of the fine bubble operation and at the time of the generation of the fine bubbles, by judging whether the operation is normal or abnormal based on the detection signal of the flow rate detecting device 29 and controlling the operation, particularly the abnormality in the generation of the fine bubbles is detected. And the flow rate decrease due to abnormal switching of the switching means 10, 14 and 22, and the fine bubble generator 2, the second going pipe 21, the return pipe 19, the second return pipe 21, the bypass circuit 15, and the like. Clogging can be detected.
[0058]
Further, this is an extremely effective means that outputs a detection signal of abnormality detection and can easily perform an air purge of the pump 5, a cleaning operation for clogging of each pipe, a notification of an abnormality to a user, and the like. Although not shown in detail in the drawing, the same effect can be obtained even if the flow rate detecting device 29 is provided in the second return pipe 21.
[0059]
FIG. 7 is a second modified example of FIG. 1, in which the motor-driven three-way valve of the third switching means 22 is replaced with a third switching means 32 composed of a motor-operated two-way valve, and the piping is a typical example when microbubbles are generated. FIG. Parts having the same structure and the same function as those in the embodiment of FIG. 1 are denoted by the same reference numerals, detailed description thereof will be omitted, and different parts will be mainly described.
[0060]
The return pipe 19 is provided with a branch portion 31 from which a first return pipe 33 and a second return pipe 34 are branched. A third switching means 32 is provided between the first return pipe 33 and the bypass circuit 8 so that water can flow from the second return pipe 34 only from the water inflow section 17 of the ejector section 15 when fine bubbles are generated. Then, the third switching means 32 is closed.
[0061]
By using a motor-operated two-way valve as the third switching means 32, the cost can be reduced and, although not shown in detail in the figure, as can be seen by comparing with the piping circuit diagram of FIG. When this occurs, the amount of inflow into the suction section 7 of the pump 5 increases, and the suction resistance can be reduced. The control means 27 is the same as that of FIG.
[0062]
FIG. 8 shows a third modified example of FIG. 1, in which the microbubble generator 2 and the large bubble generator 3 are integrated in series and separated into parallel in the water tank 1, and the fine bubble generator 35 and the large bubble generator 36 are separated. FIG. 4 shows a piping circuit diagram representative of a case where the microbubbles are separated from each other. Parts having the same structure and the same function as those in the embodiment of FIG. 1 are denoted by the same reference numerals, detailed description thereof will be omitted, and different parts will be mainly described.
[0063]
The second going pipe 38 is connected to the fine bubble generating section 35, and the first going pipe 37, the return pipe 19, and the air inflow means A25 are connected to the large bubble generating section 36, respectively. At the time of generation of microbubbles, water obtained by pressurizing and dissolving air in the bypass circuit 8 passes through the second outgoing pipe 38 from the branch portion 13, is rapidly decompressed in the microbubble generating portion 35 having a fine pore structure, and Is discharged. Although not described in detail in the figure, when a large bubble is generated, it flows through both the first going pipe 36 and the second going pipe 37, and the amount of water discharged from the large bubble generating section 36 is slightly reduced.
[0064]
However, the configuration of the piping circuit diagram of FIG. 8 is an effective means especially when a unit bath or the like is constructed and the distance between the bathtub and the unit wall is small and a series-integrated generator as shown in FIG. 1 cannot be constructed. is there. The control means 27 is the same as that of FIG.
[0065]
【The invention's effect】
Thus, claim 1 of the present invention, 2The described bubble generating device is configured to reduce the negative pressure of the air inflow portion of the ejector section when the air is changed from (a) a large bubble to a fine bubble, and (b) when the fine bubble is changed to a large bubble. The opening torque of the means B can be opened with a small torque, and bubbles can be generated stably.
[0066]
Also, FineWhen fine bubbles are generated, the air does not flow from the air inflow means A, and the defoaming action of the fine bubbles can be prevented. In addition, the inflow of air from the air inflow means B when large bubbles are generated is eliminated, so that the pump can operate stably without seeing air, and the durability of the pump can be improved.
[0067]
In the bubble generating device according to the third aspect of the present invention, by turning off the operation switch for generating large bubbles and opening the air inflow means B, the negative pressure applied to the air inflow means B is reduced to the atmospheric pressure. When the operation switch for generating fine bubbles is turned on by returning to the above condition, the air inflow means B can be opened with a small torque, and fine bubbles can be generated stably.
[0068]
Further, in the bubble generating device according to the fourth aspect of the present invention, the operation switch for generating fine bubbles is turned off, the air inflow means B is closed, the second switching means is set to the bypass circuit closing side, and the third switching means is closed. Either the switching means is switched to the first return pipe and the second return pipe, the first switching means is switched in the order of the first going pipe and the second going pipe, or the second switching means and the third switching means are given priority simultaneously. By switching the first switching means, delaying the pump for a certain time and stopping the pump, and opening the air inflow means B, the undissolved air in the pump, the first going pipe and the second going pipe can be discharged to the water tank.
[0069]
Further, the next generation of large bubbles and the generation of fine bubbles can be stabilized, that is, the pump operation can be smoothly started. Further, after the pump is stopped next, the air inflow means B can be opened with a small torque by opening the air inflow means B for a predetermined time.
[0070]
In the bubble generating apparatus according to a fifth aspect of the present invention, as the setting of the switching means before the bubble generation operation, the first switching means is provided on the first and second outgoing pipes, and the second switching means is provided on the bypass circuit. By providing the third switching means on the first return pipe side and the second return pipe side on the closing side, the purpose of the massage effect, the thermal effect, etc., which are the main functions of the air bubbles, is particularly set to the operation switch “ON” for generating the large air bubbles. Then, large bubbles can be quickly generated by the operation of the pump and the opening of the air inflow means A.
[0071]
Furthermore, the bubble generator according to claim 6 of the present invention is provided with a flow detecting device in the second going pipe or the second return pipe to determine whether the operation is normal or abnormal when the fine bubble operation starts and when the fine bubbles are generated. Operation can be controlled. In particular, it is possible to detect an abnormality in the generation of microbubbles, that is, to detect a decrease in the flow rate due to the air in the pump, a decrease in the flow rate due to an abnormality in the switching means, an increase in the flow rate, and a clogging of the microbubble generator and the second going pipe. In addition, a detection signal of abnormality detection is output, so that an air purge operation of the pump, a clogging cleaning operation, a notification of an abnormality to a user, and the like can be easily controlled.
[Brief description of the drawings]
FIG. 1 (a) is a configuration diagram showing a bubble generating apparatus according to an embodiment of the present invention when large bubbles are generated.
(B) Configuration diagram of the same device when fine bubbles are generated
FIG. 2 (a) is an operation flowchart of a control unit of the apparatus for changing from generation of large bubbles to generation of fine bubbles.
(B) Operation flow chart of the control means of the apparatus for changing from generation of fine bubbles to generation of large bubbles
FIG. 3 is an operation flowchart of a control unit after the occurrence of large bubbles in the apparatus is stopped.
FIG. 4 is an operation flowchart of a control unit after the generation of fine bubbles in the apparatus is stopped.
FIG. 5 is an operation flowchart of a control unit for setting a switching unit after the generation of fine bubbles is stopped in the apparatus.
FIG. 6 is a configuration diagram showing a state in which fine bubbles are generated in a first modified example of the apparatus.
FIG. 7 is a configuration diagram showing a state in which fine bubbles are generated in a second modification of the apparatus.
FIG. 8 is a configuration diagram showing a state in which fine bubbles are generated in a third modification of the apparatus.
FIG. 9 is a system configuration diagram showing a conventional jet bath apparatus.
FIG. 10 is a sectional view of a shuttle valve of the apparatus.
FIG. 11 is a sectional view of a relief valve of the apparatus.
FIG. 12 is a sectional view of a low-pressure jet nozzle of the apparatus.
[Explanation of symbols]
1 aquarium
2,35 Microbubble generator
3,36 Large bubble generator
5 pump
6 Discharge section
7 Suction section
8 Bypass circuit
9 First going pipe
10, 37 First switching means
11,38 Second outgoing pipe
12, 13, 31 Branch
14 Second switching means
15 Ejector section
16 Air inlet
17 Water inflow section
18 Resistance section
19 Return pipe
20, 33 1st return pipe
21, 34 Second return pipe
22, 32 third switching means
23 Air backflow prevention device
24 Air control device
25 Air inflow means A
26 Air inflow means B
27, 30 control means
28 Operation unit
29 Flow rate detector

Claims (6)

水槽と、この水槽に設けられた微細気泡発生部と大気泡発生部とからなる気泡噴流装置と、前記水槽の水を循環するポンプと、このポンプの吐出部と吸入部の間に設けたバイパス回路と、このバイパス回路から分岐し、大気泡発生部へ連通した第1往き管および微細気泡発生部へ連通した第2往き管前記第1往き管に設け、大気泡発生時に第1往き管と第2往き管、また微細気泡発生に第2往き管へ切り替える第1切り替え手段と、前記バイパス回路に設けた水流入部と空気流入部を有するエジェクタ部と、このエジェクタ部の上流に設けたバイパス水を制御する第2切り替え手段と、前記エジェクタの一部に設け水と空気を負圧流入させる抵抗部と、空気流入部に設けた空気逆流防止装置、この空気逆流防止装置と連通し空気量を調節する空気制御装置と、この空気制御装置の上流に設けた空気流入手段Bと、前記水槽の水をポンプの吸入部に吸入する戻り管と、この戻り管から分岐し、大気泡発生時にポンプの吸入部に連通した第1戻り管とエジェクタ部の水流入部に連通した第2戻り管に切り替え、微細気泡発生時に前記第2戻り管へと流れを切り替える第3切り替え手段と、前記大気泡発生部へ連通した空気流入手段Aと、大気泡発生動作及び微細気泡発生動作の制御を行う制御手段とを備え、前記制御手段は、大気泡発生動作中に微細気泡発生動作への変更指示がなされたときは、空気流入手段Aの閉成動作を優先的に行い、その後、第1切り替え手段を第2往き管側に、第3切り替え手段を第2戻り管側に、第2切り替え手段をバイパス回路開成側の順番で切り替え、その後、空気流入手段Bを開成するようにし、また、微細気泡発生動作中に大気泡発生動作への変更指示がなされたときは、空気流入手段Bの閉成動作を優先的に行い、その後、第2切り替え手段をバイパス回路閉成側に、第3切り替え手段を第1戻り管と第2戻り管側に、第1切り替え手段を第1往き管と第2往き管側の順番で切り替え、その後、空気流入手段Aを開成するようにした気泡発生装置。A water tank, a bubble jet device including a fine bubble generation section and a large bubble generation section provided in the water tank, a pump for circulating water in the water tank, and a bypass provided between a discharge section and a suction section of the pump. a circuit, branched from the bypass circuit, and a second forward pipe communicating to the first forward pipe Contact and fine bubble generating portion communicating to a large bubble generating section, provided on the first forward pipe, the first when a large bubble generation First and second switching means for switching to the second pipe in order to generate fine bubbles, a second pipe, a second pipe, an ejector section having a water inflow section and an air inflow section provided in the bypass circuit, and an upstream section of the ejector section. A second switching means for controlling the provided bypass water, a resistance part provided in a part of the ejector and allowing water and air to flow in a negative pressure, an air backflow prevention device provided in the air inflow portion, and the air backflow prevention device. Adjust the communication air volume An air control device for an air inlet means B provided upstream of the air control device, a return pipe for sucking water in the water tank to the suction of the pump, branched from the return pipe, the pump when a large bubble generation switched to the second return pipe communicating with the first return pipe and water inflow of the ejector unit which communicates with the suction unit, and a third switching means for switching the flow to the second return pipes during the fine bubble generation, the large bubble generation An air inflow means A communicating with the section, and a control means for controlling the large bubble generation operation and the fine bubble generation operation, wherein the control means issues a change instruction to the fine bubble generation operation during the large bubble generation operation. , The closing operation of the air inflow means A is preferentially performed, and thereafter, the first switching means is on the second outgoing pipe side, the third switching means is on the second return pipe side, and the second switching means is bypassed. cut with the circuit open side order For example, then, so as to open the air inlet means B, also when a change instruction to the large bubble generation operation is made during a fine bubble generating operation, performs a closing operation of the air inlet means B preferentially Thereafter, the second switching means is on the bypass circuit closing side, the third switching means is on the first return pipe and the second return pipe side, and the first switching means is on the first going pipe and the second going pipe side. switching, then, the air bubble generating apparatus adapted to open the air inlet means a. 大気泡発生動作から微細気泡発生動作へ変更するとき、空気流入手段Aの閉成動作後、第1切り替え手段を切り替え、その後、第3切り替え手 段と第2切り替え手段を同時に切り替え、その後、空気流入手段Bを開成するようにし、微細気泡発生動作から大気泡発生動作へ変更するとき、空気流入手段Bの閉成動作後、第2切り替え手段と第3切り替え手段を同時に切り替え、その後、第1切り替え手段を切り替え、空気流入手段Aを開成するようにした請求項1記載の気泡発生装置。 When changing from a large bubble generating operation to fine bubble generating operation, after closing operation of the air inlet means A, switching the first switching means, then, it switches the third switching hands stage and second switching means at the same time, then, the air When the inflow means B is opened to change from the fine bubble generation operation to the large bubble generation operation, the second switching means and the third switching means are simultaneously switched after the air inflow means B is closed, and then the first 2. The air bubble generator according to claim 1 , wherein the switching means is switched to open the air inflow means A. 大気泡発生動作中に大気泡スイッチを「切」にすると、ポンプを停止し、空気流入Bを開成してなる請求項1記載の気泡発生装置。2. The bubble generator according to claim 1 , wherein, when the large bubble switch is turned off during the large bubble generation operation , the pump is stopped and the air inflow B is opened. 微細気泡発生動作中に微細気泡スイッチを「切」にすると、空気流入手段Bを閉成し、第2切り替え手段をバイパス回路閉成側に、第3切り替え手段を第1戻り管と第2戻り管側に、第1切り替え手段を第1往き管と第2往き管側の順番で切り替えるか、または上記空気流入手段Bを閉成後、第2切り替え手段と第3切り替え手段を同時に切り替え、その後、第1切り替え手段を切り替えるかし、その後、一定時間遅延させてポンプを停止し、空気流入手段Bを開成してなる請求項1記載の気泡発生装置。When the microbubble switch is turned off during the microbubble generation operation , the air inflow means B is closed, the second switching means is on the bypass circuit closing side, and the third switching means is connected to the first return pipe and the second return pipe. the tube side, switches the first switching means to switch the first forward pipe and the second forward pipe side order, or after closing the air inlet means B, and second switching means and the third switching means simultaneously, 2. The air bubble generator according to claim 1 , wherein the first switching means is switched , and thereafter , the pump is stopped with a delay for a predetermined time, and the air inflow means B is opened. 気泡発生運転前の第1及び第2及び第3切り替え手段の設定は、第1切り替え手段を第1往き管と第2往き管側に、第2切り替え手段をバイパス回路閉成側に、第3切り替え手段を第1戻り管と第2戻り管側としてなる請求項1記載の気泡発生装置。 Setting the first and second and third switching means before the bubble generating operation, the first switching means to the first forward pipe and the second forward pipe side, the second switching means to the bypass circuit closing side, the 3. The bubble generator according to claim 1, wherein the switching means comprises a first return pipe and a second return pipe. 第2往き管または第2戻り管に流量検知装置を備え、微細気泡運転開始時および微細気泡発生時に、前記流量検知装置の検知信号により正常か異常を判定して運転を制御する制御手段を備えてなる請求項1記載の気泡発生装置。A flow detector is provided in the second going pipe or the second return pipe, and control means is provided for judging whether the operation is normal or abnormal based on a detection signal of the flow detector at the start of the fine bubble operation and at the time of generation of the fine bubbles, and controlling the operation. The bubble generator according to claim 1, wherein the bubble generator comprises:
JP21728093A 1993-09-01 1993-09-01 Bubble generator Expired - Fee Related JP3550696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21728093A JP3550696B2 (en) 1993-09-01 1993-09-01 Bubble generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21728093A JP3550696B2 (en) 1993-09-01 1993-09-01 Bubble generator

Publications (2)

Publication Number Publication Date
JPH0767929A JPH0767929A (en) 1995-03-14
JP3550696B2 true JP3550696B2 (en) 2004-08-04

Family

ID=16701669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21728093A Expired - Fee Related JP3550696B2 (en) 1993-09-01 1993-09-01 Bubble generator

Country Status (1)

Country Link
JP (1) JP3550696B2 (en)

Also Published As

Publication number Publication date
JPH0767929A (en) 1995-03-14

Similar Documents

Publication Publication Date Title
EP0144047B1 (en) A device in or for high-pressure cleaning units for heating the water by circulation
JP3550696B2 (en) Bubble generator
JP4917800B2 (en) Memorial / bubble supply system
JP3550698B2 (en) Bubble generator
JP3550697B2 (en) Bubble generator
JP2002191949A (en) Fine air bubble generator
JP3416997B2 (en) Bubble generator
JP3151973B2 (en) Bubble generator
JP3550695B2 (en) Bubble generator
JP3087479B2 (en) Bubble generator
JP3416966B2 (en) Bubble water flow generator
JP3013614B2 (en) Control device for bubble water flow generator
JP2882201B2 (en) Control device for bubble water flow generator
JP2870316B2 (en) Control device for bubble water flow generator
JP3189375B2 (en) Bubble water flow generator
JP3401810B2 (en) Bubble water flow generator
JPH05305118A (en) Bubble water flow generator
JP2870315B2 (en) Control device for bubble water flow generator
JPH0751336A (en) Device for generating bubbles
JP3341321B2 (en) Bubble generator
JP3013621B2 (en) Control device for bubble water flow generator
JP3401812B2 (en) Bubble water flow generator
JP3324180B2 (en) Bubble generation nozzle device
JP3141513B2 (en) Bubble water flow generator
JP3087411B2 (en) Bubble generating nozzle

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040412

LAPS Cancellation because of no payment of annual fees