JP3550408B2 - Information recording method - Google Patents

Information recording method Download PDF

Info

Publication number
JP3550408B2
JP3550408B2 JP23449393A JP23449393A JP3550408B2 JP 3550408 B2 JP3550408 B2 JP 3550408B2 JP 23449393 A JP23449393 A JP 23449393A JP 23449393 A JP23449393 A JP 23449393A JP 3550408 B2 JP3550408 B2 JP 3550408B2
Authority
JP
Japan
Prior art keywords
recording
mark
information
magnetization
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23449393A
Other languages
Japanese (ja)
Other versions
JPH0793838A (en
Inventor
武志 前田
久貴 杉山
正彦 ▲高▼橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23449393A priority Critical patent/JP3550408B2/en
Publication of JPH0793838A publication Critical patent/JPH0793838A/en
Application granted granted Critical
Publication of JP3550408B2 publication Critical patent/JP3550408B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
光学的に情報を記録再生する装置に係る。特に円板形状の媒体を回転し、回転する円周方向に記録再生手段を相対的に移動させ、光磁気効果を用いて記録再生する装置及びその方法に関する。
【0002】
【従来の技術】
上記のような装置として情報を光学的に識別可能な情報形態で記録し、光源から放射される光束を回転する円板状の記録担体に2次元的に略等方的な強度分布を持つ微小光点として照射し、情報を記録再生する光ディスク装置がある。従来このような装置において情報の記録形態はディスクの円周上に1次元的に配列された情報列であるトラックとして記録され、情報列の重なりはなかった。この場合、記録密度は記録波長を680nmとしても開口数は0.55程度であり、このためスポット径は1.23ミクロンとなり、記録できる最も小さいマークは0.6程度となる。トラック間隔も記録時の熱干渉、再生時のクロストークを考慮すると1.2ミクロンまで広がる。記録密度では1.2ギガビット/インチ程度が限度である。
【0003】
【発明が解決しようとする課題】
従来の技術では、さらに高密度化のためにトラック間隔またはマーク間隔を狭めていくと、隣接トラックやマークからの記録時の干渉が大きくなり、安定に情報を記録できなくなるという問題が生じる。本発明はトラック間隔、および情報マーク間隔が狭くなっても安定に情報を記録再生でき、高密度化が図れる記録再生方法及びこれを用いた装置を提供することにある。
【0004】
【課題を解決するための手段】
あらかじめ記録されたマーク配列を設け、これに情報を重ねて記録し、マーク配列の物理的構成の違いと発光強度の変化により、情報を記録し再生する。あらかじめ作成したマークからの記録条件に与える影響の範囲を本来情報記録媒体の記録形態を変化させる領域よりも小さくしておく。
【0005】
すなわち、磁性膜に収束された光スポット及び磁場を印加し、磁性膜に磁気的にマークを形成して情報を記録する情報記録方法において、従来のように外部磁場を利用するのではなく、磁場は磁性膜の局所的な領域のみに印加され、この局所的な領域の範囲のみにマークが形成されることを特徴とする。また、このような局所的磁場を印加するために、収束された光スポット及び磁場が印加されることにより磁気的に情報が記録される第1の磁性膜と、第1の磁性膜の下に配置された第2の磁性膜を有し、第2の磁性膜に局所的磁場を印加するための磁気的な埋込マークが形成されている情報記録媒体を用いることを特徴とする。
【0006】
本願発明の基本的思想は、記録媒体上に光点を形成し、光点の光強度を変調して情報を記録する光学的情報記録再生方法において、記録媒体上にあらかじめ埋込マークを形成し、埋込マークに上記光点を重ねて照射し、記録マークを記録することを特徴とする。記録媒体としては通常、磁性膜を用い、埋込マークは磁性膜の磁気的性質を局所的に変化させて形成する。好ましくは、多層磁性膜を用い、埋込マークを下地膜のような第1の磁性膜に形成し、記録マークを第2の磁性膜に記録する。たとえば、第1の磁性膜として垂直磁化膜を用い、垂直磁化膜の磁化方向を初期磁化方向と異なった向きに磁化することにより埋込マークを形成することができる。このとき、第1の磁性膜のキューリ温度を、第2の磁性膜のキューリ温度より高くすることが好ましい。記録媒体として円板状記録媒体を用いるときは、埋込マークを周方向にトラック状に配列することができる。さらに、埋込マークが記録媒体径方向に1トラックおきに現われるように配列を構成することにより、さらに高密度の記録が実現できる。
【0007】
【作用】
あらかじめ記録されたマーク配列の物理的構成の違いにより追加記録情報を記録する条件に与える物理的干渉の範囲を、情報記録媒体が光点照射により情報記録のために光学的に変化する領域よりも狭くすることにより情報マークの形状が物理的干渉の影響をうけて変化し、前記光学的に変化する領域よりも狭くなる。
【0008】
【実施例】
図1の実線に本発明に用いる光スポットの強度分布を示す。使用波長は680nm、対物レンズの開口数は0.55とする。点線で現在光ディスクの原板を作成するために用いられているカッティング装置の記録スポットも合わせて示す。最小マーク径は現状の記録膜特性からスポット強度が約半分になる領域で決められている。カッテイング装置では約0.2ミクロン程度まで小さな幅をもつマークが記録できる。しかし、記録再生装置では開口数と光源の形状との制限からその3倍程度のマーク径となり、約0.6ミクロン程度となる。
【0009】
記録膜に光磁気膜を用いた場合を例にとると、キューリ温度以上になると磁気膜の磁化特性が失われ、再び温度が下がってくる時に外部磁場の向きに従って、キューリ温度以上に温度が上がった領域の磁化が変化するという記録メカニズムで記録される。記録膜上の温度分布は照射時間、線速度等によって変化するがそれらの工夫をしても、温度分布の形状はスポット分布よりも急峻にならない。また、記録マークの端の位置は記録膜の磁気特性で決まる記録温度と記録膜状の温度分布との交点で決まり、記録膜の変動により記録温度が変化すると記録マークの位置が微妙に変化し再生信号に雑音となって表れる。この雑音を低減するためには温度分布の勾配が急なところで記録することが望ましい。すなわち、図1のような温度分布では強度の半分の値のところが最適となる。従って、最小記録マーク径はスポット分布の半値幅となる。
【0010】
以上のべたように、これまでの記録マーク形状は温度分布で決められていた。このため、スポット径が飛躍的に小さくならない限りマーク径を小さくできない。しかし、記録メカニズムから考えると、外部磁場の形状を微小にし、これにならって記録マークを形成できればマーク径をもっと小さくできる。そこで、これまでのディスク外部から磁場を与えるのではなく、あらかじめ記録する媒体に磁場を発生する物理的な構造を設けておき、この上に情報を記録する。
【0011】
図2及び図3に本願発明の記録メカニズムを示す。紙面に垂直な方向がトラックの方向であり、紙面内がトラックに直角な方向の断面をあらわす。従来と同様に、記録膜は熱的な特性、光学的な特性を考慮して記録膜を干渉層で挟み、反射層等を設ける。ここでは記録膜と本発明に関わる膜構造を示した。記録膜100の下にバッファ層101、埋込層102を設ける。この埋め込み層102はトラックに垂直な方向に矢印でしめす磁化の方向を持つ磁化領域103、104が交互に配列されている。膜構造の上に記録膜上での温度分布を示す。
【0012】
光強度を上げていくと、膜面上の温度は図2(a)(b)(c)に順次示すように上昇する。膜の記録温度Tc1を越える記録領域110では、図2(c)の斜線に示すように磁化が失われる。ここから温度を下げていくと、図3(a)(b)(c)に順次示すように温度分布は変化し、埋込層の磁化にならって記録膜の磁化が変化する。
【0013】
磁化の方向として、磁化領域103の磁化方向を記録マークの磁化方向に対応させ、記録膜の初期化方向を磁化領域104の磁化方向に対応させる。すると、記録領域110は大きくとも、記録マーク111は記録領域よりも小さくなる。
【0014】
埋込層102としてはいろいろな作り方があるが、記録膜100と同じ光磁気膜を使うときには、その特性として図4のような記録特性を持つものがよい。
【0015】
すなわち、埋込層102のキューリ温度Tc2を記録膜100のキューリ温度Tc1より高くし、保磁力の温度特性を常温では記録膜の方が大きい様にする。埋込層を光磁気膜で作成するためには、磁化領域を微小にするために短波長の記録装置を用いた通常の光磁気記録の方式であらかじめ記録しておく。このような装置としては図1に示したカッティング装置の光学系を用いても良い。この時には磁化領域は約0.2ミクロンの幅が形成できる。また、現在研究開発上の緑色または青色のレーザ光源を使用してもよい。この場合には装置も情報記録再生装置と同程度の大きさにすることができるが、対物レンズの開口数を大きくとれないため、記録マーク幅は0.4ミクロン程度になる。
【0016】
図5にあらかじめ記録する磁化領域の形状を示す。トラックと光スポットの進行方向に平行に直線状に幅一定のストライプ形状が考えられる。図5では記録磁化に対応した磁化領域を媒体の上面からみて斜線のストライプであらわした。この上に2次元的に等方な記録領域110を持つスポットを走査し、光強度をトラックの進行方向に変調し情報を記録すると、記録された情報を表すマーク120〜140が形成される。このマークの幅はあらかじめ作られたストライプ状磁化領域の幅にほぼ等しくなる。
【0017】
図5では記録膜と埋込層を上からみて磁化領域と記録マークを重ねて表した。トラックの進行方向の変調方式としては従来の記録方式、マーク位置記録方式、またはマーク長さ記録方式で情報マークを記録することができる。本発明により従来の方式で記録される情報マークに比較して幅を狭くすることができる。また、記録幅が埋込層の磁化幅で決まることから隣接トラックとの間隔も狭くすることができる。すなわち、図3(c)でわかるように隣接磁化領域までの間隔を記録領域の幅まで狭めることができる。図1の記録スポットではトラック間隔を約0.4ミクロンまで狭めることができる。
【0018】
図5では磁化領域幅0.2ミクロンの磁化ストライプ103−2、103−5の上にマーク位置記録方式で記録マーク130から140までを記録した例を示す。また磁化領域幅0.4ミクロンの磁化ストライプ103−1、103−4、103−6の上にマーク長さ記録方式で記録マーク120から129までを記録した例を示す。いずれもトラック間隔を0.6ミクロンとした。
【0019】
上記実施例はトラック間隔を狭めた例であるが、線密度方向にも本発明を用いればマーク間隔を狭めることができる。図6に磁化領域を上からみたものを示す。磁化領域は例えば正方形の形状をし、磁化の方向が異なった磁化領域1000A及び1000Bがスポットの進行方向にもトラックに垂直な方向にもモザイク模様になるように配列されている。すなわち、磁化領域が交互にスポットの進行方向に配列されたトラック列103−7〜103−9において磁化領域の交互配列の位置関係が反転しており、隣接しあう磁化領域の磁化極性が異なるように配列されている。このようにすると記録マークを読みだすときに隣接トラックからのクロストークが低減でき、本発明でのべる記録の熱干渉除去との相乗効果でさらに狭トラック化を図ることができる。
【0020】
図6では103−7から103−9までの磁化領域の大きさは約0.4ミクロン四方、トラック間隔は0.6ミクロンとなっている。記録マークに対応した磁化領域1000Aの上で記録光スポット1001の光強度を強くし、温度を記録温度以上に上げることにより磁化領域にならった情報マークを形成できる。また、再生は、従来の光磁気ディスクの再生と同様に、例えば再生スポット1002を照射し、反射光の偏光面の回転に基づいて情報を再生することができる。
【0021】
さらに、図7では磁化領域を狭め、磁化領域の大きさを0.25ミクロン、トラック間隔を0.45ミクロン程度に詰めた磁化領域列103−10〜103−14の例を示す。図7の下段に示す光パルス150に応じて磁化列103−11の上の記録膜上に位置するスポット151の光強度を大きくすることにより磁化列103−13の上に示すような記録マーク列152が形成される。磁化列103−13の磁化配列は示さず、記録マーク列152の磁化配列のみを斜線の領域で示した。
【0022】
磁化配列をモザイク状にするためには、埋込層を光磁気膜で作成する場合にはなんらかのタイミング情報が必要となる。これを作り出す方法としては媒体上に離散的にピットを配列し、このピットからトラッキング情報とデータを記録するクロックを作成する方法が使用できる。これから作成されるクロックを用いて磁化配列を記録し、情報マークを記録するときにもこのクロックを用いて記録情報に応じた記録パルス列を作成する。
【0023】
以上の説明では、埋込層たる磁性膜102の初期磁化方向と逆方向に磁化された埋込マーク103を形成して局所的な磁界を記録層100に印加した。しかし、本発明はこれに限定されるものではなく、例えば埋込層として所定方向に磁化された磁性膜を用い、これにイオン打込みなどの技術を適用して埋込マーク以外の部分を非磁性膜に変化させることにより構成することができる。また、レプリカなどの手法を用い、埋込磁性層に凹凸を設けて局所的な磁界を印加することも可能である。
【0024】
【発明の効果】
以上述べた発明により、従来の光ディスク記録方式に比較して、トラックピッチを半分以上、線密度を1.5倍以上上げることができる。例えば、680nmの波長のレーザを光源に用いた場合に3.6ギガビット/インチ以上の記録密度を達成できる。
【図面の簡単な説明】
【図1】本発明の記録スポットの強度分布を示すグラフ図。
【図2】本発明の記録原理の説明概念図。
【図3】本発明の記録原理の説明概念図。
【図4】本発明の記録媒体の磁化特性を示すグラフ図。
【図5】本発明の記録マークと磁化領域の配置平面図。
【図6】本発明の記録マークと磁化領域の配置平面図。
【図7】本発明の記録マークと磁化領域の配置平面図。
【符号の説明】
1000A…記録マークに対応した磁化領域、103−7〜103−9…トラック列、1001…記録光スポット、1002…再生スポット。
[0001]
[Industrial applications]
The present invention relates to an apparatus for optically recording and reproducing information. More particularly, the present invention relates to an apparatus and a method for rotating a disk-shaped medium, relatively moving a recording / reproducing means in a rotating circumferential direction, and recording / reproducing using a magneto-optical effect.
[0002]
[Prior art]
As a device as described above, information is recorded in an optically identifiable information form, and a micro disk having a two-dimensional substantially isotropic intensity distribution on a rotating disk-shaped record carrier for rotating a light beam emitted from a light source. 2. Description of the Related Art There is an optical disk device that irradiates as a light spot and records and reproduces information. Conventionally, in such an apparatus, the recording form of information is recorded as tracks, which are information strings one-dimensionally arranged on the circumference of a disk, and there is no overlap of information strings. In this case, even when the recording wavelength is 680 nm, the numerical aperture is about 0.55, the spot diameter is 1.23 μm, and the smallest mark that can be recorded is about 0.6. The track spacing also extends to 1.2 microns in consideration of thermal interference during recording and crosstalk during reproduction. In recording density is limit 2 about 1.2 Gbit / inch.
[0003]
[Problems to be solved by the invention]
In the related art, when the track interval or the mark interval is further reduced for higher density, interference at the time of recording from an adjacent track or mark increases, and a problem occurs that information cannot be stably recorded. An object of the present invention is to provide a recording / reproducing method capable of stably recording / reproducing information even when a track interval and an information mark interval are narrowed and achieving high density, and an apparatus using the same.
[0004]
[Means for Solving the Problems]
A pre-recorded mark array is provided, information is superimposed and recorded thereon, and information is recorded and reproduced by a difference in physical configuration of the mark array and a change in light emission intensity. The range of the influence of the mark created in advance on the recording condition is made smaller than the area where the recording form of the information recording medium is originally changed.
[0005]
That is, in an information recording method of applying a converged light spot and a magnetic field to a magnetic film and magnetically forming a mark on the magnetic film to record information, instead of using an external magnetic field as in the related art, a magnetic field is used. Is applied to only a local region of the magnetic film, and a mark is formed only in the range of this local region. Further, in order to apply such a local magnetic field, a first magnetic film on which information is magnetically recorded by applying a converged light spot and a magnetic field, and a first magnetic film below the first magnetic film. An information recording medium having a second magnetic film disposed thereon and having a magnetic embedded mark for applying a local magnetic field to the second magnetic film is used.
[0006]
The basic idea of the present invention is to form a light spot on a recording medium, modulate the light intensity of the light spot to record information, and form an embedded mark on the recording medium in advance. And irradiating the buried mark with the above light spot to record a recording mark. The recording medium typically a magnetic layer, the buried mark is formed by magnetically resistant quality stations plants alter the magnetic film. Preferably, a buried mark is formed on a first magnetic film such as a base film using a multilayer magnetic film, and a recording mark is recorded on a second magnetic film. For example, a buried mark can be formed by using a perpendicular magnetization film as the first magnetic film and magnetizing the magnetization direction of the perpendicular magnetization film in a direction different from the initial magnetization direction. At this time, it is preferable that the Curie temperature of the first magnetic film be higher than the Curie temperature of the second magnetic film. When a disc-shaped recording medium is used as the recording medium, the embedding marks can be arranged in a track shape in the circumferential direction. Further, by embedding the mark constitutes a sequence to appear in every other track on the recording medium and a half radial, it can be realized higher density recording.
[0007]
[Action]
The range of physical interference given to the conditions for recording additional recording information due to the difference in the physical configuration of the pre-recorded mark arrangement is larger than the area where the information recording medium is optically changed for information recording by light spot irradiation. By making the shape narrower, the shape of the information mark changes under the influence of physical interference and becomes narrower than the optically changing region.
[0008]
【Example】
The solid line in FIG. 1 shows the intensity distribution of the light spot used in the present invention. The wavelength used is 680 nm, and the numerical aperture of the objective lens is 0.55. The dotted line also shows the recording spot of the cutting device currently used for preparing the original optical disk. The minimum mark diameter is determined in an area where the spot intensity is about half from the current recording film characteristics. With a cutting device, marks having a width as small as about 0.2 microns can be recorded. However, in the recording / reproducing apparatus, the mark diameter is about three times as large as that of the numerical aperture and the shape of the light source, and is about 0.6 μm.
[0009]
Taking the case where a magneto-optical film is used as a recording film, for example, when the temperature exceeds the Curie temperature, the magnetization characteristics of the magnetic film are lost. It is recorded by a recording mechanism in which the magnetization of the changed area changes. Although the temperature distribution on the recording film changes depending on the irradiation time, the linear velocity, and the like, the shape of the temperature distribution does not become steeper than the spot distribution even if these measures are devised. The position of the end of the recording mark is determined by the intersection of the recording temperature determined by the magnetic characteristics of the recording film and the temperature distribution of the recording film. When the recording temperature changes due to the fluctuation of the recording film, the position of the recording mark changes slightly. Appears as noise in the reproduced signal. In order to reduce this noise, it is desirable to record at a place where the gradient of the temperature distribution is steep. That is, in the temperature distribution as shown in FIG. 1, a half value of the intensity is optimal. Therefore, the minimum recording mark diameter is the half value width of the spot distribution.
[0010]
As described above, the recording mark shape up to now has been determined by the temperature distribution. Therefore, the mark diameter cannot be reduced unless the spot diameter is significantly reduced. However, considering the recording mechanism, if the shape of the external magnetic field is made minute and a recording mark can be formed in accordance with this, the mark diameter can be further reduced. Therefore, instead of applying a magnetic field from the outside of the conventional disk, a physical structure for generating a magnetic field is provided in a recording medium in advance, and information is recorded thereon.
[0011]
2 and 3 show the recording mechanism of the present invention. The direction perpendicular to the paper surface is the direction of the track, and the inside of the paper surface represents a cross section perpendicular to the track. As in the prior art, the recording film is provided with a reflection layer and the like with the recording film sandwiched between interference layers in consideration of thermal characteristics and optical characteristics. Here, the recording film and the film structure according to the present invention are shown. A buffer layer 101 and a buried layer 102 are provided below the recording film 100. In this buried layer 102, magnetization regions 103 and 104 having magnetization directions indicated by arrows in a direction perpendicular to the tracks are alternately arranged. The temperature distribution on the recording film is shown above the film structure.
[0012]
As the light intensity increases, the temperature on the film surface increases as shown in FIGS. 2 (a), 2 (b) and 2 (c). In the recording area 110 exceeding the recording temperature Tc1 of the film, the magnetization is lost as shown by the oblique lines in FIG. When the temperature is lowered from this point, the temperature distribution changes as shown in FIGS. 3A, 3B, and 3C, and the magnetization of the recording film changes following the magnetization of the buried layer.
[0013]
As the magnetization direction, the magnetization direction of the magnetization region 103 is made to correspond to the magnetization direction of the recording mark, and the initialization direction of the recording film is made to correspond to the magnetization direction of the magnetization region 104. Then, even if the recording area 110 is large, the recording mark 111 is smaller than the recording area.
[0014]
There are various methods for forming the buried layer 102. When the same magneto-optical film as the recording film 100 is used, it is preferable that the buried layer 102 has a recording characteristic as shown in FIG.
[0015]
That is, the Curie temperature Tc2 of the buried layer 102 is set higher than the Curie temperature Tc1 of the recording film 100, and the temperature characteristic of the coercive force is set to be larger for the recording film at room temperature. In order to form the buried layer with a magneto-optical film, recording is performed in advance by a normal magneto-optical recording method using a short-wavelength recording device in order to make the magnetized area minute. As such a device, the optical system of the cutting device shown in FIG. 1 may be used. At this time, the magnetized region can be formed to have a width of about 0.2 μm. Alternatively, a green or blue laser light source currently used in research and development may be used. In this case, the size of the device can be made about the same as that of the information recording / reproducing device. However, since the numerical aperture of the objective lens cannot be made large, the recording mark width becomes about 0.4 μm.
[0016]
FIG. 5 shows the shape of the magnetized region recorded in advance. A stripe shape having a constant width in a straight line parallel to the traveling direction of the track and the light spot can be considered. In FIG. 5, the magnetized region corresponding to the recorded magnetization is represented by a diagonal stripe when viewed from the upper surface of the medium. When a spot having a two-dimensionally isotropic recording area 110 is scanned thereon and the information is recorded by modulating the light intensity in the traveling direction of the track, marks 120 to 140 representing the recorded information are formed. The width of this mark is almost equal to the width of the stripe-shaped magnetized region that has been prepared in advance.
[0017]
In FIG. 5, the recording film and the buried layer are viewed from above, and the magnetization region and the recording mark are overlapped. As a modulation method in the track traveling direction, an information mark can be recorded by a conventional recording method, a mark position recording method, or a mark length recording method. According to the present invention, the width can be reduced as compared with the information mark recorded by the conventional method. Further, since the recording width is determined by the magnetization width of the buried layer, the distance between adjacent tracks can be reduced. That is, as can be seen from FIG. 3C, the interval between the adjacent magnetization regions can be reduced to the width of the recording region. In the recording spot of FIG. 1, the track interval can be reduced to about 0.4 microns.
[0018]
FIG. 5 shows an example in which recording marks 130 to 140 are recorded on the magnetization stripes 103-2 and 103-5 having a magnetization region width of 0.2 μm by a mark position recording method. Further, an example is shown in which recording marks 120 to 129 are recorded on the magnetic stripes 103-1, 103-4, and 103-6 having a magnetization region width of 0.4 μm by a mark length recording method. In each case, the track interval was 0.6 microns.
[0019]
Although the above embodiment is an example in which the track interval is narrowed, the mark interval can also be narrowed by using the present invention in the linear density direction. FIG. 6 shows the magnetization region viewed from above. The magnetized area has, for example, a square shape, and the magnetized areas 1000A and 1000B having different magnetization directions are arranged so as to form a mosaic pattern in both the spot traveling direction and the direction perpendicular to the track. That is, in the track rows 103-7 to 103-9 in which the magnetization regions are alternately arranged in the spot traveling direction, the positional relationship of the alternate arrangement of the magnetization regions is inverted, and the magnetization polarities of the adjacent magnetization regions are different. Are arranged. In this way, crosstalk from adjacent tracks can be reduced when recording marks are read, and the track can be further narrowed by a synergistic effect with the removal of thermal interference in the recording according to the present invention.
[0020]
In FIG. 6, the size of the magnetization region from 103-7 to 103-9 is about 0.4 μm square, and the track interval is 0.6 μm. By increasing the light intensity of the recording light spot 1001 on the magnetization region 1000A corresponding to the recording mark and raising the temperature to the recording temperature or higher, it is possible to form an information mark following the magnetization region. Further, in the reproduction, information can be reproduced based on the rotation of the polarization plane of the reflected light, for example, by irradiating the reproduction spot 1002, for example, as in the reproduction of the conventional magneto-optical disk.
[0021]
Further, FIG. 7 shows an example of a magnetized region array 103-10 to 103-14 in which the magnetized region is narrowed, the size of the magnetized region is reduced to about 0.25 μm, and the track interval is reduced to about 0.45 μm. By increasing the light intensity of the spot 151 located on the recording film above the magnetization sequence 103-11 according to the light pulse 150 shown in the lower part of FIG. 7, a recording mark sequence as shown above the magnetization sequence 103-13 152 are formed. The magnetization arrangement of the magnetization arrays 103 to 13 is not shown, and only the magnetization arrangement of the recording mark array 152 is shown by hatched regions.
[0022]
In order to make the magnetization arrangement mosaic, some timing information is required when the buried layer is formed of a magneto-optical film. As a method of producing this, a method of arranging pits discretely on a medium and creating a clock for recording tracking information and data from the pits can be used. The magnetization arrangement is recorded by using a clock to be created from now on, and when recording an information mark, a recording pulse train corresponding to the recording information is also created by using this clock.
[0023]
In the above description, a buried mark 103 magnetized in a direction opposite to the initial magnetization direction of the magnetic film 102 as the buried layer was formed, and a local magnetic field was applied to the recording layer 100. However, the present invention is not limited to this.For example, a magnetic film magnetized in a predetermined direction is used as a buried layer, and a portion other than the buried mark is made non-magnetic by applying a technique such as ion implantation. It can be configured by changing to a film. It is also possible to apply a local magnetic field by providing irregularities in the embedded magnetic layer by using a technique such as a replica.
[0024]
【The invention's effect】
According to the invention described above, the track pitch can be increased by half or more and the linear density can be increased by 1.5 times or more as compared with the conventional optical disk recording method. For example, when a laser having a wavelength of 680 nm is used as a light source, a recording density of 3.6 Gbit / inch 2 or more can be achieved.
[Brief description of the drawings]
FIG. 1 is a graph showing the intensity distribution of a recording spot according to the present invention.
FIG. 2 is a conceptual diagram illustrating the recording principle of the present invention.
FIG. 3 is an explanatory conceptual diagram of a recording principle of the present invention.
FIG. 4 is a graph showing the magnetization characteristics of the recording medium of the present invention.
FIG. 5 is a plan view showing the arrangement of recording marks and magnetized regions according to the present invention.
FIG. 6 is a plan view showing the arrangement of recording marks and magnetized regions according to the present invention.
FIG. 7 is a plan view showing the arrangement of recording marks and magnetized regions according to the present invention.
[Explanation of symbols]
1000A: magnetized area corresponding to recording mark; 103-7 to 103-9: track row; 1001: recording light spot; 1002: reproduction spot.

Claims (2)

記録媒体上に光点を形成し、該光点の光強度が変調されることで情報を記録する光学的情報記録再生方法において、
上記記録媒体としてあらかじめ磁化方向を局所的に変化させて埋込マークを形成した第1の磁性膜を有する多層磁性膜を用い、
前記埋込マークは、記録時に情報を記録させるために媒体を光学的に変化させる領域よりも幅及び長さ又はその何れかが小さく、
上記光点を上記埋込マークに重なる第2の磁性膜上に照射し上記第2の磁性膜に前記埋込マークの磁化方向及び形状にならうように重ねて記録マークを記録することを特徴とする情報記録再生方法。
Forming a light spot on a recording medium, an optical information recording and reproducing method for recording information by modulating the light intensity of the light spot,
As the recording medium, a multilayer magnetic film having a first magnetic film in which an embedded mark is formed by locally changing a magnetization direction in advance is used,
The embedded mark is smaller in width and / or length than a region where the medium is optically changed in order to record information during recording,
The light spot is irradiated onto the second magnetic layer overlapping the buried mark, to record a recording mark superimposed so as to follow the magnetization direction and shape of the buried mark in the second magnetic layer Characteristic information recording / reproducing method.
前記記録媒体として円板状記録媒体を用い、前記埋込マークを周方向に配列したことを特徴とする請求項1記載の情報記録再生方法。2. The information recording / reproducing method according to claim 1, wherein a disc-shaped recording medium is used as the recording medium, and the embedding marks are arranged in a circumferential direction.
JP23449393A 1993-09-21 1993-09-21 Information recording method Expired - Fee Related JP3550408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23449393A JP3550408B2 (en) 1993-09-21 1993-09-21 Information recording method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23449393A JP3550408B2 (en) 1993-09-21 1993-09-21 Information recording method

Publications (2)

Publication Number Publication Date
JPH0793838A JPH0793838A (en) 1995-04-07
JP3550408B2 true JP3550408B2 (en) 2004-08-04

Family

ID=16971897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23449393A Expired - Fee Related JP3550408B2 (en) 1993-09-21 1993-09-21 Information recording method

Country Status (1)

Country Link
JP (1) JP3550408B2 (en)

Also Published As

Publication number Publication date
JPH0793838A (en) 1995-04-07

Similar Documents

Publication Publication Date Title
US5161135A (en) Magneto-optical disc memory apparatus including a header signal and magneto-optical signal level adjusting circuit
USRE43056E1 (en) Super resolution information reproduction by tracking address information in normal resolution
KR100377980B1 (en) Magneto-optical head device having integrated auxiliary lens and magnetic reproducing haed and recording and reproducing device using magneto-optical head device
US6560168B1 (en) Information recording/reproducing device
EP1202254A1 (en) Read/write head and magnetic recording device
US6314061B1 (en) Linear high density magneto-optical recording apparatus
CA2048583C (en) Magnetic recording and reproducing apparatus
JP3550408B2 (en) Information recording method
US6683823B2 (en) Method for reproducing information on a recording medium
JPH06208739A (en) Magneto-optic disk and magnetization of the disk
US7236433B2 (en) System and method of recording and reproducing information
KR100292604B1 (en) Overwriteable optical recording medium and recording method thereof
JP2000057646A (en) Magneto-optical recording medium and magneto-optical recording and reproducing device
JP2706292B2 (en) Magneto-optical recording device
JPS61187139A (en) Optical information recording method
KR100781186B1 (en) Magnetic scanning system
JPH0517613B2 (en)
JPS6025003A (en) Opto-magnetic recording device
US6580667B2 (en) Magneto-optical reproducing head having a plural transfer facing surfaces and insulation gaps
JP2883101B2 (en) Information recording device
JP4381541B2 (en) Optical information recording method, optical information recording / reproducing method, and optical information recording / reproducing apparatus
JP2004253044A (en) Optically assisted magnetic recording disk drive and optically assisted magnetic recording disk
JP3304589B2 (en) Information recording method and information reproducing method
CA1051550A (en) System for reproducing pulse time modulated waveforms stored along a diffractive track
JPS61177654A (en) Optical memory disk

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040426

LAPS Cancellation because of no payment of annual fees