【0001】
【発明の属する技術分野】
本発明は、吸収体に関し、より詳しくは、使い捨ておむつ、生理用ナプキン、母乳パッド、失禁者用パッド、痔用パッド、外科用パッド等に使用される体液吸収体として、さらには結露吸水シート、農園芸での保水材、土木分野での止水材、医療分野でのメディカルシート、食品分野での鮮度保持材、雑貨分野での吸水材などの幅広い分野で使用可能な吸収体に関する。
【0002】
【従来の技術】
従来の使い捨ておむつなどの体液吸収体は、通常、吸水後の保持力が大きく、表面への逆戻りを阻止するために、吸収体内に吸水性樹脂を混入させている。
吸水性樹脂は通常、粉末であるため、散粒機により綿状パルプ(粉砕パルプ)や不織布の上に散布し、それらを複合化(例えば、吸水性樹脂を吸水紙や親水性の不織布の間に挟持させたり、綿状パルプ(粉砕パルプ)層間に挟持させたり、あるいは綿状パルプと混合したりなど)して使用されている(例えば特公平7−90083号公報、同7−28891号公報)。
【0003】
しかしながら、これらの吸収体は、製造時や輸送時などの衝撃や振動などの外力によって内部に含有された粉末状の吸水性樹脂が容易に移動して偏在や脱落を生じやすく、吸水性樹脂を利用したメリットを充分に発揮できないという問題がある。
また、紙おむつなどの製造ラインでは、生産効率アップのためライン速度の上昇が求められており、吸水性樹脂についても高速に供給する工夫が必要になる。従来の粒状の吸水性樹脂の場合、散粒設備を用いることで必要量を適切部位に供給していたが、ライン速度の上昇に伴い、上述の粒子のこぼれや偏在の問題解決は更に重要になってきた。
【0004】
さらに、活動期以降の子供用使い捨ておむつでは、おむつ内の吸水性樹脂量が多いうえ、子どもの活動量も多いことから、使用中の粒状吸水性樹脂のこぼれや偏在が大きな問題となっている。
これらの問題を克服するために、
▲1▼接着剤等で付着性を高める、
▲2▼吸水性樹脂を脱落しにくい形状とする、
▲3▼吸水性樹脂の必要量を一体化したもの(シート状、塊状)とする、
等の方策が考えられるが、▲1▼は吸収性能への影響が大きく採用は困難であり、▲3▼の場合も、フイルム状、塊状とすると体積あたりの比表面積が小さくなり吸収速度の低下により実用的ではない。しかし▲2▼の方法、特に繊維形状とすると、脱落防止にも有効な上、比表面積も大きくとれるため、非常に有効であることが予想できる。また、繊維をある程度まとめて不織布状とすると▲3▼の効果も得られるという利点がある。
【0005】
【発明が解決しようとする課題】
吸水性樹脂を不織布状に二次加工することはいくつか既に知られている(特開昭55−132754、特開昭57−21549、特開平8−120550号公報等)。しかし、従来の不織布状吸水性樹脂は生理食塩水に対する吸収性能が最大でも25倍程度のものしか報告されておらず、粒状の吸水性樹脂に比較して著しく吸収性能が劣っている。そのため、粒状の吸水性樹脂を使用した従来の吸収体と同程度の吸水性能を得るためには多量の樹脂を使用しなければならなかった。
【0006】
また、従来の不織布状吸水性樹脂では、1m2に含まれる吸水性繊維は5〜250g程度であったが、これは吸水性繊維を多量に使用した場合、使用時のゴワつきや異物感が問題となるためであり、またコストなどの面でも問題が生じるためである。しかし、前述のように、従来知られている不織布状吸水性繊維の生理食塩水に対する吸収性能は25倍程度までであり、この吸水性能と前述の坪量とから求められる1cm2あたりで吸収可能な生理食塩水はせいぜい0.63gであると考えられ、大量の吸水性能が要求される用途に適しているとはいえない。
【0007】
吸収体の主要な用途の一つである使い捨ておむつでは、生理食塩水に対して500〜750g程度の吸収性能を有することが求められており、従来の不織布状吸水性樹脂を用いて同じだけの吸収性能を有する吸収体を得るには、必要な吸水性樹脂量(従って、吸水面積)が多くなり、そのため吸収体が非常に大きなものになり、おむつ等の吸収体としては実用上問題となる。省スペースで大きな吸収能力が必要とされるのは、おむつに限らず生理ナプキンなどのその他の吸収体でも同様である。
【0008】
ちなみに、上記各公開公報には不織布状吸水性樹脂の製法については言及されているが、紙おむつに代表される応用品への具体的な使用方法についての開示はなされていない。
また、近年、使い捨ておむつには、使用する吸水性樹脂量を更に増やして吸収性能をアップさせることが求められており、従来の不織布状吸水性樹脂では十分な吸収量をおむつに付与することは困難であった。
【0009】
本発明の目的は、製造時あるいは使用時に吸水性樹脂の移動による脱落や偏在がなく、かつ十分な吸収能力を有するので小型化が可能であり、しかも柔軟性にも優れた吸収体を提供することにある。
【0010】
【課題を解決するための手段】
上記課題を解決するための本発明の吸収体は、吸水性繊維を含有するものであって、前記吸水性繊維の生理食塩水に対する吸収性能が繊維重量の30倍以上120倍以下であり、かつ吸水性繊維は5〜50重量%の柔軟化成分を含有していることを特徴とする。
【0011】
また、本発明の他の吸収体は、吸水性繊維を含有するものであって、1cm2 当たりに含まれる吸水性繊維により吸収可能な生理食塩水量が1〜30gであり、かつ吸水性繊維は5〜50重量%の柔軟化成分を含有していることを特徴とする。
すなわち、本発明では、吸水性繊維を使用することにより、従来の粒状吸水性樹脂が有していた偏在や脱落の問題点が解消され、取扱い性に優れたものになり、しかも十分な吸収性能を有しているので、吸収体を小型化することができる。さらに柔軟性にも富むため、いかなる形状にもフィットしやすく、人体と接触するおむつなどの用途に使用する場合には、ゴワつかず使用感に優れるという特質がある。
【0012】
また、本発明における吸水性繊維は、繊維1本あたりに多数の不規則な屈曲部を有し、単繊維に分離された状態でも非直線的形状を保持している。これにより、従来の吸水性繊維に比べて繊維同士の絡み合いが多くなり、偏在や脱落の防止効果がよりすぐれたものになる。
前記吸水性繊維は、生理食塩水に対する吸収性能が繊維重量の30倍以上120倍以下であるのが好ましい。これにより、得られる吸収体に充分な吸収性能を確保することができる。
【0013】
【発明の実施の形態】
本発明における生理食塩水とは、一般的に用いられているもので、0.9%塩化ナトリウム水溶液を意味する。また、生理食塩水に対する吸収性能とは、生理食塩水吸収前の重量を1として、1時間吸収させた後の重量が吸収前の何倍であるかによって示す。
【0014】
本発明における吸水性繊維は、吸水性樹脂成分及び柔軟化成分を主要な構成要素とする。吸水性樹脂成分としては、従来公知の高吸水性樹脂成分なら天然高分子、合成高分子に限らず利用可能であるが、繊維への加工のしやすさ及び吸水性能から、合成高分子、好ましくは水溶性エチレン性不飽和単量体の架橋共重合体であるのが好ましい。
【0015】
水溶性エチレン性不飽和単量体としては、例えばアクリル酸、メタクリル酸、クロトン酸、(無水)マレイン酸、フマル酸、イタコン酸およびこれらの中和物から選ばれる1種以上が挙げられる。特に好ましいのは(メタ)アクリル酸と(メタ)アクリル酸のナトリウム塩、カリウム塩、アンモニウム塩から選ばれる1種または2種以上とからなる部分中和(メタ)アクリル酸の共重合体構造を含む架橋共重合体である。上記部分中和(メタ)アクリル酸の中和度は、通常カルボキシル基の20〜95モル%、好ましくは20〜75モル%であるのが適当である。
【0016】
また、本発明に用いる水溶性エチレン性不飽和単量体には、必要により上記例示のもの以外の他の水溶性エチレン性不飽和単量体を使用してもよい。他の水溶性エチレン性不飽和単量体としては、例えば2−(メタ)アクリロイルエタンスルホン酸、2−(メタ)アクリロイルプロパンスルホン酸、2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸、ビニルスルホン酸、スチレンスルホン酸等のアニオン性単量体やその塩;
(メタ)アクリルアミド、N−置換(メタ)アクリルアミド、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート等のノニオン性親水基含有単量体;
N,N−ジエチルアミノエチル(メタ)アクリレート、N,N−ジメチルアミノエチル(メタ)アクリレート、N,N−ジメチルアミノプロピル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリルアミド等のカチオン性単量体やその四級化物等があげられ、
これらの他の水溶性エチレン性不飽和単量体については、その使用量の合計が単量体全体の50重量%以下であることが好ましい。
【0017】
架橋共重合体とは、エチレン性不飽和単量体の重合体同士が架橋性成分により結びつき、網目構造を形成する重合体をいう。使用可能な架橋性成分としては、例えば吸水性樹脂の高分子鎖間を交叉反応によって結合し、水不溶性を付与することが出来るモノマーないしはオリゴマー化合物であれば特に限定されず、好ましくは
(A)重合性不飽和基を1分子中に2以上有する架橋性単量体成分、または
(B)反応性官能基を1分子中に2以上有する架橋性成分
があげられる。
【0018】
前記(A)の成分としては、例えばN,N’−メチレンビスアクリルアミド、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、グリセリンアクリレートメタクリレート、(メタ)アクリル酸多価金属塩、トリメチロールプロパントリ(メタ)アクリレート、トリアリルアミン、トリアリルシアヌレート、トリアリルホスフェート等があげられる。
【0019】
前記(B)の成分としては、例えばエチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、グリセリン等の多価アルコール類、(ポリ)エチレングリコールジグリシジルエーテル、グリセロールポリグリシジルエーテル等の多価グリシジル化合物、エチレンジアミン、ポリエチレンイミン等の多価アミン、その他多価オキサゾリン化合物、ハロエポキシ化合物、多価イソシアネート、多価金属塩等があげられるが、耐久性や吸水特性の点から、(A)成分を用いるのが好ましい。
【0020】
架橋性成分の使用量はモノマーに対して0.001〜10重量%、好ましくは0.01〜5重量%である。0.001重量%未満では架橋密度が低すぎて吸水時の吸水性樹脂が弱く、べたつきが激しかったりノリ状となる。また10重量%を超えると、架橋密度が高すぎ吸水能力が減少すると共に、非常に脆いゲル体となってしまう。
【0021】
前記柔軟化成分としては、例えば繊維を構成する樹脂成分にしなやかさを付与し、樹脂成分と十分によく混和し吸水性能を大幅に妨げないものであれば、いかなるものでも使用可能であるが、好ましくは水、水とあらゆる比率で混和する水酸基を有するアルコールなどがあげられる。具体的には、例えば水、グリセリン、エチレングリコール等の単独またはその2種以上の混合物が好適に使用される。
【0022】
前記柔軟化成分の含有量は、吸水性繊維の総量に対して5〜50重量%、好ましくは5〜30重量%である。柔軟化成分が5重量%未満では、繊維は非常に脆く折れやすくなり、必要なしなやかさが得られず、逆に50重量%を超えると、繊維にベタツキなどが生じやすく強度も弱くなるため、いずれも実用には適さない。
【0023】
本発明で用いる吸水性繊維は、例えば、水溶性エチレン性不飽和単量体を含む重合組成物をノズル等から曳糸状態で落下させ、落下過程で重合反応を開始させ架橋共重合体とする方法、アクリル繊維をアルカリ等で処理し表面部分を鹸化してアクリル酸のアルカリ金属塩重合体とする方法、カルボン酸基を有するモノマーとカルボン酸基と反応してエステル架橋結合を結合しうるモノマーとカルボン酸アルカリ金属塩基を有するモノマーとを共重合し熱により架橋する方法などによって製造することができる。特に、水溶性エチレン性不飽和単量体を含む重合組成物をノズル等から曳糸状態で落下させ、落下過程で重合反応を開始させ架橋共重合体とする方法が、重合物の吸水性能を上げやすく、かつ重合完結時に不規則な屈曲部を有した非直線的形状を取りやすいので、好ましい。
【0024】
とくに、曳糸落下重合法を用いると、得られる吸水性繊維の表面にその繊維方向に沿って縦皺が多くできやすいため、それだけ吸水性繊維の表面積が増大し、吸水性能の向上を図ることができる。このような皺は、曳糸落下状態において繊維の表面と内部とで重合反応速度が異なるために繊維に収縮が起きるためと推測される。
【0025】
重合反応は、熱や紫外線等とそれらに反応する従来公知の開始剤を用いて開始させればよいが、繊維状の吸水性樹脂を重合するためには、重合の立ち上がり速度が速くかつ制御が比較的容易なレドックス重合や紫外線重合を行うのが好ましい。また、中・低温熱重合に用いる熱重合開始剤を用いて熱重合を行うことも可能である。なかでも紫外線と紫外線開始剤を用いて行うのが、高速に開始反応を引き起こすことができ且つ制御が容易なため特に好ましい。
【0026】
その際、重合組成物の曳糸性が劣ると、繊維が得られにくいので、ある程度重合反応を進めた状態で曳糸させ繊維状にしても良いし、曳糸性のある物質をモノマーに添加しても良い。この場合使用可能な曳糸性物質としては、例えば非イオン性もしくは弱イオン性高分子化合物、具体的にはヒドロキシエチルセルロース、ポリアクリルアミド、部分アニオン化ポリアクリルアミド、ポリエチレンオキサイド、ポリアクリル酸エステル、ポリメタクリル酸エステル、部分カチオン化ポリメタクリル酸エステル、部分カチオン化ポリアクリル酸エステル、ヒドロキシプロピル化グァーガム、ラムザンガム等が挙げられる。
【0027】
一般には、強イオン性の曳糸性付与剤は、ポリアクリル酸塩系吸水性樹脂の製造においてアクリル酸の中和液成分との相互作用から十分に膨潤せず、イオン性が強くなるほど必要とする曳糸効果が現れにくくなるため好ましくない。また、ホウ砂や四ホウ酸ナトリウムによって高分子間に化学結合を生じさせることによって曳糸性を出すことも可能である。
【0028】
曳糸性付与剤はモノマー水溶液に対して少量、通常、モノマー100重量部に対し3重量部以下で増粘および曳糸効果(特に曳糸効果)を示すことができる。また、使用する増粘剤の分子量は大きい方が好ましく、分子量が小さくなると少量では曳糸効果を示すことができなくなる。
本発明における吸水性繊維は、繊維1本あたりに多数の不規則な屈曲部を有し、非直線的形状を保持している。ここで、不規則な屈曲部とは、繊維の1本1本が直線状ではなく、不規則な折れ曲がり状のカーブを有している状態をいい、単離した1本1本の繊維は2次元的或いは3次元的な広がりをもった状態で安定している。このような不規則な屈曲部は、捲縮加工により形成される規則的な曲線部と異なり、その曲がり方に規則性が無く、繊維の一本ごとに全く異なる曲線パターンを有している。
【0029】
繊維は一本一本が容易に分離される状態でも、2本以上が部分的に合着していて分離できない箇所がある状態でも良い。後者の場合は、繊維が合着部を中心として分枝状や放射状など、より複雑な形状を取りやすいため、偏在や脱落の防止の上では好ましい効果をもたらす。しかしこの場合、繊維の合着した部分でその全体としての径が5000μmを越えることは、後述のように好ましくない。
【0030】
また本発明で用いられる吸水性繊維は、部分的にこぶやくびれがあり、繊維径が局部的に異なっているものであってもよい。
前記した繊維の形状的特徴は繊維形成後、二次加工により付与されても良いが、重合と同時に繊維形成する場合には、重合反応の進行が完全に終了する前に、繊維に必要な形状を与え、そのまま重合を完結させる方法が、二次加工の手間もかからず、与えた形状の保持性にも優れるため好ましい。
【0031】
例えば、前記したように曳糸落下中に重合を開始させ、形成された繊維状の重合体をコンベアベルトなどの平面上に収集・展開する重合法において、外力を一切加えずに自然に繊維を落下する際に繊維に生じる「ゆらぎ」(あるいは不規則な振れ)を利用して、繊維に多数の不規則な屈曲部を形成することができ、非直線的形状が賦形される。前記ゆらぎは、例えば曳糸落下させる重合槽内の気体(空気、窒素等)を適度に乱れさせることによって発生させることができる。このような気体の乱れは、例えば、重合槽内の熱による上昇気流の発生などによって起きると考えられる。
【0032】
本発明における吸水性繊維は、繊維径の平均が10〜5000μmの範囲にあるのが好ましい。繊維径の平均がこの範囲より小さい場合、製造時に繊維の切断等によるトラブルが発生しやすくなる他、紡糸時の生産効率が悪化しやすい。また繊維径の平均が前記範囲より大きくなると、ごわついたものになり風合いが低下する他、繊維中心部までの吸水に時間がかかり、十分な性能が得られにくくなる。
【0033】
また、吸水性繊維の繊維長は、脱落防止などの繊維とする上で、繊維径の少なくとも10倍の長さであることが好ましく、20倍以上であることがより好ましい。繊維長の上限は特に限定されず、製造する吸収体の形態に合わせて適宜選択すればよい。すなわち、単繊維を重合時に積層して、不織布状吸水体とする場合にはカットの必要がないため繊維長は極端に長くなり、また短繊維を粒状品と同様に散粒機を用いて散布したのちプレス成形等で吸水体とする製造方法を用いるならば、散粒機にかかりやすいように繊維の平均長が500mm以下、好ましくは300mm以下であるのがよい。
【0034】
なお、ここでいう繊維長とは、繊維の両端を引っ張って、一直線上に展開したときの端から端までの長さをいう。
吸水性繊維を吸収体に成形するためには既知の適切な方法を用いればよい。すなわち、所定繊維長の吸水性繊維を適当な形状に整えた後、プレス等の方法で一体化する方法、繊維状に重合する際に積層して不織布状とする方法、いったん不織布状に成形された繊維を重ねる、折り畳むなどの方法が使用可能である。その際、吸水繊維は水等の柔軟化成分を5〜50重量%含有している必要がある。
【0035】
また、本発明の吸収体は、吸水性繊維の少なくとも片面に、形状保持のため吸収紙および/または液透過性シートを積層したり、初期吸収性能を上げるために綿状パルプ等の水不溶性の親水性繊維と複合化したものを成形しても良い。複合化には、例えば、▲1▼両方の繊維を均一に混合する、▲2▼吸水性繊維層を親水性繊維層間に介在させる、▲3▼吸水性繊維層上に親水性繊維層を積層させるなどの態様が含まれる。
【0036】
また、本発明では、形状保持のため液透過性シートと液不透過性シートの間に綿状パルプ等の水不溶性の親水性繊維と前述の吸水性繊維との複合体(前記▲1▼、▲2▼、▲3▼など)を挟持させた吸収体も、使い捨ておむつ、生理用ナプキン、失禁者用パッド等の用途に好適に使用することができる。この場合、水不溶性の親水性繊維および/または吸水性繊維には、必要に応じて疎水性繊維を混合することができる。
【0037】
図1および図2は、本発明の吸収体の一例を示す断面図である。図1は吸水性繊維1の層が前記したような水不溶性の親水性繊維2の層間に介在させて複合体5を形成し、その複合体5の表面に吸収紙、不織布等の透水性シート3が、裏面にポリエチレンフィルム等の不透水性シート4が積層された吸収体を示している。この場合、不透水性シート4に代えて、表面と同じ透水性シート3を積層してもよい。
【0038】
図2は、吸水性繊維1と水不溶性の親水性繊維2とを均一に混合して形成した複合体6の表面に透水性シート3が、裏面に不透水性シート4が積層された吸収体を示している。この場合も、不透水性シート4に代えて、表面と同じ透水性シート3を積層してもよい。
いずれの場合も、本発明の吸収体をおむつ等に使用するときには、本発明の吸収体は1cm2 当りに含まれる吸水性繊維により吸収可能な生理食塩水量が1〜30gとなるように成形するのが好ましい。吸水性繊維による吸収性能が前記範囲を下回る場合は、必要な吸収性能を確保するために非常に大きな吸収体が必要になり、おむつ等への吸収体として実用上問題となる。逆に、吸収性能が前記範囲を超えるような性能を付与するためには、吸収体中に含まれる吸水性繊維の量が非常に多くなるため、吸収体自体が非常に厚くなり、実用上問題となる上、コスト的にも不利となり、いずれも好ましくない。
【0039】
また、上記含有量を確保した場合の吸収体自体の厚みが厚すぎると実用上問題となるため、吸収体の厚みとしては2〜20mm程度であるのが好ましい。
前記液透過性シートとしては、例えばポリエステル、ポリプロピレン、レーヨン等の乾式もしくは湿式の不織布、織布、ネットなどがあげられる。
また、親水性繊維としては、例えばセルロース、パルプ、レーヨン、綿、アセテート、微細孔を有するアクリル繊維等などの長繊維や短繊維があげられ、特にパルプ、レーヨン、綿等を用いるのが好ましい。疎水性繊維としては、例えばポリエステル、ポリプロピレン、ポリエチレン、アクリル等の長繊維や短繊維があげられる。
【0040】
本発明の吸収体は、全体を透水性シートで包むか、あるいは少なくとも表面に透水性シートを配置し、裏面に不透水シートを配置したのち、それらを接着して使い捨ておむつ等に使用される。
【0041】
【実施例】
実施例1
73%が水酸化ナトリウムによって中和された部分中和アクリル酸の水溶液(モノマー濃度45重量%)100重量部にポリエチレングリコール(PEG200)ジアクリレート0.05重量部、ポリエチレンオキサイド0.2重量部、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン2重量部を溶解した。このモノマー水溶液を内径0.97mmのノズルから曳糸落下させながら、落下途中の側面より高圧水銀ランプ(80W/cm)にて紫外線を2秒間照射し重合反応させた。
【0042】
長繊維状に曳糸した重合物を落下地点にて積層してシート状とした後、110℃で2分間乾燥して、平均厚み約10mm、平均幅約200mm、1m2当たりの平均重量が513gであり、繊維径150μm、水分含量が16重量%の、柔軟な吸水性繊維積層吸収体を得た。この吸収体を構成する吸水性繊維の1本1本は、いずれも不規則な屈曲部を有しており、ところどころにこぶ状や、くびれ状の部位が認められた。
【0043】
このシートは重合直後に繊維を積層するだけでカットの工程を経ずに作られており、繊維長は事実上測定不能なほど長く、また成形体にいかなる振動を加えても繊維がほぐれて脱落することはなかった。
この吸収体の生理食塩水に対しての吸水能力を測定したところ41倍であり、1cm2 当たりの生理食塩水吸収性能は、2.1gであった。
実施例2
実施例1で得られた吸収体10gの両面をティッシュペーパーで包み、その上から更に片面をポリプロピレンスパンボンド不織布、他面をポリエチレンフィルムで挟持して長さ300mm、幅100mmの吸収体を得た。
【0044】
この吸収体の端部を指で挟み、上下に5回振り、再度水平にした後、不織布側から300gの生理食塩水を注いで吸水させた。10分後、この吸収体はほぼ均一な厚みを呈しており、内部の吸収体に大きな偏りが発生しなかったことが確認された。
実施例3
73%が水酸化ナトリウムによって中和された部分中和アクリル酸の水溶液(モノマー濃度45重量%)100重量部にポリエチレングリコール(PEG200)ジアクリレート0.05重量部、ポリエチレンオキサイド0.2重量部、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン2重量部を溶解した。このモノマー水溶液を内径0.97mmのノズルから曳糸落下させながら、落下途中の側面より高圧水銀ランプ(80W/cm)にて紫外線を2秒間照射し重合反応させた。
【0045】
長繊維状に曳糸した重合物を落下地点にて積層してシート状とした後、110℃で1分間乾燥して、平均厚み約2mm、平均幅約200mm、1m2当たりの平均重量が96gであり、繊維径140μm、水分含量が12重量%の、柔軟な吸水性繊維積層吸水体を得た。この吸水性繊維の1本1本はいずれも不規則な屈曲部を有しており、ところどころにこぶ状や、くびれ状の部位が認められた。
【0046】
この吸水体の生理食塩水に対しての吸水能力を測定したところ45倍であった。
次に、この繊維を切断ピッチ約10mmのシュレッダーにかけ吸水性短繊維を得た。得られた吸水性短繊維は不規則な屈曲部を有する繊維で、その30本をランダムに取り出しその長さの平均を求めたところ27.1mmであった。得られた吸水性短繊維の拡大写真(走査型電子顕微鏡写真(倍率:35倍)を図3に示す。
【0047】
この短繊維10gを、これと等重量のパルプと十分に均一になるよう混合したのち、得られた混合物を底部に100メッシュのふるいをはめた直径100mmの円筒の底部に平坦に敷き詰めた。その円筒に試験管用バイブレーターにより振動を加えながら円筒の反対側(底側)から5リットル/分の能力の吸引ポンプで1分間吸引した。その結果、パルプと吸水性短繊維との分離はほとんど認められなかった。また吸引により脱落する成分には特に偏りは見られなかった。
【0048】
さらに、同様にして得られた短繊維10gを、これと等重量のパルプとの混合物を、直径120mmの2枚の円形の吸水紙の間に挟んで約50Kg/cm2でプレスし、厚さ5mmの円形の吸収体を得た。この吸収体は内部に10gの吸水性短繊維を含有するため、1m2あたりの吸水性繊維量は885gであり、1cm2 当たりの生理食塩水吸収性能は、4.0gであった。
【0049】
この吸収体を左右交互に各々5回捻って樹脂の移動・偏在の度合いを観察した。その結果、シートの型くずれはは起こったが、樹脂の移動や偏在は特に認められなかった。
実施例4
実施例3で得られた吸水性繊維15gを2枚のパルプ綿(合計20g)の中間に均一に散布してシート状にした後、両面をテッシュペーパーで包み、その上から更に片面をポリプロピレンスパンボンド不織布、他面をポリエチレンフイルムで挟持して長さ300mm、幅100mmの吸収体を得た。
【0050】
この吸収体の端部を指で挟み上下に5回振り、再度水平状態にした後、不織布側から600gの生理水を注いで吸水させた。10分後この吸収体はほぼ均一の厚みを呈しており、内部の吸収体に大きな偏りが発生しなかったことが確認された。
比較例1
短繊維状吸水性樹脂の代わりに粒状吸水性樹脂(積水化成品工業(株)製の「セキスイアクアメイト200B」、中心粒径500〜600μ)13.5gを使用した以外は、実施例4と同様にして吸収体を作製し、これに生理水を吸収させた。その結果、吸収させた吸収体は一方に偏りのある厚みを呈していた。厚みが薄い方を手で触れると水のベトツキが感じられた。
【0051】
【発明の効果】
本発明の吸収体は、従来の粒状吸水性樹脂のような製造上や使用中での粒の脱落や偏在などの問題がなく、しかも十分な吸収性能を有しているので、吸収体を小型化することがで、さらに柔軟性にも富むため、いかなる形状にもフィットしやすいという特質がある。
【0052】
また、本発明において使用される吸水性繊維は、繊維1本あたりに多数の不規則な屈曲部を有し、単繊維に分離された状態でも非直線的形状を保持しているので、吸水性繊維同士または他の繊維との絡み合いが多くなり、偏在や脱落の防止効果がより優れたたものになる。
【図面の簡単な説明】
【図1】吸水性繊維と親水性繊維との複合体からなる本発明の吸収体の一例を示す断面図である。
【図2】吸水性繊維と親水性繊維との複合体からなる本発明の吸収体の他の例を示す断面図である。
【図3】実施例1で得られた吸水性繊維の形状を示す顕微鏡写真である。
【符号の説明】
1 吸水性繊維
2 親水性繊維
3 透水性シート
4 不透水性シート
5 複合体
6 複合体[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an absorbent body, more specifically, as a body fluid absorbent used for disposable diapers, sanitary napkins, breast milk pads, incontinent pads, hemorrhoid pads, surgical pads, etc. The present invention relates to absorbent materials that can be used in a wide range of fields, such as water retention materials for agricultural and horticultural use, water blocking materials in the civil engineering field, medical sheets in the medical field, freshness preserving materials in the food field, and water absorbing materials in the sundries field.
[0002]
[Prior art]
A conventional body fluid absorber such as a disposable diaper generally has a large holding force after absorbing water, and a water-absorbent resin is mixed in the absorber in order to prevent a return to the surface.
Since the water-absorbent resin is usually a powder, the water-absorbent resin is dispersed on a flocculent pulp (crushed pulp) or a non-woven fabric by a granulator to form a composite (for example, the water-absorbent resin is interposed between water-absorbing paper and hydrophilic non-woven fabric). (For example, Japanese Patent Publication Nos. 7-90083 and 7-28891). ).
[0003]
However, in these absorbers, the powdery water-absorbing resin contained therein easily moves due to external force such as shock or vibration during manufacturing or transportation, so that the water-absorbing resin is likely to be unevenly distributed or dropped. There is a problem that the merits used cannot be fully exhibited.
Further, in a production line for disposable diapers and the like, an increase in the line speed is required in order to increase production efficiency, and a device for supplying a water absorbent resin at a high speed is required. In the case of the conventional granular water-absorbent resin, the required amount was supplied to an appropriate part by using a granulation equipment, but with the increase of the line speed, the above-mentioned problem of spilling and uneven distribution of particles becomes more important. It has become.
[0004]
Furthermore, in the disposable diapers for children after the active period, the amount of water-absorbent resin in the diaper is large and the amount of activity of children is also large, so spilling and uneven distribution of the granular water-absorbent resin in use is a major problem. .
To overcome these problems,
(1) Improve adhesion with adhesives, etc.
(2) Make the water-absorbent resin hard to fall off.
(3) The required amount of the water-absorbent resin is integrated (sheet-like or lump-like).
Although measures such as (1) have a large effect on the absorption performance, it is difficult to adopt them. In the case of (3), if the film or lump is used, the specific surface area per volume becomes small and the absorption rate decreases. Less practical. However, the method of (2), especially the fiber shape, is effective for preventing falling off and also has a large specific surface area, so that it can be expected to be very effective. In addition, there is an advantage that the effect of (3) can be obtained when the fibers are gathered to some extent to form a nonwoven fabric.
[0005]
[Problems to be solved by the invention]
Some processes for secondary processing of a water-absorbent resin into a nonwoven fabric have been already known (JP-A-55-132754, JP-A-57-21549, JP-A-8-120550, etc.). However, it has been reported that a conventional nonwoven fabric-like water-absorbent resin has a maximum absorption performance of about 25 times in physiological saline, and is significantly inferior to a granular water-absorbency resin. Therefore, a large amount of resin had to be used in order to obtain the same water absorbing performance as a conventional absorbent using a granular water-absorbing resin.
[0006]
In addition, in the case of a conventional non-woven water-absorbent resin, 1 m 2 The amount of the water-absorbing fiber contained was about 5 to 250 g, but this is because when a large amount of the water-absorbing fiber was used, there was a problem of stickiness and foreign-body sensation during use, and also in terms of cost and the like. This is because a problem arises. However, as described above, the absorption performance of a conventionally known nonwoven fabric-like water-absorbing fiber with respect to physiological saline is up to about 25 times, and 1 cm obtained from the water-absorbing performance and the above-mentioned basis weight. 2 It is considered that the physiological saline that can be absorbed in the vicinity is 0.63 g at most, and it cannot be said that it is suitable for applications requiring a large amount of water absorption performance.
[0007]
In a disposable diaper, which is one of the main uses of the absorbent body, it is required to have an absorption performance of about 500 to 750 g with respect to a physiological saline solution. In order to obtain an absorbent having absorption performance, the required amount of the water-absorbing resin (accordingly, the water-absorbing area) increases, so that the absorbent becomes very large, which is a practical problem as an absorbent such as a diaper. . The need for large absorption capacity in a small space is not limited to diapers, but also applies to other absorbent materials such as sanitary napkins.
[0008]
Incidentally, each of the above publications mentions a method for producing a nonwoven fabric-like water-absorbent resin, but does not disclose a specific method of using the applied material represented by a disposable diaper.
Also, in recent years, disposable diapers have been required to further increase the amount of water-absorbing resin to be used to improve absorption performance. It was difficult.
[0009]
An object of the present invention is to provide an absorbent body which does not fall off or is unevenly distributed due to movement of a water-absorbent resin at the time of production or use, and which has a sufficient absorbing capacity, can be reduced in size, and has excellent flexibility. It is in.
[0010]
[Means for Solving the Problems]
The absorbent body of the present invention for solving the above-mentioned problems contains a water-absorbing fiber, and the absorbent performance of the water-absorbing fiber with respect to a physiological saline is 30 to 120 times the fiber weight, and The water-absorbent fibers are characterized by containing 5 to 50% by weight of a softening component.
[0011]
Further, another absorber of the present invention contains a water-absorbing fiber, and 1 cm 2 The amount of physiological saline that can be absorbed by the water-absorbing fiber contained per unit is 1 to 30 g, and the water-absorbing fiber contains 5 to 50% by weight of a softening component.
That is, in the present invention, by using the water-absorbing fiber, the problem of uneven distribution and falling off which the conventional granular water-absorbing resin had is solved, the handleability is improved, and the sufficient absorption performance is obtained. , The size of the absorber can be reduced. Further, since it is rich in flexibility, it easily fits any shape, and when used in applications such as diapers that come into contact with the human body, there is a characteristic that it is not stiff and has excellent usability.
[0012]
Further, the water-absorbing fiber of the present invention has a large number of irregularly bent portions per fiber, and retains a non-linear shape even when separated into single fibers. Thereby, the entanglement between the fibers is increased as compared with the conventional water-absorbing fibers, and the effect of preventing uneven distribution and falling off is further improved.
It is preferable that the water-absorbent fibers have an absorption performance for physiological saline of 30 to 120 times the fiber weight. Thereby, sufficient absorption performance can be ensured for the obtained absorber.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
The physiological saline in the present invention is generally used and means a 0.9% sodium chloride aqueous solution. Further, the absorption performance with respect to physiological saline is indicated by how many times the weight after absorption for one hour as compared with the weight before absorption, where the weight before absorption of physiological saline is 1.
[0014]
The water-absorbing fiber in the present invention has a water-absorbing resin component and a softening component as main components. As the water-absorbing resin component, conventionally known high water-absorbing resin components can be used without limitation to natural polymers and synthetic polymers, but from the viewpoint of ease of processing into fibers and water absorbing performance, synthetic polymers are preferred. Is preferably a cross-linked copolymer of a water-soluble ethylenically unsaturated monomer.
[0015]
Examples of the water-soluble ethylenically unsaturated monomer include one or more selected from acrylic acid, methacrylic acid, crotonic acid, maleic acid (anhydride), fumaric acid, itaconic acid, and neutralized products thereof. Particularly preferred is a partially neutralized (meth) acrylic acid copolymer structure comprising (meth) acrylic acid and one or more selected from sodium, potassium and ammonium salts of (meth) acrylic acid. And a cross-linked copolymer. The degree of neutralization of the partially neutralized (meth) acrylic acid is usually 20 to 95 mol%, preferably 20 to 75 mol% of carboxyl groups.
[0016]
If necessary, other water-soluble ethylenically unsaturated monomers other than those exemplified above may be used as the water-soluble ethylenically unsaturated monomer used in the present invention. Other water-soluble ethylenically unsaturated monomers include, for example, 2- (meth) acryloylethanesulfonic acid, 2- (meth) acryloylpropanesulfonic acid, 2- (meth) acrylamide-2-methylpropanesulfonic acid, vinyl Anionic monomers such as sulfonic acid and styrene sulfonic acid and salts thereof;
Nonionic hydrophilicity such as (meth) acrylamide, N-substituted (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, polyethylene glycol (meth) acrylate, etc. Group-containing monomers;
Cationic monomers such as N, N-diethylaminoethyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylate, dimethylaminopropyl (meth) acrylamide; Such as quaternary compounds,
It is preferable that the total amount of these other water-soluble ethylenically unsaturated monomers is 50% by weight or less based on the whole monomers.
[0017]
The crosslinked copolymer refers to a polymer in which polymers of ethylenically unsaturated monomers are linked by a crosslinkable component to form a network structure. The crosslinkable component that can be used is not particularly limited as long as it is a monomer or oligomer compound capable of imparting water insolubility by, for example, bonding between polymer chains of a water-absorbent resin and providing water insolubility.
(A) a crosslinkable monomer component having two or more polymerizable unsaturated groups in one molecule, or
(B) Crosslinkable component having two or more reactive functional groups in one molecule
Is raised.
[0018]
Examples of the component (A) include N, N'-methylenebisacrylamide, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, glycerin tri (meth) acrylate, and glycerin acrylate. Examples include methacrylate, polyvalent metal salt of (meth) acrylic acid, trimethylolpropane tri (meth) acrylate, triallylamine, triallyl cyanurate, triallyl phosphate and the like.
[0019]
Examples of the component (B) include polyhydric alcohols such as ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, and glycerin, (poly) ethylene glycol diglycidyl ether, and glycerol. Polyglycidyl compounds such as polyglycidyl ether; polyamines such as ethylenediamine and polyethyleneimine; other polyoxazoline compounds; haloepoxy compounds; polyvalent isocyanates; and polyvalent metal salts. Therefore, it is preferable to use the component (A).
[0020]
The amount of the crosslinkable component to be used is 0.001 to 10% by weight, preferably 0.01 to 5% by weight, based on the monomer. If it is less than 0.001% by weight, the crosslinking density is too low, and the water-absorbing resin at the time of absorbing water is weak. On the other hand, if it exceeds 10% by weight, the crosslink density is too high, the water absorption capacity is reduced, and the gel becomes very brittle.
[0021]
As the softening component, for example, any resin can be used as long as it imparts flexibility to the resin component constituting the fiber and is sufficiently mixed with the resin component and does not significantly impede the water absorption performance. Preferable examples include water and alcohols having a hydroxyl group which are miscible with water in any ratio. Specifically, for example, water, glycerin, ethylene glycol and the like alone or a mixture of two or more thereof are suitably used.
[0022]
The content of the softening component is 5 to 50% by weight, preferably 5 to 30% by weight, based on the total amount of the water-absorbing fibers. If the softening component is less than 5% by weight, the fiber is very brittle and easily breaks, and unnecessary flexibility cannot be obtained. Conversely, if it exceeds 50% by weight, the fiber tends to be sticky and the strength is weakened. Neither is suitable for practical use.
[0023]
The water-absorbing fiber used in the present invention is, for example, a polymer composition containing a water-soluble ethylenically unsaturated monomer is dropped in a spinning state from a nozzle or the like, and a polymerization reaction is started in a dropping process to form a crosslinked copolymer. A method, a method in which an acrylic fiber is treated with an alkali or the like to saponify a surface portion to obtain an alkali metal salt polymer of acrylic acid, a monomer having a carboxylic acid group and a monomer capable of reacting with a carboxylic acid group to form an ester crosslink bond And a monomer having an alkali metal carboxylate and copolymerized by heat and crosslinked by heat. In particular, a method in which a polymer composition containing a water-soluble ethylenically unsaturated monomer is dropped from a nozzle or the like in a spinning state, and a polymerization reaction is started in the dropping process to form a crosslinked copolymer, which increases the water absorption performance of the polymer. It is preferable because it is easy to raise and it is easy to take a non-linear shape having an irregular bent portion when the polymerization is completed.
[0024]
In particular, when the spinning drop polymerization method is used, the surface of the obtained water-absorbent fiber tends to have many vertical wrinkles along the fiber direction, so that the surface area of the water-absorbent fiber increases and the water absorption performance is improved. Can be. Such wrinkles are presumed to be due to the fact that the fibers shrink due to the difference in the polymerization reaction speed between the surface and the inside of the fiber in the state where the thread is dropped.
[0025]
The polymerization reaction may be started using a conventionally known initiator that reacts with heat, ultraviolet light, or the like.However, in order to polymerize a fibrous water-absorbing resin, the polymerization rising speed is fast and control is performed. It is preferable to perform relatively easy redox polymerization or ultraviolet polymerization. It is also possible to carry out thermal polymerization using a thermal polymerization initiator used for medium / low temperature thermal polymerization. Above all, it is particularly preferable to use an ultraviolet ray and an ultraviolet ray initiator because the initiation reaction can be caused at a high speed and the control is easy.
[0026]
At this time, if the spinnability of the polymer composition is poor, fibers are difficult to obtain, so that it may be spinned into a fibrous state with the polymerization reaction advanced to some extent, or a spinnable substance may be added to the monomer. You may. In this case, the spinnable substance that can be used is, for example, a nonionic or weakly ionic polymer compound, specifically, hydroxyethyl cellulose, polyacrylamide, partially anionized polyacrylamide, polyethylene oxide, polyacrylate, polymethacryl. Acid esters, partially cationized polymethacrylates, partially cationized polyacrylates, hydroxypropylated guar gum, ramzan gum and the like.
[0027]
In general, a strongly ionic spinnability imparting agent does not sufficiently swell due to interaction with a neutralizing solution component of acrylic acid in the production of a polyacrylate-based water-absorbing resin, and is necessary as the ionicity increases. This is not preferable because the spinning effect is difficult to appear. It is also possible to obtain spinnability by causing a chemical bond between the polymers using borax or sodium tetraborate.
[0028]
The spinnability-imparting agent can exhibit a thickening and spinning effect (particularly a spinning effect) in a small amount relative to the aqueous monomer solution, usually 3 parts by weight or less based on 100 parts by weight of the monomer. Also, the molecular weight of the thickener used is preferably large, and if the molecular weight is small, the spinning effect cannot be exhibited with a small amount.
The water-absorbing fiber of the present invention has a large number of irregularly bent portions per fiber and retains a non-linear shape. Here, the irregularly bent portion refers to a state in which each fiber is not linear but has an irregular bent curve, and each isolated fiber is 2 fibers. It is stable with a three-dimensional or three-dimensional spread. Such an irregular bending portion has no regularity in the way of bending unlike a regular curved portion formed by crimping, and has a completely different curve pattern for each fiber.
[0029]
The fibers may be in a state where they are easily separated one by one or in a state where two or more fibers are partially coalesced and cannot be separated. In the latter case, since the fiber can easily take a more complicated shape such as a branch shape or a radial shape around the joint portion, a favorable effect is obtained in preventing uneven distribution and falling off. However, in this case, it is not preferable that the overall diameter of the fiber-bonded portion exceeds 5000 μm as described later.
[0030]
Further, the water-absorbing fiber used in the present invention may be partially lumped or constricted, and may have a locally different fiber diameter.
The above-mentioned shape characteristics of the fiber may be imparted by secondary processing after the formation of the fiber.However, when the fiber is formed simultaneously with the polymerization, the shape required for the fiber is required before the progress of the polymerization reaction is completely completed. Is preferable since the polymerization is completed as it is without the need for secondary processing and the retention of the given shape is excellent.
[0031]
For example, as described above, in the polymerization method in which polymerization is started during falling of the thread and the formed fibrous polymer is collected and developed on a flat surface such as a conveyor belt, fibers are naturally spontaneously applied without any external force. By utilizing "fluctuation" (or irregular run-out) generated in the fiber when it falls, a large number of irregular bends can be formed in the fiber, and a non-linear shape is formed. The fluctuation can be generated, for example, by appropriately disturbing a gas (air, nitrogen, or the like) in the polymerization tank in which the string is dropped. It is considered that such gas turbulence is caused by, for example, generation of an updraft due to heat in the polymerization tank.
[0032]
The water-absorbent fibers in the present invention preferably have an average fiber diameter in the range of 10 to 5000 μm. When the average of the fiber diameters is smaller than this range, troubles such as cutting of the fibers are likely to occur at the time of production, and the production efficiency at the time of spinning tends to deteriorate. On the other hand, if the average fiber diameter is larger than the above range, the fiber becomes stiff and the texture is lowered, and it takes time to absorb water up to the center of the fiber, which makes it difficult to obtain sufficient performance.
[0033]
Further, the fiber length of the water-absorbing fiber is preferably at least 10 times the fiber diameter, and more preferably 20 times or more, in order to form a fiber for preventing falling off. The upper limit of the fiber length is not particularly limited, and may be appropriately selected according to the form of the absorber to be manufactured. In other words, when single fibers are laminated at the time of polymerization to form a non-woven fabric-like water-absorbent body, there is no need for cutting, so the fiber length becomes extremely long, and short fibers are sprayed using a granulator as in the case of granular products. After that, if a method of producing a water-absorbent body by press molding or the like is used, the average length of the fiber is preferably 500 mm or less, preferably 300 mm or less so that the fiber can be easily applied to a granulator.
[0034]
Here, the fiber length refers to a length from one end to the other end when the both ends of the fiber are pulled and developed in a straight line.
A known suitable method may be used to form the water-absorbing fiber into the absorbent. That is, after adjusting the water-absorbing fibers of a predetermined fiber length into an appropriate shape, a method of integrating them by a method such as pressing, a method of laminating them into a nonwoven fabric when polymerizing into a fibrous shape, and once forming into a nonwoven fabric shape For example, a method of stacking or folding the fibers can be used. At that time, the water-absorbing fiber must contain a softening component such as water in an amount of 5 to 50% by weight.
[0035]
In addition, the absorbent of the present invention can be formed by laminating absorbent paper and / or a liquid-permeable sheet on at least one surface of the water-absorbent fiber to maintain the shape, or by using a water-insoluble material such as floc pulp to improve the initial absorption performance. A composite with a hydrophilic fiber may be molded. For example, (1) uniformly mix both fibers, (2) interpose a water-absorbing fiber layer between hydrophilic fiber layers, and (3) laminate a hydrophilic fiber layer on the water-absorbing fiber layer. And the like.
[0036]
Further, in the present invention, a composite of a water-insoluble hydrophilic fiber such as cotton-like pulp and the above-described water-absorbing fiber between the liquid-permeable sheet and the liquid-impermeable sheet for shape retention (the above (1), (2), (3), etc.) can also be suitably used for applications such as disposable diapers, sanitary napkins and incontinent pads. In this case, hydrophobic fibers can be mixed with the water-insoluble hydrophilic fibers and / or water-absorbing fibers as needed.
[0037]
1 and 2 are cross-sectional views showing one example of the absorber of the present invention. FIG. 1 shows a structure in which a layer of a water-absorbing fiber 1 is interposed between layers of a water-insoluble hydrophilic fiber 2 as described above to form a composite 5, and a water-permeable sheet such as absorbent paper or nonwoven fabric is formed on the surface of the composite 5. Reference numeral 3 denotes an absorber having a water-impermeable sheet 4 such as a polyethylene film laminated on the back surface. In this case, instead of the water-impermeable sheet 4, the same water-permeable sheet 3 as the surface may be laminated.
[0038]
FIG. 2 shows an absorbent body in which a water-permeable sheet 3 is laminated on a surface of a composite 6 formed by uniformly mixing a water-absorbing fiber 1 and a water-insoluble hydrophilic fiber 2, and a water-impermeable sheet 4 is laminated on a back surface. Is shown. Also in this case, instead of the impermeable sheet 4, the same water-permeable sheet 3 as the surface may be laminated.
In any case, when the absorbent of the present invention is used for a diaper or the like, the absorbent of the present invention has a size of 1 cm. 2 It is preferable to mold the water so that the amount of physiological saline that can be absorbed by the water-absorbing fiber contained per unit is 1 to 30 g. If the absorption performance of the water-absorbing fiber is lower than the above range, a very large absorber is required to secure the required absorption performance, which poses a practical problem as an absorber for diapers and the like. Conversely, in order to provide a performance such that the absorption performance exceeds the above range, the amount of the water-absorbing fibers contained in the absorber becomes very large, so that the absorber itself becomes very thick, which is a practical problem. In addition, it is disadvantageous in terms of cost, and both are not preferable.
[0039]
In addition, if the above content is ensured, if the thickness of the absorber itself is too large, there is a practical problem. Therefore, the thickness of the absorber is preferably about 2 to 20 mm.
Examples of the liquid-permeable sheet include dry or wet nonwoven fabrics such as polyester, polypropylene, and rayon, woven fabrics, and nets.
Examples of the hydrophilic fibers include long fibers and short fibers such as cellulose, pulp, rayon, cotton, acetate, and acrylic fibers having fine pores. It is particularly preferable to use pulp, rayon, cotton, and the like. Examples of the hydrophobic fiber include long fibers and short fibers such as polyester, polypropylene, polyethylene, and acrylic.
[0040]
The absorbent of the present invention is used for a disposable diaper or the like by wrapping the entire body with a water-permeable sheet, or at least disposing a water-permeable sheet on the surface and disposing a water-impermeable sheet on the back, and then bonding them.
[0041]
【Example】
Example 1
To 100 parts by weight of an aqueous solution of partially neutralized acrylic acid (monomer concentration: 45% by weight) in which 73% was neutralized by sodium hydroxide, 0.05 parts by weight of polyethylene glycol (PEG200) diacrylate, 0.2 parts by weight of polyethylene oxide, 2 parts by weight of 2-hydroxy-2-methyl-1-phenylpropan-1-one were dissolved. While this aqueous monomer solution was dropped from a nozzle having an inner diameter of 0.97 mm by spinning, ultraviolet rays were irradiated from a side surface during the dropping with a high-pressure mercury lamp (80 W / cm) for 2 seconds to cause a polymerization reaction.
[0042]
After laminating the polymer drawn in a long fiber form at a drop point to form a sheet, the polymer is dried at 110 ° C. for 2 minutes, and has an average thickness of about 10 mm and an average width of about 200 mm, 1 m 2 An average weight per unit was 513 g, and a flexible water-absorbent fiber laminated absorbent having a fiber diameter of 150 μm and a water content of 16% by weight was obtained. Each of the water-absorbing fibers constituting the absorbent body had an irregular bent portion, and a bump-like or constricted portion was observed in some places.
[0043]
This sheet is made by simply laminating the fibers immediately after polymerization and without the cutting process.The fiber length is so long that it is virtually unmeasurable, and the fibers loosen and fall off even if any vibration is applied to the molded body. I never did.
The water absorption capacity of this absorber with respect to physiological saline was measured to be 41 times, and 1 cm 2 The physiological saline absorption performance per unit was 2.1 g.
Example 2
10 g of the absorber obtained in Example 1 was wrapped on both sides with tissue paper, and one side was further sandwiched with a polypropylene spunbond nonwoven fabric and the other side was sandwiched with a polyethylene film to obtain an absorber having a length of 300 mm and a width of 100 mm. .
[0044]
The end of this absorber was sandwiched between fingers, shaken up and down five times, and leveled again. Then, 300 g of physiological saline was poured from the nonwoven fabric side to absorb water. After 10 minutes, the absorber had a substantially uniform thickness, and it was confirmed that the inner absorber did not have a large deviation.
Example 3
To 100 parts by weight of an aqueous solution of partially neutralized acrylic acid (monomer concentration: 45% by weight) in which 73% was neutralized by sodium hydroxide, 0.05 parts by weight of polyethylene glycol (PEG200) diacrylate, 0.2 parts by weight of polyethylene oxide, 2 parts by weight of 2-hydroxy-2-methyl-1-phenylpropan-1-one were dissolved. While this aqueous monomer solution was dropped from a nozzle having an inner diameter of 0.97 mm by spinning, ultraviolet rays were irradiated from a side surface during the dropping with a high-pressure mercury lamp (80 W / cm) for 2 seconds to cause a polymerization reaction.
[0045]
After laminating the polymer drawn in a long fiber form at a drop point to form a sheet, it is dried at 110 ° C. for 1 minute, and has an average thickness of about 2 mm and an average width of about 200 mm, 1 m 2 A flexible water-absorbent fiber laminated water-absorbent material having an average weight per unit of 96 g, a fiber diameter of 140 μm, and a water content of 12% by weight was obtained. Each of the water-absorbing fibers had an irregular bend, and a bump-like or constricted portion was observed in some places.
[0046]
The water absorption capacity of the water absorbent for physiological saline was measured to be 45 times.
Next, the fibers were shredded at a cutting pitch of about 10 mm to obtain short water-absorbing fibers. The obtained water-absorbing staple fiber was a fiber having an irregular bent portion. Thirty of the fibers were randomly taken out, and the average of the length was 27.1 mm. FIG. 3 shows an enlarged photograph (scanning electron micrograph (magnification: 35 times)) of the obtained water-absorbing short fibers.
[0047]
After 10 g of the staple fiber was mixed with pulp of the same weight as that of the pulp so as to be sufficiently uniform, the obtained mixture was spread evenly on the bottom of a 100 mm-diameter cylinder fitted with a 100-mesh sieve at the bottom. While the cylinder was vibrated by a test tube vibrator, suction was performed from the opposite side (bottom side) of the cylinder with a suction pump having a capacity of 5 liter / min for 1 minute. As a result, almost no separation between the pulp and the water-absorbing short fibers was observed. In addition, there was no particular bias in the components falling off by suction.
[0048]
Further, a mixture of 10 g of the staple fiber obtained in the same manner and a pulp having the same weight as that of the pulp was pressed between two circular absorbent papers having a diameter of 120 mm at a pressure of about 50 kg / cm2, and a thickness of 5 mm was obtained. Was obtained. Since this absorbent contains 10 g of water-absorbing short fibers inside, 1 m 2 The amount of water-absorbing fiber per unit is 885 g, and 1 cm 2 The physiological saline absorption performance per unit was 4.0 g.
[0049]
The absorber was twisted five times alternately left and right, and the degree of movement and uneven distribution of the resin was observed. As a result, the sheet was deformed, but no movement or uneven distribution of the resin was observed.
Example 4
15 g of the water-absorbent fiber obtained in Example 3 is evenly spread in the middle of two pieces of pulp cotton (total 20 g) to form a sheet, and then wrapped on both sides with tissue paper. The bonded nonwoven fabric and the other surface were sandwiched between polyethylene films to obtain an absorber having a length of 300 mm and a width of 100 mm.
[0050]
The end of the absorber was sandwiched between fingers and shaked up and down five times to level again, and then 600 g of physiological water was poured from the nonwoven fabric side to absorb water. After 10 minutes, the absorber had a substantially uniform thickness, and it was confirmed that the inner absorber did not have a large deviation.
Comparative Example 1
Example 4 was repeated except that 13.5 g of a granular water-absorbent resin ("Sekisui Aquamate 200B" manufactured by Sekisui Chemical Co., Ltd., center particle diameter 500-600μ) was used instead of the short fibrous water-absorbent resin. In the same manner, an absorbent was prepared, and physiological water was absorbed into the absorbent. As a result, the absorbed absorber had a thickness with one side biased. When I touched the thinner side, I felt the stickiness of water.
[0051]
【The invention's effect】
The absorber of the present invention has no problems such as dropping or uneven distribution of particles during production or use as in the case of the conventional granular water-absorbing resin, and has sufficient absorption performance. Since it is more flexible, it can be easily fitted to any shape.
[0052]
Further, the water-absorbing fiber used in the present invention has a large number of irregularly bent portions per fiber, and retains a non-linear shape even when separated into single fibers. The number of entanglements between fibers or with other fibers increases, and the effect of preventing uneven distribution and falling off becomes more excellent.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of an absorbent body of the present invention comprising a composite of a water-absorbent fiber and a hydrophilic fiber.
FIG. 2 is a cross-sectional view showing another example of the absorbent body of the present invention comprising a composite of a water absorbent fiber and a hydrophilic fiber.
FIG. 3 is a photomicrograph showing the shape of the water-absorbent fiber obtained in Example 1.
[Explanation of symbols]
1 Water-absorbing fiber
2 hydrophilic fibers
3 water permeable sheet
4 impermeable sheet
5 complex
6 complex