JP3549171B2 - Extrusion blow molding method - Google Patents

Extrusion blow molding method Download PDF

Info

Publication number
JP3549171B2
JP3549171B2 JP13130595A JP13130595A JP3549171B2 JP 3549171 B2 JP3549171 B2 JP 3549171B2 JP 13130595 A JP13130595 A JP 13130595A JP 13130595 A JP13130595 A JP 13130595A JP 3549171 B2 JP3549171 B2 JP 3549171B2
Authority
JP
Japan
Prior art keywords
parison
cooling
temperature
blow molding
extruded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13130595A
Other languages
Japanese (ja)
Other versions
JPH08323851A (en
Inventor
弘章 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yoshino Kogyosho Co Ltd
Original Assignee
Yoshino Kogyosho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshino Kogyosho Co Ltd filed Critical Yoshino Kogyosho Co Ltd
Priority to JP13130595A priority Critical patent/JP3549171B2/en
Publication of JPH08323851A publication Critical patent/JPH08323851A/en
Application granted granted Critical
Publication of JP3549171B2 publication Critical patent/JP3549171B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • B29C49/6409Thermal conditioning of preforms
    • B29C49/6427Cooling of preforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/16Cooling
    • B29C2035/1658Cooling using gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/04Extrusion blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、ポリエチレンテレフタレート樹脂製等の飽和ポリエステル樹脂製の合成樹脂製壜体を成形する、強制冷却を加えたエクストルージョンブロー成形方法に関するものである。
【0002】
【従来の技術】
従来、例えば、ポリエチレンテレフタレート樹脂(PET)から壜体等の中空容器を成形する場合、加熱溶融したPETをプリフォーム成形型へ射出成形してプリフォームを成形し、その後、自然冷却したプリフォームをブロー成形に適した温度まで再度加熱して延伸ブロー成形しており、こうした複数の工程を経ることによって、壜体として満足できる物性を得ていた。
【0003】
上記通常の延伸ブロー成形に対して、加熱溶融したPETを押出し機から押し出したパリソンを、プリフォームへの成形および再加熱の工程なしに、延伸ブロー成形するエクストルージョンブロー成形方法というものがあるが、このエクストルージョンブロー成形方法は、溶融状態にあるパリソンを延伸ブロー成形するため、通常の延伸ブロー成形と比較して、壜体の形状を極めて良好に成形することができる。
【0004】
また、通常の延伸ブロー成形では不可能であった、プリフォームを成形することなく壜体を成形することや、一つのパリソンから把手を一体成形した壜本体を成形できる、いわゆるワンマテリアルの把手付き壜体の成形が可能という大きな長所を有する。
【0005】
【発明が解決しようとする課題】
しかし、上記した従来のエクストルージョンブロー成形方法によって成形された製品は、落下衝撃に弱い等、通常のブロー成形製品と比較して、物性が劣るという問題がある。
【0006】
これは、押出し機で溶融したPET樹脂等をダイを通して押出したパリソンを延伸ブロー成形するため、そのパリソンは高温で当然樹脂の粘度が低く、その自重で延びるいわゆるドローダウンを起こしてしまい、壜体の下部が肉厚となり上部が肉薄になるという、肉厚のコントロールができないことに一因がある。
【0007】
また、延伸ブロー成形時のパリソンは少なくとも融点以上の温度、すなわち延伸に適した温度(延伸温度)よりも高温であるため延伸された樹脂材の配向結晶がうまく達成されないことにも原因がある。
【0008】
そこで、本発明は、上記した従来技術における問題点を解消すべく創案されたもので、エクストルージョンブロー成形方法において、押し出し成形されたパリソンのドローダウンの発生を防止すると共に、このパリソンを延伸ブロー成形に適した温度にすることを技術的課題とし、もってエクストルージョンブロー成形方法を飽和ポリエステル樹脂製壜体の成形手段として好適に適用させるのを可能とすることを目的とする。
【0009】
【課題を解決するための手段】
上記、技術的課題を解決する本発明の手段は、
押出し機から押し出されつつある、溶融状態にある飽和ポリエステル樹脂材のパリソンの外表面を冷却すること、
この冷却により、パリソンのドローダウンを防止すると共に、パリソンを延伸ブロー成形に適した温度(延伸温度)に近づけること、
このドローダウンが防止され、かつ延伸ブロー成形に適した温度に冷却されたパリソンを、壜体に延伸ブロー成形すること、
にある。
【0010】
また、押出し機から押し出されるパリソンが一定長さに達し、その自重によってドローダウンが発生し始める前に冷却を開始し、パリソンが所定長さまで押し出された時点で冷却を停止すること、にある
【0011】
さらに、冷却開始直後に冷却強さを最低とし、その後、パリソンの押し出しが進むに従って、冷却強さを増強させること、にある
【0012】
冷却を、エアーの吹付けによって達成するのが有効である。
【0013】
【作用】
押出し機から押し出されつつあるパリソンの外表面を冷却するので、パリソンの外表面部分の粘度が高くなり、この外表面部分の高くなった粘度によりパリソンにはドローダウンが発生しない。
【0014】
ドローダウンが発生しないことによって、パリソンの肉厚はその全長にわたって設定通りとなり、その後の延伸ブロー成形によって成形された壜体の肉厚も設定通りとなるので、耐衝撃性等の物性は、通常の射出成形したプリフォームから2軸延伸ブロー成形した壜体とほぼ同等となる。
【0015】
また、パリソンの外表面を冷却することによって、溶融状態にあるパリソンの温度を延伸温度に近づけて延伸ブロー成形するので、従来の高温な溶融温度で延伸ブロー成形する場合と比較して、飽和ポリエステル樹脂材の配向結晶が円滑に行われ、よって壜体の物性が向上する。
【0016】
パリソンの外表面のみを冷却するので、その内表面は間接的に冷却されるものの依然溶融温度を維持し、延伸ブロー成形時の型締め時点におけるパリソン(少なくとも内表面)の温度は溶融温度を維持している。
【0017】
従って、金型による喰切り部の溶着を良好に達成することができ、エクストルージョンブロー成形本来の長所(壜体の形状を良好に成形でき、把手等の一体成形ができる等)を依然発揮する。
【0018】
なお、押出し機から押し出されるパリソンが一定長さに達し、その自重によってドローダウンが発生し始める前に冷却を開始し、パリソンが所定長さまで押し出された時点で冷却を停止することによって、パリソンを必要以上に冷却することなく、すなわちパリソン内表面を溶融状態に維持しながら、ドローダウンを未然に防止することができる。
【0019】
また、冷却開始直後に冷却強さを最低とし、その後、パリソンの押し出しが進むに従って、冷却強さを増強させることによって、パリソンにドローダウンを発生させることなく、パリソンをその全長さ範囲にわたって適正に冷却することができると共に、パリソンの内表面部分の蓄熱によるパリソンの外表面部分の加熱により、パリソンの筒壁における温度分布形態を、延伸成形に適した温度で均一化させることができる。
【0020】
冷却を、エアーの吹付けによって行うことで、冷却用エアーの温度設定および流量制御により、パリソンの冷却程度の制御を正確に達成することが容易となると共に、冷却の強弱制御が簡単となり、冷却設備の構成を簡略化することが可能となる。
【0021】
【実施例】
本発明方法の一実施例を、図を参照しながら説明する。
本実施例においては、図1〜図3に示すように、押出し機4のダイ5から溶融状態(250℃〜300℃)にあるポリエチレンテレフタレート樹脂(PET)を押出してパリソン1を成形しながら、このパリソン1の外表面2を、押出し機4の下面に設けた冷却装置6からエアー7を吹き付けることによって強制冷却している。
【0022】
パリソン1の外表面2に対する強制冷却は、本実施例においては、パリソン1の外表面2の温度が、使用したPET材料の溶融点よりも低い約240℃までとなっているが、この冷却は通常、使用するPET材料の溶融点に従って約90℃〜240℃の範囲で行われる。
【0023】
この冷却は、図4に示すように、パリソン1が押出し機4から押出され始めはほとんど冷却しないが、パリソン1がさらに押し出されて下方に長くなり、このパリソン1がその自重でドローダウンを起こす前に開始し、その冷却強さは、パリソン1の押し出し長さが大きくなるに従って増強される。
【0024】
それゆえ、押し出し成形されたパリソン1は、その上部の外表面2ほど強く冷却されることになり、パリソン1が所定長さまで押し出されてカットされる直前に冷却は停止し、こうすることによって、パリソン1のドローダウンを確実に防止している。
【0025】
図4に示すパリソン1は、本発明方法によって強制冷却が施されドローダウンが発生していないもので、逆に、図5に示すパリソン1は強制冷却が施されずドローダウンが生じて延びているものを示す。
【0026】
図6は、本実施例によって冷却されたパリソン1と、冷却されていないパリソン1それぞれの内表面3と外表面2の温度およびパリソン1壁内における温度勾配分布の違いを示したもので、本実施例によって冷却されたパリソン1の内表面3と外表面2の温度差を左側のグラフに、冷却されていないパリソン1の内表面3と外表面2の温度差を右側のグラフに示している。
【0027】
本実施例によって冷却されたパリソン1の外表面2温度が、内表面3温度より極端に低く、冷却効果が発揮されていることが確認でき、冷却されていないパリソン1の内表面3と外表面2の温度差は殆ど見られない。
【0028】
図7は、本実施例によって冷却されたパリソン1下端部分の内表面3と外表面2の温度変化を示したもので、縦軸は温度(度)を、横軸は押出し機4から押し出された後の時間(秒)を示しており、このグラフから、押出し機4から押し出された直後のパリソン外表面2は、冷却装置6による冷却力を強く受けて、急激に温度が低下しているが、押し出しが進行して下方に変位するに従って冷却力は弱められるので、パリソン1が所定の長さに達する時点におけるパリソン1下端部分の外表面2の温度は、冷却強さが弱められること、およびパリソン内表面3側の熱の影響によって内表面3温度と同程度まで上昇する。
【0029】
パリソン内表面3は、冷却装置6による冷却を直接受けず、間接的に冷却されるだけであるので、時間の経過と共に除々にその温度が低下するものの、その温度は溶融温度に近い値を維持しているため、延伸ブロー成形時の型締めによる喰切り部の溶着が良好に達成される。
【0030】
なお、本実施例においては、冷却により温度が低下したパリソン外表面2も内表面3の影響によってその温度が上昇し、型締め時点においては、外気の低温および外表面2に対する冷却に影響されて温度の低下している内表面3と略同一温度となっている。
【0031】
パリソン1の外表面2を強制冷却することにより、その内表面3も間接的に冷却されて温度が低下し、型締め時のパリソン1の温度は延伸温度に近づく、または少なくとも外表面2部分は延伸温度となっているので、その結果、延伸ブロー成形により延伸されたPETの配向結晶が達成され、製品の物性の向上により耐衝撃性等が高められる。
【0032】
なお、本発明方法によるパリソン外表面2の冷却は、大型ボトル(0.5リットル以上)のようにパリソン1が長く、ドローダウンの激しいものに対し、そのドローダウンを防止するために特に有効である。
【0033】
また、パリソン1下部を溶着させるパフブローにおけるパフブローパリソン1の肉厚は、通常のストレートパリソン1の肉厚より肉薄であるため、本発明方法によって冷却されるとパリソン内表面3も冷却されて型締めによる喰切り部の溶着が良好に達成されなくなる懸念がある。
【0034】
しかし、このパフブローパリソン1は、その下端が溶着閉鎖された状態で押し出し成形されるので、通常のストレートパリソン1よりもその内表面3は冷え難く、内表面3の温度維持状態が良いので、金型により喰い切られる製品の底部、首部、把手部などの喰切り部の溶着は良好に達成される。
【0035】
この場合も、本発明方法によるパリソン外表面2の冷却によって、パリソン1をPETの延伸温度に近づけることができ、その延伸効果により衝撃強度等が向上し、従来のエクストルージョンブロー方法によって成形した製品と比較して物性が向上する。すなわち、ダイ5の出口近くでパフパリソン1に対する強制冷却をするため、パフパリソン1が膨張するパフ形状には影響されない。
【0036】
【発明の効果】
本発明は、上記した構成となっているので、以下に示す効果を奏する。
押出し機から押し出されつつあるパリソンの外表面を強制的に冷却して、パリソン外表面側部分の粘度を、この冷却程度に従って高めるので、押し出し成形されたパリソンのドローダウンを未然にかつ確実に防止することができ、もって設定通りの肉厚分布でパリソンを押し出し成形することができる。
【0037】
パリソンに対する強制冷却は、パリソンの外表面に施されるので、パリソンの押し出し成形完了時に、パリソンの内表面部分の温度を溶融温度に保持することができ、もって平均的に延伸効果を現出できる温度に冷却されたパリソンの金型による喰切り部の確実で強力な溶着を得ることができる。
【0038】
パリソンは設定通りの肉厚分布で押し出し成形されると共に、延伸効果を現出させることのできる温度に冷却されているので、延伸ブロー成形処理を受けることにより好適に配向結晶化を得ることができ、もって耐衝撃性、耐内容物性等の物性の優れた延伸ブロー成形品を得ることができる。
【0039】
パリソンを平均的に延伸効果を現出できる温度に冷却した状態で、パリソンの内表面部分を局部的に溶融温度とすることができるので、延伸効果を現出できる状態で延伸ブロー成形すると共に、喰切り部の確実で強力な溶着を達成でき、もって把手を一体成形した2軸延伸ブロー成形品の成形が可能となる。
【図面の簡単な説明】
【図1】本発明方法を実施するための装置を示す正面図。
【図2】図1の要部拡大縦断正面図。
【図3】図2の要部拡大断面図。
【図4】本発明方法による強制冷却のエアー流量(冷却強度)を示すグラフ、およびパリソンを示す説明図。
【図5】強制冷却をしない場合の押し出しパリソンの状態を示す正面断面図。
【図6】本発明方法による強制冷却を受けたパリソンと受けないパリソンの内表面と外表面の温度差を示すグラフおよび説明図。
【図7】本発明方法による強制冷却を受けたパリソン内表面と外表面の、押出し後の時間と温度との関係を示すグラフ。
【符号の説明】
1 ; パリソン
2 ; 外表面
3 ; 内表面
4 ; 押出し機
5 ; ダイ
6 ; 冷却装置
7 ; エアー
[0001]
[Industrial applications]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an extrusion blow molding method with forced cooling for molding a synthetic resin bottle made of a saturated polyester resin such as a polyethylene terephthalate resin.
[0002]
[Prior art]
Conventionally, for example, when a hollow container such as a bottle is formed from polyethylene terephthalate resin (PET), a preform is formed by injection-molding the heated and melted PET into a preform mold, and then the naturally cooled preform is formed. Stretch blow molding is performed by heating again to a temperature suitable for blow molding, and through these multiple steps, satisfactory physical properties as a bottle have been obtained.
[0003]
In contrast to the above-mentioned ordinary stretch blow molding, there is a method called an extrusion blow molding method in which a parison obtained by extruding a heated and melted PET from an extruder is stretch blow-molded without forming and reheating a preform. According to this extrusion blow molding method, since the parison in a molten state is stretch blow-molded, the shape of the bottle can be extremely well formed as compared with ordinary stretch blow molding.
[0004]
In addition, with a so-called one-material handle, it is possible to form a bottle without forming a preform, or to form a bottle body with a handle integrally formed from one parison, which was impossible with ordinary stretch blow molding. It has the great advantage that bottles can be molded.
[0005]
[Problems to be solved by the invention]
However, products molded by the above-mentioned conventional extrusion blow molding method have a problem that they are inferior in physical properties as compared with ordinary blow molded products, such as being vulnerable to drop impact.
[0006]
This is because a parison extruded from a PET resin or the like melted by an extruder through a die is stretch-blow-molded, and the parison naturally has a low viscosity at high temperatures, causing a so-called drawdown that extends by its own weight. This is partly due to the inability to control the wall thickness, with the lower part being thicker and the upper part being thinner.
[0007]
In addition, since the parison at the time of stretch blow molding is at least a temperature equal to or higher than the melting point, that is, a temperature higher than a temperature suitable for stretching (stretching temperature), oriented crystals of the stretched resin material are not successfully achieved.
[0008]
In view of the above, the present invention has been made in order to solve the above-mentioned problems in the prior art. In the extrusion blow molding method, the drawdown of the extruded parison is prevented, and the parison is stretch blown. It is an object of the present invention to make a temperature suitable for molding a technical subject, and to thereby allow the extrusion blow molding method to be suitably applied as a means for molding a saturated polyester resin bottle.
[0009]
[Means for Solving the Problems]
Means of the present invention for solving the above technical problems include:
Cooling the outer surface of the parison of the saturated polyester resin material in the molten state being extruded from the extruder,
This cooling prevents the parison from drawing down and brings the parison close to a temperature suitable for stretch blow molding (stretching temperature).
This drawdown is prevented, and the parison cooled to a temperature suitable for stretch blow molding is stretch blow molded to a bottle,
It is in.
[0010]
Another object of the present invention is to start cooling before the parison extruded from the extruder reaches a certain length and drawdown starts due to its own weight, and stops cooling when the parison is extruded to a predetermined length.
[0011]
Another object of the present invention is to minimize the cooling strength immediately after the start of cooling, and then increase the cooling strength as the parison is extruded.
[0012]
Cooling is advantageously achieved by blowing air.
[0013]
[Action]
Since the outer surface of the parison being extruded from the extruder is cooled, the viscosity of the outer surface portion of the parison increases, and the parison does not draw down due to the increased viscosity of the outer surface portion.
[0014]
Since the drawdown does not occur, the thickness of the parison becomes as set over its entire length, and the thickness of the bottle formed by subsequent stretch blow molding also becomes as set. Is substantially equivalent to a bottle obtained by biaxially stretch blow molding from the injection molded preform.
[0015]
In addition, since the outer surface of the parison is cooled and the temperature of the parison in the molten state is approached to the stretching temperature and stretch blow-molded, compared with the conventional case of stretch blow-molding at a high melting temperature, saturated polyester is used. The oriented crystal of the resin material is smoothly performed, thereby improving the physical properties of the bottle.
[0016]
Since only the outer surface of the parison is cooled, its inner surface is indirectly cooled but still maintains the melting temperature, and the temperature of the parison (at least the inner surface) at the time of mold clamping during stretch blow molding maintains the melting temperature are doing.
[0017]
Therefore, the welding of the cut-off portion by the mold can be satisfactorily achieved, and the original advantages of the extrusion blow molding (the shape of the bottle can be formed well, and the handle and the like can be integrally formed) are still exhibited. .
[0018]
In addition, the parison extruded from the extruder reaches a certain length, starts cooling before the drawdown starts to occur due to its own weight, and stops the parison when the parison is extruded to a predetermined length, thereby reducing the parison. Drawdown can be prevented without cooling unnecessarily, that is, while maintaining the parison inner surface in a molten state.
[0019]
In addition, the cooling strength is minimized immediately after the start of cooling, and then, as the extrusion of the parison progresses, the cooling strength is increased, so that the parison can be properly stretched over its entire length without causing drawdown in the parison. In addition to being able to cool and heating the outer surface portion of the parison by the heat storage of the inner surface portion of the parison, the temperature distribution in the parison tube wall can be made uniform at a temperature suitable for stretch forming.
[0020]
By performing cooling by blowing air, it is easy to accurately control the degree of cooling of the parison by controlling the temperature of the cooling air and controlling the flow rate. The configuration of the equipment can be simplified.
[0021]
【Example】
One embodiment of the method of the present invention will be described with reference to the drawings.
In the present embodiment, as shown in FIGS. 1 to 3, polyethylene terephthalate resin (PET) in a molten state (250 ° C. to 300 ° C.) is extruded from a die 5 of an extruder 4 while forming a parison 1. The outer surface 2 of the parison 1 is forcibly cooled by blowing air 7 from a cooling device 6 provided on the lower surface of the extruder 4.
[0022]
In the present embodiment, the forced cooling of the outer surface 2 of the parison 1 is such that the temperature of the outer surface 2 of the parison 1 is about 240 ° C., which is lower than the melting point of the PET material used. Usually, it is carried out in the range of about 90 ° C. to 240 ° C. depending on the melting point of the PET material used.
[0023]
In this cooling, as shown in FIG. 4, the parison 1 hardly cools when it is first extruded from the extruder 4, but the parison 1 is further extruded and lengthens downward, and the parison 1 draws down by its own weight. Starting before, its cooling strength is increased as the extrusion length of parison 1 increases.
[0024]
Therefore, the extruded parison 1 is cooled more strongly as the outer surface 2 at the upper part thereof, and the cooling is stopped immediately before the parison 1 is extruded to a predetermined length and cut, and by doing so, The drawdown of Parison 1 is reliably prevented.
[0025]
The parison 1 shown in FIG. 4 is subjected to forced cooling by the method of the present invention and does not generate a drawdown. Conversely, the parison 1 shown in FIG. Show what you have.
[0026]
FIG. 6 shows the difference between the temperature of the inner surface 3 and the outer surface 2 of the parison 1 cooled by the present embodiment and that of the uncooled parison 1 and the temperature gradient distribution in the wall of the parison 1. The left graph shows the temperature difference between the inner surface 3 and the outer surface 2 of the parison 1 cooled by the embodiment, and the right graph shows the temperature difference between the inner surface 3 and the outer surface 2 of the uncooled parison 1. .
[0027]
The temperature of the outer surface 2 of the parison 1 cooled according to the present embodiment is extremely lower than the temperature of the inner surface 3, and it can be confirmed that the cooling effect is exerted, and the inner surface 3 and the outer surface of the uncooled parison 1 are confirmed. The temperature difference of 2 is hardly observed.
[0028]
FIG. 7 shows a change in temperature of the inner surface 3 and the outer surface 2 of the lower end portion of the parison 1 cooled according to the present embodiment. The vertical axis represents temperature (degrees), and the horizontal axis is extruded from the extruder 4. From this graph, the parison outer surface 2 immediately after being extruded from the extruder 4 is strongly subjected to the cooling force of the cooling device 6 and the temperature is rapidly lowered. However, since the cooling force is weakened as the extrusion progresses and is displaced downward, the temperature of the outer surface 2 of the lower end portion of the parison 1 at the time when the parison 1 reaches a predetermined length is that the cooling strength is weakened. And the temperature of the inner surface 3 rises to the same degree as the temperature of the inner surface 3 due to the heat on the inner surface 3 of the parison.
[0029]
Since the parison inner surface 3 is not directly cooled by the cooling device 6 but is only indirectly cooled, its temperature gradually decreases over time, but the temperature maintains a value close to the melting temperature. As a result, welding of the cut-off portion by mold clamping during stretch blow molding is favorably achieved.
[0030]
In the present embodiment, the temperature of the parison outer surface 2 whose temperature has been lowered by cooling also rises due to the influence of the inner surface 3, and is affected by the low temperature of the outside air and the cooling of the outer surface 2 at the time of mold clamping. The temperature is substantially the same as that of the inner surface 3 whose temperature has been lowered.
[0031]
By forcibly cooling the outer surface 2 of the parison 1, its inner surface 3 is also indirectly cooled and its temperature decreases, and the temperature of the parison 1 at the time of mold clamping approaches the stretching temperature, or at least a portion of the outer surface 2 is Since it is at the stretching temperature, as a result, oriented crystals of PET stretched by stretch blow molding are achieved, and the impact resistance and the like are enhanced by the improvement of the physical properties of the product.
[0032]
The cooling of the parison outer surface 2 by the method of the present invention is particularly effective for preventing the drawdown of a parison 1 having a long and sharp drawdown such as a large bottle (0.5 liter or more). is there.
[0033]
Further, the thickness of the puff blow parison 1 in the puff blow for welding the lower part of the parison 1 is thinner than the thickness of the ordinary straight parison 1, so when cooled by the method of the present invention, the inner surface 3 of the parison is also cooled and the mold is cooled. There is a concern that welding of the cut-away portion due to tightening will not be achieved properly.
[0034]
However, since the puff blow parison 1 is extruded with its lower end welded and closed, the inner surface 3 is harder to cool than a normal straight parison 1 and the temperature of the inner surface 3 is better maintained. Welding of the cut portions such as the bottom, neck, and handle of the product cut by the mold can be achieved well.
[0035]
Also in this case, the parison 1 can be brought close to the PET stretching temperature by cooling the parison outer surface 2 according to the method of the present invention, and the stretching effect improves the impact strength and the like, and the product molded by the conventional extrusion blow method. The physical properties are improved as compared with. That is, since the puff parison 1 is forcibly cooled near the exit of the die 5, it is not affected by the puff shape in which the puff parison 1 expands.
[0036]
【The invention's effect】
The present invention has the above-described configuration, and has the following effects.
The outer surface of the parison, which is being extruded from the extruder, is forcibly cooled to increase the viscosity of the parison outer surface side according to this degree of cooling, so that the drawdown of the extruded parison is prevented beforehand and reliably. Accordingly, the parison can be extruded with the thickness distribution as set.
[0037]
Since the forced cooling of the parison is performed on the outer surface of the parison, the temperature of the inner surface portion of the parison can be maintained at the melting temperature when the extrusion of the parison is completed, so that the stretching effect can be exhibited on average. It is possible to obtain a reliable and strong welding of the cut-off portion by the parison mold cooled to the temperature.
[0038]
The parison is extruded with the thickness distribution as set and is cooled to a temperature at which the stretching effect can be exhibited, so that it is possible to obtain oriented crystallization suitably by undergoing the stretch blow molding process. Thus, a stretch blow-molded article having excellent physical properties such as impact resistance and content physical properties can be obtained.
[0039]
In a state where the parison is cooled to a temperature at which the stretching effect can be exhibited on average, the inner surface portion of the parison can be locally set to the melting temperature. It is possible to achieve reliable and strong welding of the cut-away portion, and thus it is possible to form a biaxially stretched blow-molded article integrally formed with the handle.
[Brief description of the drawings]
FIG. 1 is a front view showing an apparatus for carrying out the method of the present invention.
FIG. 2 is an enlarged vertical sectional front view of a main part of FIG.
FIG. 3 is an enlarged sectional view of a main part of FIG. 2;
FIG. 4 is a graph showing an air flow rate (cooling strength) of forced cooling according to the method of the present invention, and an explanatory diagram showing a parison.
FIG. 5 is a front sectional view showing a state of an extruded parison when forced cooling is not performed.
FIG. 6 is a graph and an explanatory diagram showing a temperature difference between an inner surface and an outer surface of a parison subjected to forced cooling according to the method of the present invention and a parison not subjected to forced cooling.
FIG. 7 is a graph showing the relationship between time and temperature after extrusion of the inner surface and outer surface of a parison subjected to forced cooling according to the method of the present invention.
[Explanation of symbols]
1; parison 2; outer surface 3; inner surface 4; extruder 5; die 6; cooling device 7;

Claims (2)

押出し機(4)から押し出されつつある、溶融状態にある飽和ポリエステル樹脂材のパリソン(1)の外表面(2)を冷却して、該パリソン(1)のドローダウンを防止すると共に、前記パリソン(1)を延伸ブロー成形に適した温度(延伸温度)に近づけた後、延伸ブロー成形するに際して、前記押出し機 (4) から押し出されるパリソン (1) が一定長さに達し、その自重によってドローダウンが発生し始める前に冷却を開始し、前記パリソン (1) が所定長さまで押し出された時点で冷却を停止すると共に、冷却開始直後に冷却強さを最低とし、その後、前記パリソン (1) の押し出しが進むに従って冷却強さを増強させるエクストルージョンブロー成形方法。Cooling the outer surface (2) of the parison (1) of the saturated polyester resin material in the molten state being extruded from the extruder (4), preventing drawdown of the parison (1), After bringing (1) close to the temperature suitable for stretch blow molding (stretching temperature), when performing stretch blow molding , the parison (1) extruded from the extruder (4) reaches a certain length and draws by its own weight. Cooling is started before down begins to occur, and when the parison (1) is extruded to a predetermined length, cooling is stopped, and the cooling intensity is minimized immediately after the start of cooling, and thereafter, the parison (1) Extrusion blow molding method in which the cooling strength is increased as the extrusion proceeds . 冷却をエアー (7) の吹付けによって達成する請求項1に記載のエクストルージョンブロー成形方法。 The extrusion blow molding method according to claim 1, wherein the cooling is achieved by blowing air (7) .
JP13130595A 1995-05-30 1995-05-30 Extrusion blow molding method Expired - Fee Related JP3549171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13130595A JP3549171B2 (en) 1995-05-30 1995-05-30 Extrusion blow molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13130595A JP3549171B2 (en) 1995-05-30 1995-05-30 Extrusion blow molding method

Publications (2)

Publication Number Publication Date
JPH08323851A JPH08323851A (en) 1996-12-10
JP3549171B2 true JP3549171B2 (en) 2004-08-04

Family

ID=15054859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13130595A Expired - Fee Related JP3549171B2 (en) 1995-05-30 1995-05-30 Extrusion blow molding method

Country Status (1)

Country Link
JP (1) JP3549171B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4656569B2 (en) * 2005-07-15 2011-03-23 大成化工株式会社 Manufacturing method of hollow molded product
CN106536155B (en) * 2014-07-11 2019-03-01 日精Asb机械株式会社 Blow molding method and blow molding apparatus

Also Published As

Publication number Publication date
JPH08323851A (en) 1996-12-10

Similar Documents

Publication Publication Date Title
EP0346518B1 (en) Process for producing stretch blow-molded bottle with a handle
US8691140B2 (en) Process for injection molding of thin-walled preform
US8021596B2 (en) Method for injection stretch blow molding
US4065535A (en) Thread forming and neck finishing process
JPH01166930A (en) Manufacture of blow molded vessel from thermoplastic polyester
RU2446945C2 (en) Container with walls made of foam material having silver appearance
CA2174421A1 (en) Method of forming molecularly oriented containers
US3801690A (en) Closing mold halves on stretched portion of individual parison preform at orientation temperature
US7540737B2 (en) Apparatus for producing bottle-type synthetic resin containers
JP5929082B2 (en) Foamed stretched plastic container and manufacturing method thereof
JP3549171B2 (en) Extrusion blow molding method
US6890621B2 (en) Stretch blow receptacle and molding method of the same
US5951938A (en) Process for injection stretch blow molding
EP0241040A1 (en) Manufacture of plastic bottles
JPH0363496B2 (en)
JP3924069B2 (en) Stretch blow molding method and stretch blow molded article
JP2948865B2 (en) Injection stretch blow molding method
JPS6061228A (en) Molding method of plastic bottle
JP5929085B2 (en) Foam stretch container and method for producing the same
JP2004291621A (en) Method for producing thermoplastic resin container
WO2000023252A1 (en) Injection stretch blow molding method
JP2725946B2 (en) Blow molding method and equipment
JPH06226830A (en) Releasing method for preform
JPH06336251A (en) Bottle with polyester handle
MXPA96004385A (en) Process for injection of stretching molding by sopl

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040419

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080430

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees