JP3548394B2 - Electrophotographic photoreceptor, process cartridge having the electrophotographic photoreceptor, and electrophotographic apparatus - Google Patents
Electrophotographic photoreceptor, process cartridge having the electrophotographic photoreceptor, and electrophotographic apparatus Download PDFInfo
- Publication number
- JP3548394B2 JP3548394B2 JP25013597A JP25013597A JP3548394B2 JP 3548394 B2 JP3548394 B2 JP 3548394B2 JP 25013597 A JP25013597 A JP 25013597A JP 25013597 A JP25013597 A JP 25013597A JP 3548394 B2 JP3548394 B2 JP 3548394B2
- Authority
- JP
- Japan
- Prior art keywords
- electrophotographic
- particles
- layer
- protective layer
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Photoreceptors In Electrophotography (AREA)
- Electrostatic Charge, Transfer And Separation In Electrography (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は電子写真感光体並びに該電子写真感光体を備えたプロセスカ−トリッジ及び電子写真装置に関する。
【0002】
【従来の技術】
電子写真感光体は、帯電、露光、現像、転写、クリ−ニング及び除電等の手段繰り返し適用される。帯電及び露光により形成された静電潜像はトナ−といわれる微粒子状の現像剤によりトナ−画像となる。更にこのトナ−画像は転写手段により紙等の転写材に転写されるが、全てのトナ−が転写されるわけではなく、一部が感光体表面上に残留する。
【0003】
この残留トナ−の量が多いと、転写材上の画像は、また、更に転写不良が生じる所謂ボソ抜け状となり、画像の均一性に欠けるだけでなく、感光体へのトナ−の融着やフィルミングの発生という問題が生じる。これらの問題に対して感光体の表面層の離型性を向上することが求められている。
【0004】
また、電子写真感光体は上述のような電気的及び機械的外力が直接に加えられるために、それらに対する耐久性が求められている。具体的には、摺擦による表面の摩耗や傷の発生、また、帯電時に発生するオゾンやNOX 等の活性物質の付着による表面層の劣化等に対する耐久性が要求される。
【0005】
電子写真感光体に要求される上記のような要求を満たすために、各種の保護層を設ける試みがなされている。なかでも、樹脂を主成分とする保護層は数多く提案されている。例えば、特開昭57−30846号公報には樹脂に導電性粉末として金属酸化物を添加することにより抵抗を制御することのできる保護層が提案されている。
【0006】
電子写真感光体用の保護層に金属酸化物を分散するのは、保護層自体の電気抵抗を制御し、電子写真プロセスの繰り返しに伴う感光体内での残留電位の増加を防止するのがその主な目的であり、他方、電子写真感光体用の保護層の適切な抵抗値は1010〜1015ohm・cmであることが知られている。しかしながら、前記の範囲の抵抗値においては、保護層の電気抵抗はイオン電導によって影響を受け易く、そのために環境の変化によって電気抵抗が大きく変化する傾向にある。特に金属酸化物を膜中に分散している場合には、金属酸化物表面の吸水性が高いために、全環境において、しかも、電子写真プロセスの繰り返しを行う際に、保護層の抵抗を前記範囲内に保つことはこれまで非常に困難であった。
【0007】
特に高湿下においては、帯電より発生するオゾンやNOX 等の活性物質が表面に繰り返し付着することにより、感光体表面の抵抗の低下や表面層からのトナ−の離型性の低下を引き起こし、画像流れが発生する、画像均一性が不十分になる等の問題があった。
【0008】
また、一般的に保護層に粒子を分散させる場合、分散粒子による入射光の散乱を防ぐために、粒子の粒径が入射光の波長よりも小さいこと、即ち、0.3μm以下であることが好ましい。しかし、通常金属酸化物粒子は樹脂溶液中において凝集する傾向があり、均一に分散しにくく、一旦分散しても二次凝集や沈殿が起こりやすいので粒径0.3μm以下といった微粒子の良好な分散膜を安定して生産することは非常に困難であった。更に透明度、導電均一性を向上させる観点から特に粒径の小さい超微粒子(一次粒径0.1μm以下)を分散することが好ましいが、このような超微粒子体の分散性、分散安定性は更に悪くなる傾向にあった。
【0009】
上記の欠点を補うために、例えば特開平1−306857号公報にはフッ素含有シランカップリング剤、チタネ−トカップリング剤あるいはC7 F15NCO等の化合物を添加して保護層が、特開昭62−295066号公報には結着樹脂中に、撥水処理することにより分散性及び耐湿性の向上した金属微粉末または金属酸化物微粉末を分散した保護層が、特開平2−50167号公報には結着樹脂中にチタネ−ト系カップリング剤、フッ素含有シランカップリング剤、フッ素含有シランカップリング剤及びアセトアルコキシアルミニウムジイソプロピレ−トで表面処理された金属酸化物微粉末を分散した保護層が提案されている。
【0010】
しかし、これらの保護層においても、保護層に用いられる結着樹脂そのものの離型性、摺擦による摩耗や傷に対する耐久性、更にはオゾンやNOX 等の活性物質に対する耐久性が十分ではなく、未だ近年の高画質化に応える保護層として満足できる電子写真特性を示すものが得られていないのが現状である。
【0011】
【発明が解決しようとする課題】
本発明の目的は第一に、優れた離型性を有し、摩耗や傷の発生等に対しての優れた耐久性を有する表面層を有し、高品位の画質を保つことのできる電子写真感光体を提供すること、第二に、体積抵抗の環境依存性が小さく、低湿下における残留電位の上昇がなく、また高湿下における抵抗低下による画像ボケ、流れのない高品質の画像を得ることができる電子写真感光体を提供すること、更に該電子写真感光体を有するプロセスカ−トリッジ並びに電子写真装置を提供することである。
【0012】
【課題を解決するための手段】
本発明は、導電性支持体上に感光層及び保護層を有する電子写真感光体において、該保護層が含フッ素系シランカップリング剤によって表面処理された導電性粒子、メチルハイドロジェンシロキサンで表面処理された導電性粒子、フッ原子含有樹脂粒子及び結着樹脂を含有することを特徴とする電子写真感光体から構成される。
【0013】
また、本発明は、前記本発明の電子写真感光体、及び帯電手段、現像手段及びクリ−ニング手段からなる群より選ばれる少なくとも一つの手段を一体に支持し、電子写真装置本体に着脱自在であることを特徴とするプロセスカ−トリッジから構成される。
【0014】
また、本発明は、前記本発明の電子写真感光体、帯電手段、像露光手段、現像手段及び転写手段を有することを特徴とする電子写真装置から構成される。
【0015】
【発明の実施の形態】
本発明において用いられる導電性粒子としては、金属、金属酸化物及びカ−ボンブラック等が挙げられる。金属としては、アルミニウム、亜鉛、銅、クロム、ニッケル、銀及びステンレス等、またはこれらの金属をプラスチックの粒子の表面に蒸着したもの等が挙げられる。金属酸化物としては、酸化亜鉛、酸化チタン、酸化スズ、酸化アンチモン、酸化インジウム、酸化ビスマス、スズをド−プした酸化インジウム、アンチモンやタンタルをド−プした酸化スズ及びアンチモンをド−プした酸化ジルコニウム等が挙げられる。これらは単独で用いることも、2種以上を組み合わせて用いることもできる。2種以上を組み合わせて用いる場合は、単に混合しても、固溶体や融着の形にしてもよい。
【0016】
本発明において用いられる導電性粒子の平均粒径は保護層の透明性の点で0.3μm以下、特には0.1μm以下が好ましい。
【0017】
また、本発明においては、上述した導電性粒子の中でも透明性等の点で金属酸化物を用いることが特に好ましい。
【0018】
本発明において用いられるフッ素原子含有樹脂粒子としては、四フッ化エチレン、三フッ化塩化エチレン樹脂、六フッ化エチレンプロピレン樹脂、フッ化ビニル樹脂、フッ化ビニリデン樹脂、二フッ化二塩化エチレン樹脂及びこれらの共重合体のなかから1種あるいは2種以上を適宜選択するのが好ましいが、特に、四フッ化エチレン樹脂、フッ化ビニリデン樹脂が好ましい。樹脂粒子の分子量や粒子の粒径は適宜選択することができ、特に制限されるものではない。
【0019】
本発明においては、導電性粒子及びフッ素原子含有樹脂を共に樹脂溶液中で相互の粒子を凝集させないように、導電性粒子の表面をフッ素原子含有化合物で表面処理する。表面処理を行うことにより、表面処理を行わない場合に比べて、樹脂溶液中での導電性粒子とフッ素原子含有樹脂粒子の分散性及び分散安定性が格段に向上した。また、フッ素原子含有化合物で表面処理を施した導電性粒子とフッ素原子含有樹脂粒子とを溶剤に溶かした結着樹脂中に分散することによって分散粒子の二次粒子の形成もなく、経時的にも非常に安定した分散性の良い塗工液が得られた。
【0020】
本発明において導電性粒子をフッ素原子含有化合物によって表面処理する際、用いることのできるフッ素原子含有化合物としては含フッ素シランカップリング剤、フッ素変性シリコ−ンオイル、フッ素系界面活性剤等が挙げられる。表1に好ましい化合物例を掲げるが、本発明はこれらの化合物に限定されるものではない。
【0021】
【表1】
【表2】
【0022】
【表3】
【0023】
導電性粒子の表面処理方法としては、導電性粒子と表面処理剤とを適当な溶剤中で混合、分散し、表面処理剤を導電性粒子表面に付着させる。分散の手段としてはボ−ルミル、サンドミル等の通常の分散手段を用いることができる。次に、この分散溶液から溶剤を除去し、導電性粒子表面に表面処理剤を固着させればよい。また、必要に応じてこの後更に熱処理を行ってもよい。また、処理液中には反応促進のための触媒を添加することができる。更に、必要に応じて表面処理後の導電性粒子に更に粉砕処理を施すことができる。
【0024】
導電性粒子に対するフッ素原子含有化合物の割合は、粒子の粒径にも影響を受けるが、表面処理済の導電性粒子全重量に対し、1〜65wt%、好ましくは10〜50wt%である。
【0025】
以上のようにフッ素原子含有化合物によって処理された導電性粒子を用いることにより、フッ素原子含有樹脂粒子の分散が安定し、滑り性、離型性に優れた保護層を形成することができる。しかしながら、最近のカラ−化、高画質化、高安定化が進み、より環境に対する安定化を求めるようになり、保護層にもより一層の環境安定性を求めるようになってきた。
【0026】
本発明においては、より環境安定性のある保護層とするために、下記一般式(1)で示されるメチルハイドロジェンシロキサン化合物により予め表面処理を施した導電性粒子を混合している。
一般式(1)
【化2】
式中、Aは水素原子またはメチル基であり、かつ、Aの全部における水素原子の割合は0.1〜50%の範囲、nは0以上の整数である。
【0027】
この表面処理を施した導電性金属酸化物微粒子を溶剤に溶かした結着樹脂中に分散することによって分散粒子の二次粒子の形成もなく、経時的にも安定した分散性の良い塗工液が得られ、更にこの塗工液より形成した保護層は透明度が高く、耐環境性に優れた膜が得られた。
【0028】
一般式(1)で示されるシロキサン化合物の分子量は特に制限されるものではないが、表面処理作業の容易さからは、粘度が高過ぎないほうがよく、重量平均分子量で数百〜数万程度が適当である。
【0029】
表面処理の方法としては湿式、乾式の二通りがある。湿式では導電性金属酸化物微粒子と一般式(1)で示されるシロキサン化合物とを溶剤中で分散し、該シロキサン化合物を微粒子表面に付着させる。分散の手段としてはボ−ルミル、サンドミル等一般の分散手段を使用することができる。次に、この分散溶液を導電性金属酸化物微粒子表面に固着させる。この熱処理においてはシロキサン中のSi−H結合が熱処理過程において空気中の酸素によって水素原子の酸化が起こり、新たなシロキサン結合ができる。その結果、シロキサンが三次元構造にまで発達し、導電性金属酸化物微粒子表面がこの網状構造で包まれる。このように表面処理は該シロキサン化合物を導電性金属酸化物微粒子表面に固着させることによって完了するが、必要に応じて処理後の微粒子に粉砕処理を施してもよい。乾式処理においては、溶剤を用いずに該シロキサン化合物と導電性金属酸化物微粒子とを混合し混練を行うことによってシロキサン化合物を微粒子表面に付着させる。その後は湿式処理と同様に熱処理、粉砕処理を施して表面処理を完了する。
【0030】
本発明において用いる導電性金属酸化物としては、酸化亜鉛、酸化チタン、酸化スズ、酸化アンチモン、酸化インジウム、酸化ビスマス、スズをド−プした酸化インジウム、アンチモンやタンタルをド−プした酸化スズ、酸化ジルコニウム等の超微粒子を用いることができる。これら金属酸化物を1種類または2種類以上混合して用いる。2種類以上を混合した場合には固溶体または融着の形をとってもよい。このような金属酸化物の平均粒径は0.3μm以下、好ましくは0.1μm以下である。
【0031】
本発明における導電性金属酸化物微粒子に対するシロキサン化合物の割合は、微粒子の粒径やシロキサン中のメチル基と水素原子の比率等に依存するが、1〜50wt%、好ましくは3〜40wt%である。
【0032】
本発明において用いる保護層用の結着樹脂としては、アクリル樹脂、ポリエステル、ポリカ−ボネ−ト、ポリスチレン、セルロ−ス樹脂、ポリエチレン、ポリプロピレン、ポリウレタン、エポキシ樹脂、シリコ−ン樹脂、ポリ塩化ビニル等市販の樹脂を使用することができる。これらの樹脂の中でも、保護層の表面硬度、耐摩耗性、更に微粒子の分散性、分散後の安定性の点から硬化性樹脂を用いることが好ましい。即ち、熱または光によって硬化するモノマ−またはオリゴマ−を含有する樹脂の溶液に前述の表面処理を施した導電性金属酸化物微粒子を分散させて保護層用の塗工液とし、これを感光層上に塗工、硬化させて形成した保護層は透明性、硬度、耐摩耗性等の点でより優れている。
【0033】
熱または光によって硬化するモノマ−またはオリゴマ−とは、例えば分子の末端に熱または光のエネルギ−によって重合反応を起こす官能基を有するもので、このうち、分子の構造単位の繰り返しが2〜20程度の比較的大きな分子がオリゴマ−、それ以下のものがモノマ−である。該重合反応を起こす官能基としてはアクリロイル基、メタクリロイル基、ビニル基、アセトフェノン基等の炭素−炭素二重結合を有する基、、シラノ−ル基、更に環状エ−テル基等の開環重合を起こすもの、またはフェノ−ル+ホルムアルデヒドのように2種類以上の分子が反応して重合を起こすもの等が挙げられる。
【0034】
樹脂と表面処理済の導電性金属酸化物微粒子との割合は直接的に保護層の抵抗を決定する値であり、保護層の抵抗が1010〜1015ohm・cmの範囲になる用に設定する。
【0035】
本発明においては、前記保護層中に、分散性、結着性、耐候性を向上させる目的でカップリング剤、酸化防止剤等の添加物を加えてもよい。保護層は前記結着樹脂中に金属酸化物を分散した溶液を塗布、硬化して形成する。
【0036】
次に感光層について説明する。本発明の電子写真感光体の感光層の構成は、電荷発生物質と電荷輸送物質双方を同一層に含有する単層型、あるいは電荷発生層と電荷輸送層を導電性支持体上に積層した積層型のいずれかである。以下に積層型の感光層について説明する。積層型の感光層の構成としては、導電性支持体上に電荷発生層と電荷輸送層をこの順に積層したものと、逆に電荷輸送層、電荷発生層の順に積層したものがある。
【0037】
本発明において用いる支持体は導電性を有するものであればよく、例えばアルミニウム、銅、クロム、ニッケル、亜鉛、ステンレス等の金属をドラムまたはシ−ト状に成型したもの、アルミニウムや銅等の金属箔をプラスチックフィルムにラミネ−トしたもの、アルミニウム、酸化インジウム、酸化スズ等をプラスチックフィルムに蒸着したもの、導電性物質を単独または結着樹脂と共に塗布して導電層を設けた金属、プラスチックフィルム、紙等が挙げられる。
【0038】
電荷輸送層は、主鎖または側鎖にビフェニレン、アントラセン、ピレン、フェナントレン等の構造を有する多環芳香族化合物、インド−ル、カルバゾ−ル、オキサジアゾ−ル、ピラゾリン等の含窒素環化合物、ヒドラゾン化合物、スチリル化合物等の電荷輸送物質を成膜性を有する樹脂に溶解させた塗工液を用いて形成される。このような成膜性を有する樹脂としてはポリエステル、ポリカ−ボネ−ト、ポリスチレン、ポリメタクリル酸エステル等が挙げられる。電荷輸送層の膜厚は5〜40μm、好ましくは10〜30μmである。
【0039】
電荷発生層は、ス−ダンレッド、ダイアンブル−等のアゾ顔料、ピレンキノン、アントアントロン等のキノン顔料、キノシアニン顔料、ペリレン顔料、インジゴ、チオインジゴ等のインジゴ顔料、フタロシアニン顔料等の電荷発生物質をポリビニルブチラ−ル、ポリスチレン、ポリ酢酸ビニル、アクリル樹脂等の結着樹脂に分散させた塗工液を塗工するか、前記顔料を真空蒸着することにより形成される。電荷発生層の膜厚は5μm以下、好ましくは0.05〜3μmである。
【0040】
導電性支持体と感光層との間にバリア−機能と接着機能を有する下引き層を設けることができる。下引き層はカゼイン、ポリビニルアルコ−ル、ニトロセルロ−ス、エチレン−アクリル酸コポリマ−、アルコ−ル可溶アミド、ポリウレタン、ゼラチン等によって形成される。下引き層の膜厚は0.1〜3μmが適当である。
【0041】
以上に示すように、本発明の電子写真感光体は、感光層上に、フッ素原子含有化合物によって表面処理された導電性粒子、シロキサン化合物で表面処理された導電性粒子、フッ素原子含有樹脂粒子を樹脂中に分散した保護層を形成した電子写真感光体である。これにより、本発明において硬度が高く、高耐久であり、環境安定性、滑り性、離型性に優れた保護層を形成することができ、良好な電子写真感光体を提供することができる。
【0042】
本発明の電子写真感光体は、複写機、レ−ザ−プリンタ−、LEDプリンタ−、液晶シャッタ−式プリンタ−等の電子写真装置一般に適応し得るが、更に電子写真技術を応用したディスプレ−、記録、軽印刷、ファクシミリ等の装置にも幅広く適応することができる。
【0043】
次に、本発明のプロセスカ−トリッジ並びに電子写真装置について説明する。図1に本発明の電子写真感光体を有するプロセスカ−トリッジを有する電子写真装置の概略構成を示す。図において、1はドラム状の本発明の電子写真感光体であり、じく2を中心に矢印方向に所定の周速度で回転駆動される。感光体1は回転過程において、一次帯電手段3によりその周面に正または負の所定電位の均一帯電を受け、次いで、スリット露光やレ−ザ−ビ−ム走査露光等の像露光手段(不図示)からの画像露光光4を受ける。こうして感光体1の周面に静電潜像が順次形成されていく。
【0044】
形成された静電潜像は、次いで現像手段5によりトナ−現像され、現像されたトナ−現像像は、不図示の給紙部から感光体1と転写手段6との間に感光体1の回転と同期取りされて給送された転写材7に、転写手段6により順次転写されていく。像転写を受けた転写材7は感光体面から分離されて像定着手段8へ導入されて像定着を受けることにより複写物(コピ−)として装置外へプリントアウトされる。像転写後の感光体1の表面は、クリ−ニング手段9によって転写残りトナ−の除去を受けて清浄面化され、更に前露光手段(不図示)からの前露光光10により除電処理がされた後、繰り返し画像形成に使用される。なお、一次帯電手段3が帯電ロ−ラ−等を用いた接触帯電手段である場合は、前露光は必ずしも必要ではない。
【0045】
本発明においては、上述の感光体1、一次帯電手段3、現像手段5及びクリ−ニング手段9等の構成要素のうち、複数のものをプロセスカ−トリッジとして一体に結合して構成し、このプロセスカ−トリッジを複写機やレ−ザ−ビ−ムプリンタ−等の電子写真装置本体に対して着脱可能に構成してもよい。例えば一次帯電手段3、現像手段5及びクリ−ニング手段9の少なくとも1つを感光体1と共に一体に支持してカ−トリッジ化し、装置本体のレ−ル12等の案内手段を用いて装置本体に着脱可能なプロセスカ−トリッジ11とすることができる。また、画像露光光4は、電子写真装置が複写機やプリンタ−である場合には、原稿からの反射光や透過光を用いる、あるいは、センサ−で原稿を読み取り、信号化し、この信号に従って行われるレ−ザ−ビ−ムの走査、LEDアレイの駆動及び液晶シャッタ−アレイの駆動等により照射される光である。
【0046】
【実施例】
実施例1
φ30mm×260.5mmのアルミニウムシリンダ−を支持体として、この上にポリアミド樹脂(商品名アミランCM8000、東レ(株)製)の5重量%メタノ−ル溶液を浸漬塗布し、0.5μmの下引き層を形成した。
【0047】
次に、CuKαのX線回折スペクトルにおける回折角2θ±0.2°が9.0°、14.2°、23.9°、27.1°に強いピ−クを有するオキシチタニウムフタロシアニン顔料4部(重量部、以下同様)、ポリビニルブチラ−ル(商品名BX−1、積水化学(株)製)2部及びシクロヘキサノン80部をφ1mmガラスビ−ズを用いたサンドミル装置で4時間分散した。この分散液に酢酸エチル100部を加えて調製した塗工液を下引き層上に塗布し、膜厚電荷発生層を形成した。
【0048】
次に、下記構造式の化合物10部
【化3】
及びビスフェノ−ルZ型ポリカ−ボネ−ト(商品名Z−200、三菱ガス化学(株)製)10部をクロロベンゼン100部に溶解した。この溶液を前記電荷発生層上に塗布し、105℃、1時間熱風乾燥して膜厚20μmの電荷輸送層を形成した。
【0049】
次に保護層として、下記構造式のアクリル系モノマ−25部、
【化4】
下記構造式の化合物で表面処理した(処理量7%)アンチモンド−プ酸化スズ微粒子20部、
【化5】
メチルハイドロジェンシリコンオイル(商品名KF99、信越シリコ−ン(株)製)で処理した(処理量20%)アンチモンド−プ酸化スズ微粒子30部、エタノ−ル150部をサンドミルで66時間分散を行い、更にポリテトラフルオロエチレン微粒子(平均粒径0.18μm)20部を加えて分散を行った。その後、光重合開始剤として2−メチルチオキサントン3部を溶解して調合液とした。この調合液を用いて、前記電荷輸送層上に浸漬塗布して、膜を形成し、高圧水銀灯にて150w/cm2 の光強度で、60秒間光硬化を行い、その後120℃、2時間熱風乾燥して膜厚3μmの保護層を形成して、電子写真感光体を作成した。使用した前記分散液は分散性が良く、層表面はムラのない均一な面であった。
【0050】
評価は、キヤノン(株)製LBP−NXを用いて行った。保護層の体積抵抗測定は、横河ヒュ−レットパッカ−ド(株)製pAメ−タ−4140Bを用いて行った。結果を後記表4及び5に示す。
【0051】
実施例2及び3
実施例1において、アクリル系モノマ−をそれぞれ25部及び20部用いた他は、実施例1と同様にして、それぞれ実施例2及び3に対応する電子写真感光体を作成した。評価結果を表4及び5に示す。
【0052】
実施例4
実施例1において、フッ素原子含有化合物で表面処理されたアンチモンド−プ酸化スズ微粒子を40部、シロキサン処理アンチモンド−プ酸化スズ微粒子を10部とした他は、実施例1と同様にして電子写真感光体を作成した。評価結果を表4及び5に示す。
【0053】
実施例5
実施例1において、アンチモンド−プの酸化スズ微粒子のフッ素原子含有化合物による表面処理量を7%から4%に減量した他は、実施例1と同様にして電子写真感光体を作成した。評価結果を表4及び5に示す。
【0054】
比較例1
実施例1において、保護層を設けない他は、実施例1と同様にして電子写真感光体を作成した。評価結果を表4及び5に示す。
【0055】
比較例2
実施例1において、ポリテトラフルオロエチレン微粒子を添加しない他は、実施例1と同様にして電子写真感光体を作成した。評価結果を表4及び5に示す。
【0056】
比較例3
実施例1において、フッ素原子含有化合物で表面処理されたアンチモンド−プ酸化スズ微粒子を50部とし、シロキサン処理アンチモンド−プ酸化スズ微粒子を添加しない他は、実施例1と同様にして電子写真感光体を作成した。評価結果を表4及び5に示す。
【0057】
比較例4
実施例1において、フッ素原子含有化合物で表面処理されたアンチモンド−プ酸化スズ微粒子を添加せず、シロキサン処理アンチモンド−プ酸化スズ微粒子を50部添加した他は、実施例1と同様にして電子写真感光体を作成した。評価結果を表4及び5に示す。
【0058】
【表4】
【0059】
【表5】
【0060】
【発明の効果】
本発明の電子写真感光体は、環境安定性に優れ、高耐久で、滑り性及び離型性に優れ、良好な画像を安定して供給できるという顕著な効果を奏する。また、該電子写真感光体を有するプロセスカ−トリッジ並びに電子写真装置において同様に顕著な効果を奏する。
【図面の簡単な説明】
【図1】本発明の電子写真感光体を有するプロセスカ−トリッジを有する電子写真装置の概略構成を示す図。
【符号の説明】
1 本発明の電子写真感光体
2 軸
3 一次帯電手段
4 画像露光光
5 現像手段
6 転写手段
7 転写材
8 像定着手段
9 クリ−ニング手段
10 前露光光
11 プロセスカ−トリッジ
12 レ−ル[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrophotographic photosensitive member, a process cartridge including the electrophotographic photosensitive member, and an electrophotographic apparatus.
[0002]
[Prior art]
The electrophotographic photosensitive member is repeatedly applied by means such as charging, exposure, development, transfer, cleaning, and static elimination. The electrostatic latent image formed by charging and exposure becomes a toner image by a fine particle developer called toner. Further, the toner image is transferred to a transfer material such as paper by a transfer means, but not all the toner is transferred, and a part thereof remains on the surface of the photoreceptor.
[0003]
If the amount of the residual toner is large, the image on the transfer material is in a so-called uneven shape, which causes a further transfer failure, which not only lacks the uniformity of the image but also causes the fusion of the toner to the photoreceptor. A problem of filming occurs. For these problems, it is required to improve the releasability of the surface layer of the photoreceptor.
[0004]
In addition, the electrophotographic photoreceptor is required to have durability against the above-mentioned electric and mechanical external forces because it is directly applied thereto. Specifically, the rubbing occurrence of wear and scratches of the surface with, also, the durability is required for the deterioration of the surface layer due to the adhesion of the active substance of the ozone and NO X, etc. generated during charging.
[0005]
Attempts have been made to provide various protective layers in order to satisfy the above-mentioned requirements for electrophotographic photosensitive members. Above all, many protective layers containing a resin as a main component have been proposed. For example, Japanese Patent Application Laid-Open No. 57-30846 proposes a protective layer whose resistance can be controlled by adding a metal oxide as a conductive powder to a resin.
[0006]
The main reason for dispersing a metal oxide in a protective layer for an electrophotographic photoreceptor is to control the electrical resistance of the protective layer itself and prevent an increase in residual potential in the photoreceptor due to repetition of the electrophotographic process. On the other hand, it is known that an appropriate resistance value of the protective layer for the electrophotographic photosensitive member is 10 10 to 10 15 ohm · cm. However, in the resistance value in the above-mentioned range, the electric resistance of the protective layer is easily affected by ionic conduction, and therefore, the electric resistance tends to greatly change due to a change in environment. In particular, when the metal oxide is dispersed in the film, the water absorption of the metal oxide surface is high, so in all environments, and when the electrophotographic process is repeated, the resistance of the protective layer is reduced. Keeping in the range has hitherto been very difficult.
[0007]
Especially in high humidity, by active substances such as ozone and NO X generated from charging adheres repeatedly to the surface, toner from lowering and the surface layer of the resistance of the photoreceptor surface - caused a decrease in releasability of the However, there are problems such as occurrence of image deletion and insufficient image uniformity.
[0008]
In general, when particles are dispersed in the protective layer, the particle diameter of the particles is preferably smaller than the wavelength of the incident light, that is, 0.3 μm or less, in order to prevent scattering of the incident light by the dispersed particles. . However, metal oxide particles generally tend to aggregate in a resin solution, are difficult to uniformly disperse, and once dispersed, secondary aggregation and sedimentation are likely to occur. It was very difficult to produce a stable film. Further, from the viewpoint of improving transparency and conductivity uniformity, it is preferable to disperse ultrafine particles having a particularly small particle size (primary particle size of 0.1 μm or less). However, the dispersibility and dispersion stability of such ultrafine particles are further increased. There was a tendency to get worse.
[0009]
In order to compensate for the above-mentioned disadvantage, for example, JP-A-1-306857 discloses a protective layer by adding a compound such as a fluorine-containing silane coupling agent, a titanate coupling agent or C 7 F 15 NCO. JP-A-2-50167 discloses a protective layer in which a fine metal powder or a fine metal oxide powder improved in dispersibility and moisture resistance by water-repellent treatment is dispersed in a binder resin. A titanium oxide-based coupling agent, a fluorine-containing silane coupling agent, a fluorine-containing silane coupling agent and a metal oxide fine powder surface-treated with acetoalkoxyaluminum diisopropylate were dispersed in a binder resin. A protective layer has been proposed.
[0010]
However, even in these protective layers, releasability of the binder resin itself to be used in the protective layer, durability against wear and scratches due to rubbing, even not durable enough for active substances such as ozone and NO X However, at present, a protective layer having satisfactory electrophotographic properties has not yet been obtained as a protective layer that responds to higher image quality in recent years.
[0011]
[Problems to be solved by the invention]
The first object of the present invention is to provide an electronic device that has excellent release properties, has a surface layer that has excellent durability against abrasion and generation of scratches, and can maintain high quality image quality. Secondly, to provide a photographic photoreceptor, secondly, it is possible to obtain a high-quality image with little environmental dependency of volume resistance, no increase in residual potential under low humidity, and no image blur and flow due to a decrease in resistance under high humidity. An object of the present invention is to provide an electrophotographic photosensitive member that can be obtained, and further provide a process cartridge and an electrophotographic apparatus having the electrophotographic photosensitive member.
[0012]
[Means for Solving the Problems]
The present invention relates to an electrophotographic photosensitive member having a photosensitive layer and a protective layer on a conductive support, wherein the protective layer is surface-treated with conductive particles, surface-treated with a fluorinated silane coupling agent , methylhydrogensiloxane. And an electrophotographic photoreceptor containing the conductive particles, the fluorine-containing resin particles, and the binder resin.
[0013]
Further, the present invention integrally supports at least one unit selected from the group consisting of the electrophotographic photoreceptor of the present invention, a charging unit, a developing unit and a cleaning unit, and is detachably attached to an electrophotographic apparatus main body. It comprises a process cartridge characterized by a certain characteristic.
[0014]
Further, the present invention comprises an electrophotographic apparatus comprising the electrophotographic photoreceptor of the present invention, a charging unit, an image exposing unit, a developing unit and a transfer unit.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Examples of the conductive particles used in the present invention include metals, metal oxides, and carbon black. Examples of the metal include aluminum, zinc, copper, chromium, nickel, silver, stainless steel, and the like, and those obtained by vapor-depositing these metals on the surfaces of plastic particles. As metal oxides, zinc oxide, titanium oxide, tin oxide, antimony oxide, indium oxide, bismuth oxide, indium oxide doped with tin, tin oxide and antimony doped with antimony and tantalum were doped. Zirconium oxide and the like can be mentioned. These can be used alone or in combination of two or more. When two or more kinds are used in combination, they may be simply mixed, or may be in the form of a solid solution or fusion.
[0016]
The average particle size of the conductive particles used in the present invention is preferably 0.3 μm or less, particularly preferably 0.1 μm or less from the viewpoint of the transparency of the protective layer.
[0017]
In the present invention, among the above-described conductive particles, it is particularly preferable to use a metal oxide in terms of transparency and the like.
[0018]
As the fluorine atom-containing resin particles used in the present invention, tetrafluoroethylene, ethylene trifluoride ethylene resin, hexafluoroethylene propylene resin, vinyl fluoride resin, vinylidene fluoride resin, ethylene dichloride ethylene chloride resin and It is preferable to appropriately select one or more of these copolymers, and particularly preferable are a tetrafluoroethylene resin and a vinylidene fluoride resin. The molecular weight of the resin particles and the particle size of the particles can be appropriately selected and are not particularly limited.
[0019]
In the present invention, the surface of the conductive particles is treated with a fluorine atom-containing compound so that both the conductive particles and the fluorine atom-containing resin are not aggregated in a resin solution. By performing the surface treatment, the dispersibility and the dispersion stability of the conductive particles and the fluorine atom-containing resin particles in the resin solution were remarkably improved as compared with the case where the surface treatment was not performed. Further, by dispersing the conductive particles and the fluorine atom-containing resin particles subjected to the surface treatment with the fluorine atom-containing compound in the binder resin dissolved in the solvent, no secondary particles of the dispersed particles are formed, and with time, A very stable coating liquid having good dispersibility was obtained.
[0020]
When the conductive particles are surface-treated with a fluorine atom-containing compound in the present invention, examples of the fluorine atom-containing compound that can be used include a fluorine-containing silane coupling agent, a fluorine-modified silicone oil, and a fluorine-based surfactant. Preferred compounds are listed in Table 1, but the present invention is not limited to these compounds.
[0021]
[Table 1]
[Table 2]
[0022]
[Table 3]
[0023]
As a surface treatment method for the conductive particles, the conductive particles and the surface treatment agent are mixed and dispersed in an appropriate solvent, and the surface treatment agent is attached to the surface of the conductive particles. As the dispersing means, ordinary dispersing means such as a ball mill and a sand mill can be used. Next, the solvent may be removed from the dispersion solution, and the surface treating agent may be fixed to the surface of the conductive particles. Further, if necessary, heat treatment may be performed thereafter. Further, a catalyst for accelerating the reaction can be added to the treatment liquid. Further, if necessary, the conductive particles after the surface treatment can be further subjected to a pulverizing treatment.
[0024]
The ratio of the fluorine atom-containing compound to the conductive particles is affected by the particle size of the particles, but is 1 to 65 wt%, preferably 10 to 50 wt%, based on the total weight of the surface-treated conductive particles.
[0025]
By using the conductive particles treated with the fluorine atom-containing compound as described above, the dispersion of the fluorine atom-containing resin particles is stabilized, and a protective layer having excellent slipperiness and releasability can be formed. However, recent advances in colorization, high image quality, and high stability have led to a demand for more environmental stability, and a protective layer has been required to have even greater environmental stability.
[0026]
In the present invention, in order to form a protective layer having more environmental stability, conductive particles which have been subjected to a surface treatment in advance with a methylhydrogensiloxane compound represented by the following general formula (1) are mixed.
General formula (1)
Embedded image
In the formula, A is a hydrogen atom or a methyl group, and the proportion of hydrogen atoms in all A is in the range of 0.1 to 50%, and n is an integer of 0 or more.
[0027]
By dispersing the surface-treated conductive metal oxide fine particles in a binder resin dissolved in a solvent, secondary particles of dispersed particles are not formed, and the coating liquid is stable with time and has good dispersibility. Was obtained, and a protective layer formed from this coating solution had high transparency and a film excellent in environmental resistance.
[0028]
Although the molecular weight of the siloxane compound represented by the general formula (1) is not particularly limited, it is preferable that the viscosity is not too high from the viewpoint of easiness of the surface treatment operation, and the weight average molecular weight is about several hundreds to several tens of thousands. Appropriate.
[0029]
There are two types of surface treatment, wet and dry. In the wet method, fine particles of a conductive metal oxide and a siloxane compound represented by the general formula (1) are dispersed in a solvent, and the siloxane compound is attached to the surface of the fine particles. As a dispersing means, general dispersing means such as a ball mill and a sand mill can be used. Next, this dispersion solution is fixed to the surface of the conductive metal oxide fine particles. In this heat treatment, the Si—H bonds in the siloxane undergo oxidation of hydrogen atoms by oxygen in the air during the heat treatment process, so that a new siloxane bond is formed. As a result, the siloxane develops to a three-dimensional structure, and the surface of the conductive metal oxide fine particles is covered with this network structure. As described above, the surface treatment is completed by fixing the siloxane compound to the surface of the conductive metal oxide fine particles. However, if necessary, the fine particles after the treatment may be subjected to a pulverizing treatment. In the dry treatment, the siloxane compound is attached to the surface of the fine particles by mixing and kneading the siloxane compound and the conductive metal oxide fine particles without using a solvent. Thereafter, heat treatment and pulverization are performed in the same manner as in the wet treatment to complete the surface treatment.
[0030]
As the conductive metal oxide used in the present invention, zinc oxide, titanium oxide, tin oxide, antimony oxide, indium oxide, bismuth oxide, indium oxide doped with tin, tin oxide doped with antimony or tantalum, Ultra fine particles such as zirconium oxide can be used. These metal oxides are used alone or in combination of two or more. When two or more kinds are mixed, they may be in the form of solid solution or fusion. The average particle size of such a metal oxide is 0.3 μm or less, preferably 0.1 μm or less.
[0031]
The ratio of the siloxane compound to the conductive metal oxide fine particles in the present invention depends on the particle size of the fine particles, the ratio of methyl groups to hydrogen atoms in the siloxane, and the like, but is 1 to 50 wt%, preferably 3 to 40 wt%. .
[0032]
Examples of the binder resin for the protective layer used in the present invention include acrylic resin, polyester, polycarbonate, polystyrene, cellulose resin, polyethylene, polypropylene, polyurethane, epoxy resin, silicone resin, polyvinyl chloride and the like. Commercially available resins can be used. Among these resins, it is preferable to use a curable resin in view of the surface hardness and abrasion resistance of the protective layer, the dispersibility of fine particles, and the stability after dispersion. That is, the conductive metal oxide fine particles subjected to the above-mentioned surface treatment are dispersed in a solution of a resin containing a monomer or an oligomer which is cured by heat or light to form a coating liquid for a protective layer. The protective layer formed by coating and curing on top is more excellent in transparency, hardness, abrasion resistance and the like.
[0033]
The monomer or oligomer which is cured by heat or light has, for example, a functional group which causes a polymerization reaction at the end of the molecule by the energy of heat or light. A relatively large molecule is an oligomer, and a smaller molecule is a monomer. Examples of the functional group that causes the polymerization reaction include ring-opening polymerization of a group having a carbon-carbon double bond such as an acryloyl group, a methacryloyl group, a vinyl group, an acetophenone group, a silanol group, and a cyclic ether group. And phenol and formaldehyde, two or more of which react to cause polymerization.
[0034]
The ratio between the resin and the surface-treated conductive metal oxide fine particles is a value that directly determines the resistance of the protective layer, and is set so that the resistance of the protective layer is in the range of 10 10 to 10 15 ohm · cm. I do.
[0035]
In the present invention, additives such as a coupling agent and an antioxidant may be added to the protective layer for the purpose of improving dispersibility, binding property, and weather resistance. The protective layer is formed by applying and curing a solution in which a metal oxide is dispersed in the binder resin.
[0036]
Next, the photosensitive layer will be described. The structure of the photosensitive layer of the electrophotographic photoreceptor of the present invention may be a single layer type containing both a charge generating substance and a charge transporting substance in the same layer, or a laminate in which the charge generating layer and the charge transporting layer are laminated on a conductive support. One of the types. Hereinafter, the laminated type photosensitive layer will be described. As the constitution of the laminated photosensitive layer, there are a laminate in which a charge generation layer and a charge transport layer are laminated on a conductive support in this order, and a laminate in which a charge transport layer and a charge generation layer are laminated in this order.
[0037]
The support used in the present invention may be any conductive material, for example, a metal such as aluminum, copper, chromium, nickel, zinc, stainless steel or the like formed into a drum or sheet, or a metal such as aluminum or copper. Laminate foil on plastic film, aluminum, indium oxide, tin oxide, etc. deposited on plastic film, metal with conductive layer applied alone or with binder resin to provide conductive layer, plastic film, Paper etc. are mentioned.
[0038]
The charge transport layer is a polycyclic aromatic compound having a structure such as biphenylene, anthracene, pyrene, or phenanthrene in a main chain or a side chain; a nitrogen-containing ring compound such as indole, carbazole, oxadiazol, or pyrazoline; It is formed using a coating solution in which a charge transporting substance such as a compound or a styryl compound is dissolved in a resin having a film forming property. Examples of the resin having such a film forming property include polyester, polycarbonate, polystyrene, and polymethacrylate. The thickness of the charge transport layer is 5 to 40 μm, preferably 10 to 30 μm.
[0039]
The charge generating layer is made of a azo pigment such as Sudan Red or Diamble, a quinone pigment such as pyrenequinone or anthantrone, a quinocyanine pigment, a perylene pigment, an indigo pigment such as indigo or thioindigo, or a charge generating substance such as a phthalocyanine pigment. It is formed by applying a coating liquid dispersed in a binder resin such as laur, polystyrene, polyvinyl acetate, and acrylic resin, or by vacuum-depositing the pigment. The thickness of the charge generation layer is 5 μm or less, preferably 0.05 to 3 μm.
[0040]
An undercoat layer having a barrier function and an adhesive function can be provided between the conductive support and the photosensitive layer. The undercoat layer is formed of casein, polyvinyl alcohol, nitrocellulose, ethylene-acrylate copolymer, alcohol-soluble amide, polyurethane, gelatin or the like. The thickness of the undercoat layer is suitably from 0.1 to 3 μm.
[0041]
As described above, the electrophotographic photoreceptor of the present invention comprises, on a photosensitive layer, conductive particles surface-treated with a fluorine atom-containing compound, conductive particles surface-treated with a siloxane compound, and fluorine atom-containing resin particles. This is an electrophotographic photosensitive member having a protective layer dispersed in a resin. Thereby, in the present invention, a protective layer having high hardness, high durability, excellent environmental stability, slipperiness, and releasability can be formed, and a good electrophotographic photoreceptor can be provided.
[0042]
The electrophotographic photoreceptor of the present invention can be applied to general electrophotographic devices such as copiers, laser printers, LED printers, and liquid crystal shutter printers. It can be widely applied to devices such as recording, light printing, and facsimile.
[0043]
Next, the process cartridge and the electrophotographic apparatus of the present invention will be described. FIG. 1 shows a schematic configuration of an electrophotographic apparatus having a process cartridge having an electrophotographic photosensitive member of the present invention. In the figure, reference numeral 1 denotes a drum-shaped electrophotographic photoreceptor of the present invention, which is driven to rotate at a predetermined peripheral speed in the direction of an arrow around a frame 2. In the rotation process, the photosensitive member 1 is uniformly charged with a predetermined positive or negative potential on its peripheral surface by the primary charging means 3, and then the image exposure means (such as slit exposure or laser beam scanning exposure) is used. (See FIG. 1). Thus, an electrostatic latent image is sequentially formed on the peripheral surface of the photoconductor 1.
[0044]
The formed electrostatic latent image is then toner-developed by the developing unit 5, and the developed toner-developed image is transferred between the photoconductor 1 and the transfer unit 6 from a paper feeding unit (not shown). The image is sequentially transferred by the transfer unit 6 to the transfer material 7 fed in synchronization with the rotation. The transfer material 7 which has undergone the image transfer is separated from the photoreceptor surface, introduced into the image fixing means 8 and subjected to image fixing to be printed out of the apparatus as a copy (copy). The surface of the photoreceptor 1 after the image transfer is cleaned and cleaned by removing the untransferred toner by the cleaning means 9, and is further subjected to a static elimination treatment by pre-exposure light 10 from a pre-exposure means (not shown). After that, it is repeatedly used for image formation. When the primary charging means 3 is a contact charging means using a charging roller or the like, pre-exposure is not necessarily required.
[0045]
In the present invention, a plurality of components such as the photoreceptor 1, the
[0046]
【Example】
Example 1
Using a 30 mm x 260.5 mm aluminum cylinder as a support, a 5% by weight methanol solution of a polyamide resin (trade name: Amilan CM8000, manufactured by Toray Industries, Inc.) is dip-coated thereon, and a 0.5 µm undercoat is applied. A layer was formed.
[0047]
Next, an oxytitanium phthalocyanine pigment 4 having a strong peak at a diffraction angle 2θ ± 0.2 ° of 9.0 °, 14.2 °, 23.9 ° and 27.1 ° in the X-ray diffraction spectrum of CuKα. Parts (parts by weight, hereinafter the same), 2 parts of polyvinyl butyral (trade name: BX-1, manufactured by Sekisui Chemical Co., Ltd.) and 80 parts of cyclohexanone were dispersed for 4 hours by a sand mill using a φ1 mm glass bead. A coating solution prepared by adding 100 parts of ethyl acetate to this dispersion was applied onto the undercoat layer to form a charge generating layer having a film thickness.
[0048]
Next, 10 parts of a compound having the following structural formula:
And 10 parts of bisphenol Z-type polycarbonate (trade name: Z-200, manufactured by Mitsubishi Gas Chemical Co., Ltd.) were dissolved in 100 parts of chlorobenzene. This solution was applied on the charge generation layer and dried with hot air at 105 ° C. for 1 hour to form a charge transport layer having a thickness of 20 μm.
[0049]
Next, as a protective layer, 25 parts of an acrylic monomer having the following structural formula,
Embedded image
20 parts of antimony-tin oxide fine particles surface-treated with a compound of the following structural formula (processing amount: 7%),
Embedded image
Disperse 30 parts of antimony-doped tin oxide fine particles and 150 parts of ethanol treated with methyl hydrogen silicone oil (trade name: KF99, manufactured by Shin-Etsu Silicone Co., Ltd.) in a sand mill for 66 hours. Then, 20 parts of polytetrafluoroethylene fine particles (average particle size: 0.18 μm) were further added and dispersed. Thereafter, 3 parts of 2-methylthioxanthone was dissolved as a photopolymerization initiator to prepare a preparation. Using this prepared solution, dip coating was performed on the charge transport layer to form a film, and photocuring was performed with a high-pressure mercury lamp at a light intensity of 150 w / cm 2 for 60 seconds, followed by hot air at 120 ° C. for 2 hours. After drying, a protective layer having a thickness of 3 μm was formed to prepare an electrophotographic photosensitive member. The dispersion used had good dispersibility, and the layer surface was a uniform surface without unevenness.
[0050]
The evaluation was performed using LBP-NX manufactured by Canon Inc. The volume resistance of the protective layer was measured using a pA meter-4140B manufactured by Yokogawa Hewlett-Packard Co., Ltd. The results are shown in Tables 4 and 5 below.
[0051]
Examples 2 and 3
Electrophotographic photosensitive members corresponding to Examples 2 and 3, respectively, were prepared in the same manner as in Example 1, except that 25 parts and 20 parts of an acrylic monomer were used in Example 1. The evaluation results are shown in Tables 4 and 5.
[0052]
Example 4
In the same manner as in Example 1, except that 40 parts of antimony-tin oxide fine particles surface-treated with a fluorine atom-containing compound and 10 parts of siloxane-treated antimony-tin oxide fine particles were used. A photoreceptor was prepared. The evaluation results are shown in Tables 4 and 5.
[0053]
Example 5
An electrophotographic photoreceptor was prepared in the same manner as in Example 1, except that the amount of surface treatment of the tin oxide fine particles of antimony-doped with the fluorine atom-containing compound was reduced from 7% to 4%. The evaluation results are shown in Tables 4 and 5.
[0054]
Comparative Example 1
An electrophotographic photosensitive member was prepared in the same manner as in Example 1 except that the protective layer was not provided. The evaluation results are shown in Tables 4 and 5.
[0055]
Comparative Example 2
An electrophotographic photosensitive member was prepared in the same manner as in Example 1 except that the polytetrafluoroethylene fine particles were not added. The evaluation results are shown in Tables 4 and 5.
[0056]
Comparative Example 3
Electrophotography was performed in the same manner as in Example 1 except that the amount of the antimony-tin oxide fine particles surface-treated with the fluorine atom-containing compound was changed to 50 parts and no siloxane-treated antimony-tin oxide fine particles were added. A photoreceptor was made. The evaluation results are shown in Tables 4 and 5.
[0057]
Comparative Example 4
In the same manner as in Example 1, except that the antimony-tin oxide fine particles surface-treated with the fluorine atom-containing compound were not added and 50 parts of the siloxane-treated antimony-tin oxide fine particles were added. An electrophotographic photoreceptor was prepared. The evaluation results are shown in Tables 4 and 5.
[0058]
[Table 4]
[0059]
[Table 5]
[0060]
【The invention's effect】
The electrophotographic photoreceptor of the present invention has a remarkable effect that it has excellent environmental stability, is highly durable, has excellent sliding properties and releasability, and can stably supply good images. The process cartridge and the electrophotographic apparatus having the electrophotographic photoreceptor also have remarkable effects.
[Brief description of the drawings]
FIG. 1 is a view showing a schematic configuration of an electrophotographic apparatus having a process cartridge having an electrophotographic photosensitive member according to the present invention.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 electrophotographic photoreceptor 2
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25013597A JP3548394B2 (en) | 1997-09-01 | 1997-09-01 | Electrophotographic photoreceptor, process cartridge having the electrophotographic photoreceptor, and electrophotographic apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25013597A JP3548394B2 (en) | 1997-09-01 | 1997-09-01 | Electrophotographic photoreceptor, process cartridge having the electrophotographic photoreceptor, and electrophotographic apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1184706A JPH1184706A (en) | 1999-03-30 |
JP3548394B2 true JP3548394B2 (en) | 2004-07-28 |
Family
ID=17203355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25013597A Expired - Fee Related JP3548394B2 (en) | 1997-09-01 | 1997-09-01 | Electrophotographic photoreceptor, process cartridge having the electrophotographic photoreceptor, and electrophotographic apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3548394B2 (en) |
-
1997
- 1997-09-01 JP JP25013597A patent/JP3548394B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1184706A (en) | 1999-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0158921B1 (en) | Electrophotographic sensitive body, electrophotographic device with the same and device unit | |
KR100435017B1 (en) | Electrophotographic Photosensitive Member, and Process Cartridge and Electrophotographic Apparatus Including the Photosensitive Member | |
JP2801478B2 (en) | Electrophotographic photoreceptor, electrophotographic apparatus having the electrophotographic photoreceptor, apparatus unit, and facsimile | |
JP4745542B2 (en) | Electrophotographic photosensitive member, process cartridge having the electrophotographic photosensitive member, and electrophotographic apparatus | |
JP2001125297A (en) | Electrophotographic photoreceptor, method of producing the same, process cartridge and electrophotographic device | |
JP3126889B2 (en) | Electrophotographic photoreceptor, process cartridge having the electrophotographic photoreceptor, and electrophotographic apparatus | |
JPH06308756A (en) | Electrophotographic receptor | |
JP2000275889A (en) | Electrophotographic photoreceptor, process cartridge with same and electrophotographic device | |
JP3253205B2 (en) | Electrophotographic photoreceptor, electrophotographic apparatus and apparatus unit having the electrophotographic photoreceptor | |
JP2000310871A (en) | Electrophotographic photoreceptor, its production, process cartridge and electrophotographic device | |
JP3554126B2 (en) | Electrophotographic photoreceptor, process cartridge having the electrophotographic photoreceptor, and electrophotographic apparatus | |
JPH1097090A (en) | Electrophotographic photoreceptor, process cartridge and electrophotographic device | |
JP2002006527A (en) | Electrophotographic photoreceptor and process cartridge and electrophotographic device having the electrophotographic photoreceptor | |
JP3184692B2 (en) | Electrophotographic photoreceptor, electrophotographic apparatus and apparatus unit having the electrophotographic photoreceptor | |
JPH05173350A (en) | Electrophotographic sensitive body, electrophotographic apparatus and facsimile provided with the same | |
JP2000206724A (en) | Electrophotographic photoreceptor, processing cartridge and electrophotographic device | |
JP3548394B2 (en) | Electrophotographic photoreceptor, process cartridge having the electrophotographic photoreceptor, and electrophotographic apparatus | |
JP3559671B2 (en) | Electrophotographic photoreceptor, process cartridge having the electrophotographic photoreceptor, and electrophotographic apparatus | |
JP4346793B2 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP3352305B2 (en) | Electrophotographic photoreceptor, process cartridge having the electrophotographic photoreceptor, and electrophotographic apparatus | |
JP2001125299A (en) | Electrophotographic photoreceptor, process cartridge having the same, and electrophotographic device | |
JPH11288121A (en) | Electrophotographic photoreceptor and electrophotographic device equipped with electrophotographic photoreceptor | |
JP2004045540A (en) | Electrophotographic photoreceptor, process cartridge and electrophotographic device equipped with the electrophotographic photoreceptor | |
JP3636552B2 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP2000292960A (en) | Electrophotographic photoreceptor, process cartridge, and electrophotographic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040203 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040310 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040406 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040416 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090423 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090423 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100423 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110423 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130423 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130423 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140423 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |