JP3550301B2 - Semiconductor type gas sensor device - Google Patents

Semiconductor type gas sensor device Download PDF

Info

Publication number
JP3550301B2
JP3550301B2 JP18790498A JP18790498A JP3550301B2 JP 3550301 B2 JP3550301 B2 JP 3550301B2 JP 18790498 A JP18790498 A JP 18790498A JP 18790498 A JP18790498 A JP 18790498A JP 3550301 B2 JP3550301 B2 JP 3550301B2
Authority
JP
Japan
Prior art keywords
gas
temperature
sensor device
gas sensor
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18790498A
Other languages
Japanese (ja)
Other versions
JP2000019140A (en
Inventor
昌昭 七海
洋一 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP18790498A priority Critical patent/JP3550301B2/en
Publication of JP2000019140A publication Critical patent/JP2000019140A/en
Application granted granted Critical
Publication of JP3550301B2 publication Critical patent/JP3550301B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は半導体式ガスセンサー装置に関し、特に感度及び応答性の両方が改善され、自動車の排ガス測定用に好適な半導体式ガスセンサー装置に関する。
【0002】
【従来の技術】
酸素や、NO、NO、N等の窒素酸化物(単にNOxという)、その他のガスの濃度を測定するために半導体式ガスセンサーが広く使用されているが、半導体式ガスセンサーは一般にセラミックス基板と、セラミックス基板上に設けられたガス検知部とガス検知部に設けられた電極と、ガス検知部の周囲又は基板中に設けられたヒータとを有する。
【0003】
半導体式ガスセンサーのガス検知のメカニズムを図12(a) 、(b) に示すNOxセンサーを例にとって説明する。NOx用半導体式ガスセンサーは、アルミナ等のセラミックスの基板1と、セラミックス基板1の表面に形成された一対の櫛形電極2、3と、電極2、3を被覆するようにセラミックス基板1上に形成されたガス検知部(NOx検知層)4とを有する。セラミックス基板1上の別の部位にはまた温度補償素子7が設けられており、温度補償素子7には別の電極7a、7bが接続している。なお常温又は低温ガス中のNOx等を測定する場合には、セラミックス基板1内にヒータ9を埋設するのが好ましい。
【0004】
NOx検知層4はβ型酸化ニオブ(β−Nb)の薄膜状焼結体層であるのが好ましい。β型酸化ニオブの薄膜状焼結体層は、α型酸化ニオブ粉末のペーストをセラミックス基板1上に塗布し、乾燥後焼結することにより形成することができる。焼結によりα型酸化ニオブはβ型に転化する。NOxの検知感度を向上させるために、酸化ニオブ層に酸化チタンを少量(例えば0.1 〜20重量%)添加するのが好ましい。また各電極は白金微粉末のペーストを塗布・乾燥した後、焼成することにより形成することができる。
【0005】
このような半導体式ガスセンサーによるNOxの濃度測定は以下のようにして行われる。β型酸化ニオブからなるNOx検知層4の表面に排ガス中のNOxが吸着すると、NOxは電子吸引作用を発揮し、β型酸化ニオブ(n型半導体)のキャリアである電子がNOxに吸引されて拘束され、その結果β型酸化ニオブの表面層の抵抗が増加する。β型酸化ニオブの表面には一対の櫛形電極2、3が形成されているので、両電極2、3により測定される抵抗値はβ型酸化ニオブ表面に吸着したNOxと比例することになる。従って、電極2、3の出力からNOx濃度を求めることができる。
【0006】
NOx等の検知を行うためには半導体式ガスセンサーが所定の温度レベルになければならないが、排ガス中のNOxの検知の場合には排ガス自身が高温であるので、セラミックス基板1中にヒータを設ける必要はなく、排ガスの温度によりNOx検知層4を十分に加熱することができる。また常温又は低温ガス中のNOx等を測定する場合には、セラミックス基板1にヒータ10を埋設して、半導体式ガスセンサーを雰囲気温度より高い温度に保持した状態でNOx等の検知を行う。
【0007】
【発明が解決しようとする課題】
ところがいずれの場合でも、一般に半導体式ガスセンサーの温度が高くなると応答性が向上するが、感度は逆に低下するという問題がある。これは、半導体式ガスセンサーがガスの吸着により半導体中を流れるキャリア(電子又はホール)がトラップされることによる抵抗値の変化からガス濃度を求めるという原理を利用しているからである。つまり、ガスの吸着現象を利用するため、センサを高温で作動するとガスの吸着が少なくなり、感度が低下する。一方、高温によりガスの脱離が起こりやすくなるので、応答性は向上する。このように半導体式ガスセンサーの感度及び応答性は両立しない性質であるので、半導体材料に応じて所望の感度及び応答性が得られるように、設定温度を実験的に捜し出しているのが実情である。
【0008】
従って、本発明の目的は、応答性が良好な温度域でも優れた感度を発揮できる半導体式ガスセンサー装置を提供することである。
【0009】
【課題を解決するための手段】
上記目的に鑑み鋭意研究の結果、本発明者らは、ガス検知部の表面温度を一定の高温レベルに保持したままセンサ内部に温度分布を与えることにより、検知ガスの濃度変化に対する応答性を高く保持したまま感度を改善することができることを発見し、本発明に想到した。
【0010】
すなわち、本発明の半導体式ガスセンサー装置は、セラミックス基板上にガス検知部及び電極が形成されたセンサー素子と、前記センサー素子を測定部位に固定するための取付け部材とを有し、前記取付け部材を冷却し、前記ガス検知部を冷却しない放熱部が設けられていることを特徴とする。この構成により、応答性に影響を与えるセンサー素子のガス検知部の表面温度を変えずに、実質的にガス吸着時間を長くする(ガス吸着量を増大する)ことができ、もって感度の向上が得られる。
【0011】
好ましい一実施例によれば、本発明の半導体式ガスセンサー装置をNOxを測定するために燃焼排ガス用機器に取り付け、ガス検知部の表面温度と取付け部材の温度との差が140 ℃以上になるように、放熱部の構造、形状及び大きさの少なくともいずれかを設定する。140 ℃以上の熱勾配を与えることにより、表面温度を変えずに、ガス検知部内部に温度勾配を発生させ、感度に影響を与える実質的な吸着時間を長くすることができ、NOxガスの検知感度が更に向上する。
【0012】
【発明の実施の形態】
添付図面を参照して、本発明の半導体式ガスセンサー装置を以下詳細に説明する。
【0013】
図1に示す本発明の一実施例による半導体式ガスセンサー装置10は、図12に示すものと同様に、セラミックス基板1上に櫛形電極2、3及びガス検知部4が形成されたセンサー素子20と、電極2、3に接続されたリード線22と、センサー素子20を保護する多孔管24と、センサー素子20を保持するとともに半導体式ガスセンサー装置10を配管等に固定するための取付け部材26と、リード線22を包囲するとともに取付け部材26の後方に延びる保護管28とからなる。セラミックス基板1内には、必要に応じてヒータ9を埋設する。NOx検知用の場合、ガス検知部4は酸化ニオブ系セラミックスにより形成し、セラミックス基板1はアルミナにより形成し、櫛形電極2、3は白金により形成するのが好ましい。
【0014】
図2は、本発明の半導体式ガスセンサー装置10を自動車の排気系機器の一種である排気管30に取り付けた例を示す。排気系機器としては他にマニホルド、キャタライザー等がある。この例では、排気管30の管壁30aに設けた開口部を貫通した半導体式ガスセンサー装置10は、取付け部材26により排気管30の管壁30aに固定され、多孔管24は排気管30内に突出する。排ガスは多孔管24内のセンサー素子20のガス検知部4と接触することにより、排ガス中のNOxを検出することができる。
【0015】
ガス検知部4と取付け部材26との温度差が140 ℃以上となるように、取付け部材26には放熱部32が設けられている。なおガス検知部4と取付け部材26との距離は一般に15〜35mmである。このように短い距離で140 ℃以上の温度差があるので、センサー素子20のガス検知部4において、表面温度と内部温度とに著しい差が生じると考えられる。
【0016】
センサー素子20の表面温度(詳しくはガス検知部4の表面温度)と取付け部の温度(詳しくは取付け部材26の温度)との差を設けることによりガス検知の応答性及び感度の両方が向上する理由は必ずしも明確ではないが、以下の通りであると考えられる。図3を参照すると、センサー素子20の表面温度が高くなるに従って、ガスの吸着量は減少して感度の低下を招くが、ガス分子が吸着脱離する速度が増大するので、応答性は向上する。一方低温になるとガス吸着量が増加してガス感度は高くなるが、ガス分子が吸着脱離する速度が低下するので、応答性は低下する。そこで図4に示すように、センサー素子20の表面温度を一定の高温に保ちながら取付け部を冷却すると、センサー素子20内部に温度分布が生じ、高い表面温度による高い感度を維持したまま、応答性を改善することができる。その程度は、センサー素子20の表面温度と取付け部の温度との差が増大するにつれて(▲1▼→▲3▼)、著しくなる。センサー表面と取付け部との温度差を種々変更して検討した結果、140 ℃以上である必要があることが分かった。
【0017】
放熱部32の態様としては、半導体式ガスセンサー装置10の取付け部材26の材質、形状、サイズ等を放熱しやすく工夫したものとするとか、強制的に冷却部材を設けるのが好ましい。例えば自動車の排気系機器(排気管30)に半導体式ガスセンサー装置10を取り付ける図5に示す構造の例を基本にして、以下本発明の実施態様を説明する。この例では取付け部材26はナットであり、排気管30の壁30aに設けられた小さな突起部の先端を開口するとともにその側壁にネジを設け、ナット状取付け部材26を螺着する。
【0018】
図6は本発明の好ましい一実施態様による半導体式ガスセンサー装置10を示す。この実施態様では、半導体式ガスセンサー装置の取付け部材26の周囲に放熱部として水冷管34を設ける。その他は図5の構成と同じである。排気管30内に300 ℃以上の排ガスを流すとともに、水冷管34内に冷却水を流通させることにより、センサー素子20のガス検知部4の表面温度は実質的に300 ℃付近に維持されたまま、取付け部材26は強制的に冷却され、センサー素子20のガス検知部4の表面と取付け部材26との温度差を140 ℃より十分に大きく維持することができる。
【0019】
図7は本発明の好ましい別の実施態様による半導体式ガスセンサー装置10を示す。この実施態様では、半導体式ガスセンサー装置10の取付け部材26の周囲に放熱部として放冷フィン36を設ける。その他は図5の構成と同じである。排気管30内に300 ℃以上の排ガスを流すと、センサー素子20のガス検知部4の表面温度は実質的に300 ℃付近に加熱されるが、取付け部材26は放冷フィン36により急速に冷却され、センサー素子20のガス検知部4の表面と取付け部材26との温度差を140 ℃より十分に大きく維持することができる。
【0020】
図8は本発明の好ましいさらに別の実施態様による半導体式ガスセンサー装置10を示す。この実施態様では、排気管30の側壁に大きな突出部31を設け、突出部31に半導体式ガスセンサーを取り付ける。突出部31の長さとしては、10〜20mm程度が好ましい。突出部31の分だけ放熱面積が増大し、放冷速度が増大する。この場合、センサー素子20のガス検知部4の表面と取付け部材26との温度差は図6、7の例より小さいが、それでも140 ℃以上とすることができる。
【0021】
図9は本発明の好ましいさらに別の実施態様による半導体式ガスセンサー装置10を示す。この実施態様では、半導体式ガスセンサー装置10の取付け部材として大きな径のナットを使用する。その他は図5の構成と同じである。排気管30内に300 ℃以上の排ガスを流すと、センサー素子20のガス検知部4の表面温度は実質的に300 ℃付近に加熱されるが、大径ナット状取付け部材26により放冷される。この場合、センサー素子20のガス検知部4の表面と取付け部材26との温度差は図6、7の例より小さいが、それでも140 ℃以上とすることができる。
【0022】
【実施例】
本発明を以下の実施例及び比較例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。
【0023】
実施例及び比較例のいずれにおいても、下記方法により図1に示す構造の半導体式ガスセンサー装置10を作製した。まず12mm×4mm×2.5mm のサイズのアルミナ基板1上に、白金電極2、3を印刷・焼成法により形成し、次いで酸化ニオブ(Nb、純度99.9%)の微粉末のペーストを印刷法によりアルミナ基板1上に塗布し、1000℃で焼結することによりガス検知部4(厚さ20μm)を形成した。ガス検知部4上に温度センサー(図示せず)を取り付けた。このようにして得られたセンサー素子20に取付け部材26として鉄鋼製6角ナット(M16)を固定し、図2に示すように排気管30に取り付け、取付け部材26に温度センサー40を取り付けた。排気管30内に下記組成の混合ガス(300 ℃)を流した。このときガス検知部4の表面温度も実質的に300 ℃であった。
【0024】
NO:25ppm 〜470 ppm
酸素:600 ppm
プロピレン:160 ppm
一酸化炭素:550 ppm
二酸化炭素:13.8%
水蒸気:10%
窒素:残部
【0025】
NOが80ppm のときのセンサーの抵抗をRとし、NOが400ppmのときのセンサーの抵抗をRとして、NO感度Sを下記式により求めた。
S=R/R×100 (%)
【0026】
また応答性は、NOガスの濃度を470 ppm から25ppm に変化させた時に、抵抗値が90%変化するまでの時間(秒)により評価した。
【0027】
実施例1
図6に示すように、上記半導体式ガスセンサー装置10の取付け部材26に水冷管34を設け、水道水を流通させて取付け部材26を強制的に冷却し、88℃に保った。従って、センサー素子20の表面と取付け部材26との温度差は212 ℃である。このときNO感度は780 %であり、応答性は14秒であった。
【0028】
実施例2
図7に示すように、上記半導体式ガスセンサー装置10の取付け部材26に放熱フィン36を設け、空冷により取付け部材26を100 ℃に保った。従って、センサー素子20の表面と取付け部材26との温度差は200 ℃である。このときNO感度は600 %であり、応答性は12秒であった。
【0029】
実施例3
図8に示すように、上記半導体式ガスセンサー装置10を排気管30の管壁に設けた突出部31の先端に取り付け、空冷により取付け部材26を118 ℃に保った。従って、センサー素子20の表面と取付け部材26との温度差は182 ℃である。このときNO感度は480 %であり、応答性は13秒であった。
【0030】
実施例4
図9に示すように、上記半導体式ガスセンサー装置10の取付け部材26を大型の6角ナット(M24)とし、空冷により取付け部材26を160 ℃に保った。従って、センサー素子20の表面と取付け部材26との温度差は140 ℃である。このときNO感度は250 %であり、応答性は11秒であった。
【0031】
比較例1
図5に示すように、上記半導体式ガスセンサー装置10の取付け部材26を小型の6角ナット(M16)とした。取付け部材26の温度は180 ℃であった。従って、センサー素子20の表面と取付け部材26との温度差は120 ℃である。このときNO感度は180 %であり、応答性は12秒であった。
【0032】
比較例2
図10に示すように、上記半導体式ガスセンサー装置10の取付け部材26を小型の6角ナット(M16)とし、かつナットがほとんど外部に露出しないようにした。このとき取付け部材26の温度は200 ℃であった。従って、センサー素子20の表面と取付け部材26との温度差は100 ℃である。このときNO感度は170 %であり、応答性は12秒であった。
【0033】
図11は実施例1〜4及び比較例1〜2におけるNO感度と温度差との関係を示す。図11から明らかなように、センサー素子20の表面と取付け部材26との温度差が140 ℃以上になるように、半導体式ガスセンサー装置10の取付け部材26の温度を放冷又は強制冷却により低下させる構造の場合(実施例1〜4)、NO感度及び応答性はともに良好であるが、取付け部材26の温度を十分に低下させていない比較例1及び2の場合、温度差は140 ℃未満であり、NO感度が著しく低下していた。
【0034】
以上詳述したように、本発明の半導体式ガスセンサー装置は、センサー素子を取り付けるための取付け部材を冷却し、前記ガス検知部を冷却しない放熱部を設けているので、センサー素子のガス検知部の表面と取付け部との温度差を大きく維持することができ、もってセンサー内部に温度勾配を作ることにより、ガス感度及び応答性の両方を十分高いレベルに維持することができる。

【図面の簡単な説明】
【図1】本発明の半導体式ガスセンサー装置の一例を示す概略断面図である。
【図2】本発明の半導体式ガスセンサー装置を排気管に取り付けた状態を示す概略断面図である。
【図3】半導体式ガスセンサーのセンサー表面の温度とガス吸着量との関係を示すグラフである。
【図4】半導体式ガスセンサーのセンサー表面の温度と取付け部の温度との差によるセンサー内部の温度分布を示す概略断面図である。
【図5】排気管に取り付けた従来の半導体式ガスセンサー装置の一例を示す斜視図である。
【図6】排気管に取り付けた本発明の半導体式ガスセンサー装置の一例を示す斜視図である。
【図7】排気管に取り付けた本発明の半導体式ガスセンサー装置の別の例を示す斜視図である。
【図8】排気管に取り付けた本発明の半導体式ガスセンサー装置のさらに別の例を示す斜視図である。
【図9】排気管に取り付けた本発明の半導体式ガスセンサー装置のさらに別の例を示す斜視図である。
【図10】排気管に取り付けた従来の半導体式ガスセンサー装置の別の例を示す斜視図である。
【図11】実施例1〜4及び比較例1〜2におけるNO感度と温度差との関係を示すグラフである。
【図12】半導体式ガスセンサー装置のセンサー素子を概略的に示し、(a) は部分破断平面図であり、(b) はそのA−A断面図である。
【符号の説明】
1・・・・セラミックス基板
2,3・・櫛形電極
4・・・・ガス検知部
7・・・・温度補償素子
9・・・・ヒータ
10・・・・半導体式ガスセンサー装置
20・・・・センサー素子
22・・・・リード線
24・・・・多孔管
26・・・・取付け部材
28・・・・保護管
30・・・・排気管
31・・・・排気管の側方突出部
32・・・・放熱部
34・・・・水冷管
36・・・・放熱フィン
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor gas sensor device, and more particularly to a semiconductor gas sensor device having improved sensitivity and responsiveness and suitable for measuring exhaust gas from automobiles.
[0002]
[Prior art]
Semiconductor gas sensors are widely used to measure the concentration of oxygen, nitrogen oxides such as NO, NO 2 , N 2 O 4 (hereinafter simply referred to as NOx), and other gases. Generally, it has a ceramic substrate, a gas detection unit provided on the ceramic substrate, an electrode provided on the gas detection unit, and a heater provided around the gas detection unit or in the substrate.
[0003]
The gas detection mechanism of the semiconductor gas sensor will be described using the NOx sensor shown in FIGS. 12A and 12B as an example. The semiconductor gas sensor for NOx is formed on a ceramic substrate 1 so as to cover the ceramic substrate 1 such as alumina, a pair of comb-shaped electrodes 2 and 3 formed on the surface of the ceramic substrate 1, and the electrodes 2 and 3. Gas detection unit (NOx detection layer) 4. A temperature compensating element 7 is provided on another portion of the ceramic substrate 1, and another electrode 7a, 7b is connected to the temperature compensating element 7. When measuring NOx or the like in a normal temperature or low temperature gas, it is preferable to embed the heater 9 in the ceramic substrate 1.
[0004]
The NOx detection layer 4 is preferably a thin-film sintered body layer of β-type niobium oxide (β-Nb 2 O 5 ). The thin-film sintered body layer of β-type niobium oxide can be formed by applying a paste of α-type niobium oxide powder on the ceramic substrate 1, drying and sintering. Α-type niobium oxide is converted to β-type by sintering. In order to improve the detection sensitivity of NOx, it is preferable to add a small amount (for example, 0.1 to 20% by weight) of titanium oxide to the niobium oxide layer. Further, each electrode can be formed by applying and drying a paste of platinum fine powder and then firing.
[0005]
The measurement of NOx concentration by such a semiconductor gas sensor is performed as follows. When NOx in exhaust gas is adsorbed on the surface of the NOx detection layer 4 made of β-type niobium oxide, NOx exerts an electron-attracting action, and electrons as carriers of β-type niobium oxide (n-type semiconductor) are attracted to NOx. As a result, the resistance of the surface layer of β-type niobium oxide increases. Since a pair of comb-shaped electrodes 2 and 3 are formed on the surface of the β-type niobium oxide, the resistance value measured by the electrodes 2 and 3 is proportional to NOx adsorbed on the surface of the β-type niobium oxide. Therefore, the NOx concentration can be obtained from the outputs of the electrodes 2 and 3.
[0006]
In order to detect NOx or the like, the semiconductor gas sensor must be at a predetermined temperature level. However, in the case of detecting NOx in the exhaust gas, the exhaust gas itself is at a high temperature, so a heater is provided in the ceramic substrate 1. There is no need to heat the NOx detection layer 4 sufficiently depending on the temperature of the exhaust gas. When measuring NOx or the like in a normal temperature or low temperature gas, the heater 10 is buried in the ceramic substrate 1 and the detection of NOx and the like is performed while the semiconductor gas sensor is maintained at a temperature higher than the ambient temperature.
[0007]
[Problems to be solved by the invention]
However, in any case, the response is generally improved when the temperature of the semiconductor gas sensor is increased, but there is a problem that the sensitivity is reduced. This is because the semiconductor gas sensor uses the principle of obtaining a gas concentration from a change in resistance value due to trapping of carriers (electrons or holes) flowing in a semiconductor due to gas adsorption. That is, in order to utilize the gas adsorption phenomenon, when the sensor is operated at a high temperature, the gas adsorption is reduced and the sensitivity is reduced. On the other hand, the desorption of the gas is easily caused by the high temperature, so that the responsiveness is improved. As described above, since the sensitivity and responsiveness of the semiconductor gas sensor are incompatible, the set temperature is experimentally searched to obtain desired sensitivity and responsiveness depending on the semiconductor material. is there.
[0008]
Accordingly, an object of the present invention is to provide a semiconductor gas sensor device that can exhibit excellent sensitivity even in a temperature range where responsiveness is good.
[0009]
[Means for Solving the Problems]
As a result of intensive research in view of the above object, the present inventors have improved the response to the concentration change of the detection gas by giving a temperature distribution inside the sensor while maintaining the surface temperature of the gas detection unit at a constant high temperature level. The inventors have found that the sensitivity can be improved while keeping the value, and have reached the present invention.
[0010]
That is, the semiconductor gas sensor device of the present invention includes a sensor element in which a gas detection unit and an electrode are formed on a ceramic substrate, and an attachment member for fixing the sensor element to a measurement site. And a heat radiating portion that does not cool the gas detecting portion is provided. With this configuration, it is possible to substantially increase the gas adsorption time (increase the gas adsorption amount) without changing the surface temperature of the gas detection unit of the sensor element that affects the response, thereby improving the sensitivity. can get.
[0011]
According to a preferred embodiment, the semiconductor gas sensor device of the present invention is mounted on a flue gas device for measuring NOx, and the difference between the surface temperature of the gas detecting portion and the temperature of the mounting member is 140 ° C. or more. As described above, at least one of the structure, the shape, and the size of the heat radiating unit is set. By applying a thermal gradient of 140 ° C. or higher, a temperature gradient can be generated inside the gas detection unit without changing the surface temperature, and the actual adsorption time that affects sensitivity can be prolonged. The sensitivity is further improved.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
The semiconductor gas sensor device of the present invention will be described in detail below with reference to the accompanying drawings.
[0013]
A semiconductor gas sensor device 10 according to an embodiment of the present invention shown in FIG. 1 has a sensor element 20 in which comb-shaped electrodes 2 and 3 and a gas detection unit 4 are formed on a ceramic substrate 1 in the same manner as shown in FIG. And a lead wire 22 connected to the electrodes 2 and 3, a porous tube 24 for protecting the sensor element 20, and an attachment member 26 for holding the sensor element 20 and fixing the semiconductor gas sensor device 10 to a pipe or the like. And a protective tube 28 surrounding the lead wire 22 and extending rearward of the mounting member 26. A heater 9 is embedded in the ceramic substrate 1 as needed. In the case of NOx detection, it is preferable that the gas detector 4 is formed of niobium oxide ceramics, the ceramic substrate 1 is formed of alumina, and the comb electrodes 2 and 3 are formed of platinum.
[0014]
FIG. 2 shows an example in which the semiconductor gas sensor device 10 of the present invention is attached to an exhaust pipe 30 which is a kind of exhaust system equipment of a vehicle. Other exhaust system devices include manifolds, catalyzers, and the like. In this example, the semiconductor gas sensor device 10 that has penetrated the opening provided in the pipe wall 30a of the exhaust pipe 30 is fixed to the pipe wall 30a of the exhaust pipe 30 by the attachment member 26, and the porous pipe 24 is located inside the exhaust pipe 30. Protrude into. By contacting the exhaust gas with the gas detection unit 4 of the sensor element 20 in the porous tube 24, NOx in the exhaust gas can be detected.
[0015]
The mounting member 26 is provided with a heat radiating portion 32 so that the temperature difference between the gas detection section 4 and the mounting member 26 is 140 ° C. or more. The distance between the gas detection unit 4 and the mounting member 26 is generally 15 to 35 mm. Since there is a temperature difference of 140 ° C. or more at such a short distance, it is considered that a remarkable difference occurs between the surface temperature and the internal temperature in the gas detection section 4 of the sensor element 20.
[0016]
By providing a difference between the surface temperature of the sensor element 20 (specifically, the surface temperature of the gas detection unit 4) and the temperature of the mounting unit (specifically, the temperature of the mounting member 26), both the responsiveness and sensitivity of gas detection are improved. The reason is not always clear, but it is considered as follows. Referring to FIG. 3, as the surface temperature of the sensor element 20 increases, the amount of gas adsorbed decreases and the sensitivity decreases, but the response speed improves because the rate at which gas molecules are adsorbed and desorbed increases. . On the other hand, when the temperature is lowered, the gas sensitivity increases due to an increase in the amount of adsorbed gas, but the response speed decreases because the rate at which gas molecules are adsorbed and desorbed decreases. Therefore, as shown in FIG. 4, when the mounting portion is cooled while maintaining the surface temperature of the sensor element 20 at a constant high temperature, a temperature distribution is generated inside the sensor element 20, and the responsiveness is maintained while maintaining high sensitivity due to the high surface temperature. Can be improved. The degree of the change becomes significant as the difference between the surface temperature of the sensor element 20 and the temperature of the mounting portion increases ((1) → (3)). As a result of variously examining the temperature difference between the sensor surface and the mounting portion, it was found that the temperature difference needs to be 140 ° C. or more.
[0017]
As a mode of the heat radiating portion 32, it is preferable to devise the material, shape, size, and the like of the mounting member 26 of the semiconductor gas sensor device 10 so as to easily radiate heat or to provide a cooling member forcibly. For example, an embodiment of the present invention will be described below based on an example of a structure shown in FIG. In this example, the mounting member 26 is a nut, and the tip of a small projection provided on the wall 30a of the exhaust pipe 30 is opened, and a screw is provided on the side wall, and the nut-shaped mounting member 26 is screwed.
[0018]
FIG. 6 shows a semiconductor gas sensor device 10 according to a preferred embodiment of the present invention. In this embodiment, a water cooling pipe 34 is provided as a heat radiating part around the mounting member 26 of the semiconductor gas sensor device. The rest is the same as the configuration of FIG. By flowing exhaust gas of 300 ° C. or more into the exhaust pipe 30 and flowing cooling water through the water cooling pipe 34, the surface temperature of the gas detection unit 4 of the sensor element 20 is substantially maintained at around 300 ° C. The mounting member 26 is forcibly cooled, and the temperature difference between the surface of the gas detecting portion 4 of the sensor element 20 and the mounting member 26 can be maintained sufficiently larger than 140 ° C.
[0019]
FIG. 7 shows a semiconductor gas sensor device 10 according to another preferred embodiment of the present invention. In this embodiment, cooling fins 36 are provided around the mounting member 26 of the semiconductor gas sensor device 10 as heat radiating portions. The rest is the same as the configuration of FIG. When exhaust gas of 300 ° C. or more flows through the exhaust pipe 30, the surface temperature of the gas detection unit 4 of the sensor element 20 is substantially heated to around 300 ° C., but the mounting member 26 is rapidly cooled by the cooling fins 36. Thus, the temperature difference between the surface of the gas detection section 4 of the sensor element 20 and the mounting member 26 can be maintained sufficiently larger than 140 ° C.
[0020]
FIG. 8 shows a semiconductor gas sensor device 10 according to still another preferred embodiment of the present invention. In this embodiment, a large protrusion 31 is provided on the side wall of the exhaust pipe 30, and a semiconductor gas sensor is attached to the protrusion 31. The length of the protruding portion 31 is preferably about 10 to 20 mm. The heat radiation area increases by the amount of the protruding portion 31, and the cooling rate increases. In this case, the temperature difference between the surface of the gas detection section 4 of the sensor element 20 and the mounting member 26 is smaller than the example in FIGS. 6 and 7, but can be 140 ° C. or more.
[0021]
FIG. 9 shows a semiconductor gas sensor device 10 according to still another preferred embodiment of the present invention. In this embodiment, a nut having a large diameter is used as a mounting member of the semiconductor gas sensor device 10. The rest is the same as the configuration of FIG. When exhaust gas at a temperature of 300 ° C. or more flows through the exhaust pipe 30, the surface temperature of the gas detecting portion 4 of the sensor element 20 is substantially heated to around 300 ° C., but is cooled by the large-diameter nut-shaped mounting member 26. . In this case, the temperature difference between the surface of the gas detection section 4 of the sensor element 20 and the mounting member 26 is smaller than the example in FIGS. 6 and 7, but can be 140 ° C. or more.
[0022]
【Example】
The present invention will be described in more detail with reference to the following Examples and Comparative Examples, but the present invention is not limited thereto.
[0023]
In each of the examples and the comparative examples, the semiconductor gas sensor device 10 having the structure shown in FIG. 1 was manufactured by the following method. First, platinum electrodes 2 and 3 are formed on an alumina substrate 1 having a size of 12 mm × 4 mm × 2.5 mm by a printing and baking method, and then a fine powder of niobium oxide (Nb 2 O 5 , purity 99.9%) is formed. The paste was applied on the alumina substrate 1 by a printing method and sintered at 1000 ° C. to form the gas detecting portion 4 (thickness: 20 μm). A temperature sensor (not shown) was mounted on the gas detector 4. A hexagonal nut (M16) made of steel was fixed to the sensor element 20 obtained in this manner as a mounting member 26, and attached to an exhaust pipe 30 as shown in FIG. 2, and a temperature sensor 40 was mounted to the mounting member 26. A mixed gas (300 ° C.) having the following composition was flowed into the exhaust pipe 30. At this time, the surface temperature of the gas detector 4 was also substantially 300 ° C.
[0024]
NO: 25 ppm to 470 ppm
Oxygen: 600 ppm
Propylene: 160 ppm
Carbon monoxide: 550 ppm
Carbon dioxide: 13.8%
Water vapor: 10%
Nitrogen: balance [0025]
The NO sensitivity S was determined by the following equation, where the resistance of the sensor when NO was 80 ppm was R 0 and the resistance of the sensor when NO was 400 ppm was R 1 .
S = R 1 / R 0 × 100 (%)
[0026]
The response was evaluated by the time (second) until the resistance value changed by 90% when the concentration of NO gas was changed from 470 ppm to 25 ppm.
[0027]
Example 1
As shown in FIG. 6, a water cooling pipe 34 was provided on the attachment member 26 of the semiconductor gas sensor device 10, and the attachment member 26 was forcibly cooled by flowing tap water and kept at 88 ° C. Therefore, the temperature difference between the surface of the sensor element 20 and the mounting member 26 is 212 ° C. At this time, the NO sensitivity was 780%, and the response was 14 seconds.
[0028]
Example 2
As shown in FIG. 7, a radiation fin 36 was provided on the attachment member 26 of the semiconductor gas sensor device 10, and the attachment member 26 was kept at 100 ° C. by air cooling. Therefore, the temperature difference between the surface of the sensor element 20 and the mounting member 26 is 200 ° C. At this time, the NO sensitivity was 600%, and the response was 12 seconds.
[0029]
Example 3
As shown in FIG. 8, the semiconductor type gas sensor device 10 was attached to the tip of a projection 31 provided on the pipe wall of the exhaust pipe 30, and the attachment member 26 was kept at 118 ° C. by air cooling. Therefore, the temperature difference between the surface of the sensor element 20 and the mounting member 26 is 182 ° C. At this time, the NO sensitivity was 480%, and the response was 13 seconds.
[0030]
Example 4
As shown in FIG. 9, the mounting member 26 of the semiconductor gas sensor device 10 was a large hexagonal nut (M24), and the mounting member 26 was maintained at 160 ° C. by air cooling. Therefore, the temperature difference between the surface of the sensor element 20 and the mounting member 26 is 140 ° C. At this time, the NO sensitivity was 250%, and the response was 11 seconds.
[0031]
Comparative Example 1
As shown in FIG. 5, the mounting member 26 of the semiconductor gas sensor device 10 was a small hexagonal nut (M16). The temperature of the mounting member 26 was 180 ° C. Therefore, the temperature difference between the surface of the sensor element 20 and the mounting member 26 is 120 ° C. At this time, the NO sensitivity was 180%, and the response was 12 seconds.
[0032]
Comparative Example 2
As shown in FIG. 10, the mounting member 26 of the semiconductor gas sensor device 10 was a small hexagonal nut (M16), and the nut was hardly exposed to the outside. At this time, the temperature of the mounting member 26 was 200 ° C. Therefore, the temperature difference between the surface of the sensor element 20 and the mounting member 26 is 100 ° C. At this time, the NO sensitivity was 170%, and the response was 12 seconds.
[0033]
FIG. 11 shows the relationship between the NO sensitivity and the temperature difference in Examples 1 to 4 and Comparative Examples 1 and 2. As is clear from FIG. 11, the temperature of the mounting member 26 of the semiconductor gas sensor device 10 is lowered by cooling or forced cooling so that the temperature difference between the surface of the sensor element 20 and the mounting member 26 becomes 140 ° C. or more. In the case of the structure (Examples 1 to 4), the NO sensitivity and the responsiveness are both good, but in Comparative Examples 1 and 2 in which the temperature of the mounting member 26 is not sufficiently lowered, the temperature difference is less than 140 ° C. And the NO sensitivity was significantly reduced.
[0034]
As described in detail above, the semiconductor gas sensor device of the present invention is provided with a radiator that cools the mounting member for mounting the sensor element and does not cool the gas detector. By maintaining a large temperature difference between the surface and the mounting portion, a temperature gradient can be formed inside the sensor, so that both gas sensitivity and responsiveness can be maintained at a sufficiently high level.

[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing an example of a semiconductor gas sensor device of the present invention.
FIG. 2 is a schematic sectional view showing a state where the semiconductor gas sensor device of the present invention is attached to an exhaust pipe.
FIG. 3 is a graph showing a relationship between a temperature of a sensor surface of a semiconductor gas sensor and a gas adsorption amount.
FIG. 4 is a schematic cross-sectional view showing a temperature distribution inside the semiconductor gas sensor due to a difference between the temperature of the sensor surface and the temperature of the mounting portion.
FIG. 5 is a perspective view showing an example of a conventional semiconductor gas sensor device attached to an exhaust pipe.
FIG. 6 is a perspective view showing an example of the semiconductor gas sensor device of the present invention attached to an exhaust pipe.
FIG. 7 is a perspective view showing another example of the semiconductor gas sensor device of the present invention attached to an exhaust pipe.
FIG. 8 is a perspective view showing still another example of the semiconductor gas sensor device of the present invention attached to an exhaust pipe.
FIG. 9 is a perspective view showing still another example of the semiconductor gas sensor device of the present invention attached to an exhaust pipe.
FIG. 10 is a perspective view showing another example of a conventional semiconductor gas sensor device attached to an exhaust pipe.
FIG. 11 is a graph showing the relationship between the NO sensitivity and the temperature difference in Examples 1 to 4 and Comparative Examples 1 and 2.
FIGS. 12A and 12B schematically show a sensor element of a semiconductor gas sensor device, wherein FIG. 12A is a partially broken plan view, and FIG.
[Explanation of symbols]
1 Ceramic substrates 2 and 3 Comb-shaped electrode 4 Gas detection unit 7 Temperature compensation element 9 Heater 10 Semiconductor gas sensor device 20 Sensor element 22 Lead wire 24 Perforated pipe 26 Mounting member 28 Protective pipe 30 Exhaust pipe 31 Side projection of exhaust pipe 32: heat dissipating part 34: water cooling tube 36: heat dissipating fin

Claims (2)

セラミックス基板上にβ型酸化ニオブからなるガス検知部及び電極が形成されたセンサー素子と、前記センサー素子を測定部位に固定するための取付け部材とを有する半導体式ガスセンサー装置において、前記取付け部材を冷却し、前記ガス検知部を冷却しない放熱部が設けられていることを特徴とする半導体式ガスセンサー装置。A sensor element gas detector and electrodes are formed consisting of β-type niobium oxide ceramic substrate, a semiconductor type gas sensor device having a mounting member for fixing the sensor element to the measurement site, the attachment member A semiconductor-type gas sensor device comprising a heat radiating unit that cools and does not cool the gas detecting unit . 請求項1に記載の半導体式ガスセンサー装置において、NOxを測定するために燃焼排ガス用機器に取り付けられ、前記ガス検知部の表面温度と前記取付け部材の温度との差が140 ℃以上になるように、前記放熱部の構造、形状及び大きさの少なくともいずれかを設定することを特徴とする半導体式ガスセンサー装置。2. The semiconductor gas sensor device according to claim 1, wherein the semiconductor gas sensor device is attached to a combustion exhaust gas device for measuring NOx, and a difference between a surface temperature of the gas detection unit and a temperature of the attachment member is 140 ° C. or more. Wherein at least one of the structure, shape and size of the heat radiating section is set.
JP18790498A 1998-07-02 1998-07-02 Semiconductor type gas sensor device Expired - Fee Related JP3550301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18790498A JP3550301B2 (en) 1998-07-02 1998-07-02 Semiconductor type gas sensor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18790498A JP3550301B2 (en) 1998-07-02 1998-07-02 Semiconductor type gas sensor device

Publications (2)

Publication Number Publication Date
JP2000019140A JP2000019140A (en) 2000-01-21
JP3550301B2 true JP3550301B2 (en) 2004-08-04

Family

ID=16214245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18790498A Expired - Fee Related JP3550301B2 (en) 1998-07-02 1998-07-02 Semiconductor type gas sensor device

Country Status (1)

Country Link
JP (1) JP3550301B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6167056B2 (en) * 2014-03-12 2017-07-19 日本特殊陶業株式会社 Gas sensor evaluation method
KR102582798B1 (en) * 2023-03-28 2023-09-25 차기룡 5G-based reference board system with sensor board protection case

Also Published As

Publication number Publication date
JP2000019140A (en) 2000-01-21

Similar Documents

Publication Publication Date Title
JP4637167B2 (en) Sensor element that detects the physical characteristics of the measurement gas
JP4988732B2 (en) Thermal mounting plate for heated pressure transducer
US20160349201A1 (en) Method and sensor system for measuring gas concentrations
CN1197200A (en) Measuring element and mass air flow meter therewith
JP2009520180A (en) Self-cleaning action of flow sensor element and flow sensor element
CN1231745C (en) Flow sensor
US20070277605A1 (en) Shield assembly for a gas sensor
US20140119993A1 (en) Chemiluminescent detector having coating to reduce excited species adsorption
JP2009541757A (en) Layer resistor in the exhaust pipe
US6691553B2 (en) Gas sensor protective shield
US6786076B2 (en) Thin film gas sensor
JP3550301B2 (en) Semiconductor type gas sensor device
JP3303974B1 (en) Apparatus and method for detecting infrared rays using SiC
JP5155767B2 (en) Gas detection element
US5831146A (en) Gas sensor with multiple exposed active elements
RU2007125086A (en) DEVICE FOR MEASURING THE INTENSITY OF RADIUS FLOWS DURING HEAT AND VACUUM TESTS OF SPACE VEHICLES AND METHOD OF ITS OPERATION
JPH11194055A (en) Decision method for exhaust-gas temperature and air fuel ratio number (lambda) and sensor device for execution of the same
JPS61194317A (en) Direct-heating type flow-rate sensor
US5880354A (en) Gas sensor with orientation insensitivity
JPH0560529B2 (en)
US4935118A (en) Self heated sensor package
JP2011012972A (en) Gas thermal conductivity gas sensor
Toda et al. NO-sensing properties of Au thin film
KR101738632B1 (en) Micro hot plate having a heat sink structure
US20220316958A1 (en) Sensor System, Sensor Array and Process of Using the Sensor System

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040423

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees