JP3547431B2 - Continuous recrystallization annealing method for thin steel sheet - Google Patents

Continuous recrystallization annealing method for thin steel sheet Download PDF

Info

Publication number
JP3547431B2
JP3547431B2 JP50871792A JP50871792A JP3547431B2 JP 3547431 B2 JP3547431 B2 JP 3547431B2 JP 50871792 A JP50871792 A JP 50871792A JP 50871792 A JP50871792 A JP 50871792A JP 3547431 B2 JP3547431 B2 JP 3547431B2
Authority
JP
Japan
Prior art keywords
steel sheet
thickness
annealing furnace
temperature
elongation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP50871792A
Other languages
Japanese (ja)
Other versions
JPH07500871A (en
Inventor
ユンガルス,ステン
Original Assignee
アヴェスタポラリト アクチボラグ (ペーユーベーエル.)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アヴェスタポラリト アクチボラグ (ペーユーベーエル.) filed Critical アヴェスタポラリト アクチボラグ (ペーユーベーエル.)
Publication of JPH07500871A publication Critical patent/JPH07500871A/en
Application granted granted Critical
Publication of JP3547431B2 publication Critical patent/JP3547431B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0252Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment with application of tension
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/562Details
    • C21D9/564Tension control
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Metal Rolling (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PCT No. PCT/SE92/00162 Sec. 371 Date Sep. 14, 1994 Sec. 102(e) Date Sep. 14, 1994 PCT Filed Mar. 17, 1992 PCT Pub. No. WO93/19000 PCT Pub. Date Sep. 30, 1993Method for the continuous manufacture of steel strip in which steel strip is fed into an annealing furnace at a certain feed-in rate and drawn out of the furnace at a rate higher than the feed-in rate while subjecting the steel strip to a pulling force in the annealing furnace at a temperature above the recrystallization temperature of the steel in the region of 1000 DEG to 1250 DEG C. This results in the introduction of a permanent stretch of the steel strip corresponding to the difference between the feed-out and feed-in rates as well as a reduction in the cross-section of the strip corresponding to the elongation and a reduction of the strip thickness and strip width.

Description

技術分野
本発明は薄鋼板の製造に関連する方法に関し、これは薄鋼板を焼きなまし炉の中でその鋼の再結晶温度を超える温度において連続的に処理することよりなる。
発明の背景
薄鋼板のロール圧延が通常、いくつかの理由から行われる。主要な目的の1つは薄鋼板に所望の厚さを与えることである。圧延は通常、寸法範囲1ないし12mm、好ましくは1ないし6mmの厚さまで熱間圧延し、その上で所望の最終厚さへの連続的肉厚低下を冷間圧延によって行なう。冷間圧延に関連して、通常はその鋼の構造の再結晶のための1回以上の焼きなまし操作が含まれる。
この技術との関連では、簡単で実際的な方法で所望の最終厚さに達することは困難である。
もう1つの問題は薄鋼板の幅に関する。最終製品は少なくとも到達しなければならない或る所望の薄鋼板幅を有していなければならない。この要求を満たすために、冷間圧延操作のための出発材料として、実質的にその所望の幅を超える板幅の熱間圧延鋼板を用いるのが通常的である。このことは、多かれ少なかれ避けることのできないその鋼板の縁部の状態調節のために必要となる量よりも多量の縁部スクラップが製造時に形成されることを意味する。縁部からのこのスクラップ材料の形成は、原鋼板の幅を顧客の要求する幅に適合化させることが困難であること、及び鋼板の幅を冷間圧延機において調節することが不可能であることによるが、非常に大きな損失である。
発明の簡単な説明
本発明の目的は、上述の種々の問題を解決することである。これは本発明の請求の範囲の記載によって特徴づけられる方法により達成することができる。本発明の方法は、特にオーステナイト不銹鋼について開発されてきたが、他の鋼種、不銹鋼及び他の合金鋼並びに炭素鋼にも利用することができる。本発明の原理自身も鋼以外の金属、例えば銅や銅合金のような、かなでも冷間加工の間に低温硬化(cold hardening)を起こす種々の金属の薄板の製造に利用することができる。本発明のその他の特徴は、以下にあげる好ましい実施態様の記述から明らかとなるであろう。
好ましい実施態様の記述
本発明の好ましい実施態様、本発明の種々の特徴及び実施した諸実験を、本発明の方法の実施のための諸設備が総合されている製造プラントを示す添付の図面の参照のもとに以下に記述する。
図面において、熱間圧延の薄鋼板1がロールを形成している。カッターが2で示されており、そしていくつかの薄板部分を互いに溶接するための溶接装置が3で示されている。互いに溶接された部分よりなり、かつ本発明に従い処理されるべき薄鋼板は4で示されている。図面に示したプラントはまた、下記の構成要素、すなわち薄鋼板貯蔵装置又はアキュムレータ5、アキュムレータの一部を構成するブライドルロール6、第1ブレーキミル16、冷間圧延機19、第2ブレーキミル13、焼鈍炉7、強制的空気冷却用の空気冷却室8、薄鋼板水冷用装置9、引き出しミル10、ホイールアブレータ11、酸洗い浴12、仕上げ薄鋼板蓄積部又はアキュムレータ14、及び最終製品の含まれた巻き取りドラム15をも包含する。薄鋼板の幅及び厚さを測定するための測定装置はそれぞれ17及び18で示されている。
本発明の方法を含む総合プロセスにおいて、薄鋼板1はリールすなわちロールから巻き出され、カッター2によって両端を切断され、溶接装置3によって重ね継ぎされ、そして薄鋼板アキュムレータ5へ送り込まれるが、そこはその続いているプロセスを完全に連続的に実施することができるように薄鋼板4の緩衝部となる。熱間圧延薄鋼板4は、これがアキュムレータ5に進入してきたときに1mmと12mmとの間、好ましくは1mmと6mmとの間の厚さを有している。
薄鋼板4はこの薄鋼板アキュムレータ5から第1ブレーキミル6を通ったのち冷間圧延機19へ供給される。本発明に従う方法の好ましい実施態様の1つによれば、薄鋼板4は本質的に薄鋼板の幅を変化させることなくその冷間圧延機19において板厚を減少させられる。好ましい実施態様の1つによって、この板厚の減少がどのような大きさであるかを以下に説明する。しかしながら本発明の実施態様の1つにおいては冷間圧延は特定の場合に省略することができる。
第2ブレーキミル13を通った後で、その好ましくは冷間圧延された薄鋼板4Aは焼鈍炉7を通し、更にその焼鈍された薄鋼板4Bが強制的に空気冷却される冷却室8を通し、次いで水冷装置9を通して引き出しミル10によって引き出される。焼鈍炉7の中でその冷間圧延された薄鋼板4Aは約20℃からその鋼の再結晶温度を超える温度まで加熱される。殆んどの鋼種について適当な温度は1000℃と1250℃との間である。好ましくはその薄鋼板は1080℃と1200℃との間の温度に加熱されるべきである。1000℃と1250℃との間の温度範囲内で、そして好ましくは1080℃と1200℃との間の範囲内で温度を選ぶことによって、焼鈍炉7の中での滞留時間を、充分な滞留時間についての要求がこのプラントにおける製造のための制限要因とならない程に短くすることができる。
種々の金属材料の引張特性は温度に強く依存する。フックの法則は高温度においては、少なくとも非常に小さな引張りの場合を超えては当てはまらない。その材料は中程度の張力において既にクリープし、これはその同じ材料についての室温での降伏点に相当するものよりも低い場合がある。このような条件が本発明に従う方法において利用される。薄鋼板4Aに、その材料の再結晶温度を超える温度において焼鈍炉7の中でその材料のクリープ限界を超える引っ張り応力、すなわちその材料のクリープ領域内の引っ張り応力を加えることによって、焼鈍の後に冷却された薄鋼板4Bが引き出しミル10へ供給される速度と薄鋼板4がブレーキミル13へ供給される速度との間の差に対応してその薄鋼板の長手方向に薄鋼板の永久伸びがもたらされる。この永久延伸又は永久伸びは完全にその高温度に、すなわち焼鈍炉7の中での高い温度に加熱された薄鋼板部分の中で起こる。言い換えれば、薄鋼板のこの伸びは動いていない薄鋼板を高温度において、例えば停止位置まで或る限定された距離だけ引き伸ばす延伸と説明することができる。
引き出しミル10に続いてその延伸された冷たい薄鋼板はホイールアブレータ11及び酸洗い浴12を通過し、そして薄鋼板アキュムレータ14へ送られる。最後に、この薄鋼板はカッター20の中で切断されて巻き取りローラ15の上に巻き取られる。
焼鈍炉7の中での延伸、及びこの延伸によって達成された薄鋼板の永久伸びによってその薄鋼板の断面積は伸びに対応する程度まで減少する。この断面積の減少はその薄鋼板の厚さの減少及びその薄鋼板の幅の減少の形で起こる。
焼鈍炉の後の或る点において、好ましくは引き出しミル10の手前において、その引き伸ばされた冷たい薄鋼板4Bの幅と厚さとが測定装置19、18によって測定される。本発明の好ましい1実施態様によれば、引き出しミル10の速度及び第2ブレーキミル13の速度は、その速度差が薄鋼板の幅を或る板幅にまで減少させるような大きな伸びを生起するように制御し、調節される。所望の厚さを有する薄鋼板のその厚さは測定装置18によって測定される。その後で、冷間圧延機16における圧延による冷間圧延機16の中での厚さの減少と焼鈍炉の中での材料の永久伸びによる焼鈍炉7の中での厚さの減少とを組み合わせた厚さの減少がその薄鋼板4Bに所望の板幅のための所望の最終厚さに相当する厚さを与える程度に薄鋼板4の厚さを減少させるように冷間圧延機16は調節される。言い換えればこの好ましい実施態様によって所望の板幅と所望の板厚さとを達成することが可能であり、これが多くの重大な利点を含む。冷間圧延機16の調節は焼鈍炉7の中での厚さ減少と幅減少との間の相対的比率に影響を及ぼしうるものであること、及び引き出しミル10の速度とブレーキミル13の速度との差の調節並びに冷間圧延機16の中での圧延圧力の調節には測定と調節との繰り返しを必要とすること、言い換えれば安定な状態に達する前にはしかるべき助走期間が必要であることを理解するべきである。しかしながら、これらの諸問題は公知の制御技術によって解決することができるものである。経験的に得られた知識もこの調節作業に利用することができる。
第1表に、焼鈍炉中での薄鋼板の連続的伸びについての10回の試験からの結果を示す。試験した全ての薄鋼板はクロム18、ニッケル9、炭素0.04、マンガン0.5、珪素0.7及び残量の鉄並びに不可避不純物の公称組成を有するAvesta 18−9(SIS 2333)の等級のオーステナイト不銹鋼であった。これらの薄鋼板は最初、約2.75mmの厚さ及び約1050mmの幅に熱間圧延されていた。これらの薄鋼板を焼鈍炉の中で、1130℃の温度の1つの場合を除いて1170℃の温度に加熱した。これらの実験において2つの異なった伸び、すなわち8%及び14%の伸びが適用された。伸びが8%の場合には炉7への供給速度は5m/分であったが、14%の伸びの場合の供給速度は5m/分と15m/分との間で変化させた。最後の、伸びが14%で供給速度が15m/分であった試験においてはその焼きなまし温度も1170℃から1130℃へと低くした。幅及び厚さの値は延伸の前及び後で測定し、そして必要な薄板引張り力も記録した。これらの結果から、少なくともオーステナイト不銹鋼について当てはまると信じられる下記の結論を導き出すことができた:
○幅の減少は供給速度を変えた場合にも一定の伸びにおいてほとんど一定である。
○厚さの減少は供給速度を変えた場合にも一定の伸びにおいてほとんど一定である。
○減少後の面積に基づいて算出した薄板の張力は伸びの値の上昇とともに上昇する。

Figure 0003547431
TECHNICAL FIELD The present invention relates to a method related to the production of sheet steel, which comprises continuously treating a sheet of steel in an annealing furnace at a temperature above the recrystallization temperature of the steel.
BACKGROUND OF THE INVENTION Roll rolling of thin steel sheets is commonly performed for several reasons. One of the main purposes is to provide the desired thickness to the steel sheet. Rolling is usually hot-rolled to a thickness in the size range of 1 to 12 mm, preferably 1 to 6 mm, followed by continuous rolling of the wall thickness to the desired final thickness by cold rolling. In connection with cold rolling, it usually involves one or more annealing operations to recrystallize the structure of the steel.
In the context of this technology, it is difficult to reach the desired final thickness in a simple and practical way.
Another problem relates to the width of the steel sheet. The final product must have at least some desired sheet steel width that must be reached. To meet this requirement, it is customary to use as a starting material for the cold rolling operation a hot-rolled steel sheet having a sheet width substantially exceeding its desired width. This means that more edge scrap is produced during manufacture than is more or less unavoidable for conditioning the edges of the steel sheet. The formation of this scrap material from the edges makes it difficult to adapt the width of the raw steel sheet to the width required by the customer and makes it impossible to adjust the width of the steel sheet in a cold rolling mill Possibly a very large loss.
BRIEF DESCRIPTION OF THE INVENTION The purpose of the present invention is to solve the various problems mentioned above. This can be achieved by a method characterized by the claims of the invention. Although the method of the present invention has been particularly developed for austenitic stainless steels, it can also be used for other steel grades, stainless steels and other alloyed steels and carbon steels. The principle of the invention itself can also be used to produce sheets of various metals other than steel, such as copper and copper alloys, which undergo cold hardening during cold working. Other features of the present invention will be apparent from the following description of preferred embodiments.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention, various features of the present invention, and experiments performed are described in the accompanying drawings, which show a manufacturing plant in which the equipment for carrying out the method of the present invention is integrated. It is described below under
In the drawing, a hot-rolled thin steel sheet 1 forms a roll. The cutter is shown at 2 and the welding device for welding several sheet metal parts together is shown at 3. Sheet steel, consisting of parts welded together and to be treated according to the invention, is indicated at 4. The plant shown in the drawing also comprises the following components: a sheet storage device or accumulator 5, a bridle roll 6, a part of an accumulator, a first brake mill 16, a cold rolling mill 19, a second brake mill 13 , Annealing furnace 7, Air cooling chamber 8 for forced air cooling, Thin steel sheet water cooling device 9, Draw mill 10, Wheel ablator 11, Pickling bath 12, Finished thin steel sheet accumulator or accumulator 14, and final products included It also includes a wound winding drum 15. Measuring devices for measuring the width and thickness of the steel sheet are indicated by 17 and 18, respectively.
In the overall process, including the method according to the invention, the steel sheet 1 is unwound from a reel or roll, cut at both ends by a cutter 2, spliced by a welding device 3 and fed into a steel sheet accumulator 5, where it is fed. It serves as a buffer for the thin steel plate 4 so that the following process can be carried out completely continuously. The hot rolled steel sheet 4 has a thickness between 1 mm and 12 mm, preferably between 1 mm and 6 mm, when it enters the accumulator 5.
The thin steel sheet 4 is supplied from the thin steel sheet accumulator 5 to the cold rolling mill 19 after passing through the first brake mill 6. According to one preferred embodiment of the method according to the invention, the steel sheet 4 is reduced in thickness in its cold rolling mill 19 without essentially changing the width of the steel sheet. The magnitude of this reduction in thickness, according to one of the preferred embodiments, is described below. However, in one embodiment of the present invention, cold rolling can be omitted in certain cases.
After passing through the second brake mill 13, the cold rolled steel sheet 4A is preferably passed through an annealing furnace 7 and further through a cooling chamber 8 in which the annealed steel sheet 4B is forcibly air cooled. , And then withdrawn by a draw mill 10 through a water cooling device 9. The cold rolled steel sheet 4A is heated in the annealing furnace 7 from about 20 ° C. to a temperature above the recrystallization temperature of the steel. Suitable temperatures for most steel grades are between 1000 ° C and 1250 ° C. Preferably the steel sheet should be heated to a temperature between 1080 ° C and 1200 ° C. By choosing the temperature in the temperature range between 1000 ° C. and 1250 ° C., and preferably in the range between 1080 ° C. and 1200 ° C., the residence time in the annealing furnace 7 is increased by a sufficient residence time. Can be so short that it is not a limiting factor for production in this plant.
The tensile properties of various metallic materials are strongly dependent on temperature. Hooke's law does not hold at high temperatures, at least for very small pulls. The material already creeps at moderate tension, which may be lower than the room temperature yield point for the same material. Such conditions are utilized in the method according to the present invention. The steel sheet 4A is cooled after annealing by applying a tensile stress exceeding the creep limit of the material in the annealing furnace 7 at a temperature exceeding the recrystallization temperature of the material, that is, a tensile stress in the creep region of the material. Corresponding to the difference between the speed at which the thin steel sheet 4B is fed to the draw mill 10 and the speed at which the thin steel sheet 4 is fed to the brake mill 13, a permanent elongation of the thin steel sheet occurs in the longitudinal direction of the steel sheet. It is. This permanent elongation or elongation takes place completely in the steel sheet section which is heated to its high temperature, that is to say in the annealing furnace 7 at a high temperature. In other words, this elongation of the thin steel sheet can be described as stretching a non-moving thin steel sheet at a high temperature, for example, by a certain limited distance to a stop position.
Following the draw mill 10, the drawn cold steel sheet passes through a wheel ablator 11 and a pickling bath 12 and is sent to a steel sheet accumulator 14. Finally, the thin steel sheet is cut in the cutter 20 and wound on the winding roller 15.
Due to the elongation in the annealing furnace 7 and the permanent elongation of the steel sheet achieved by this elongation, the cross-sectional area of the steel sheet is reduced to a degree corresponding to the elongation. This reduction in cross section occurs in the form of a reduction in the thickness of the sheet and a reduction in the width of the sheet.
At some point after the annealing furnace, preferably before the draw mill 10, the width and thickness of the stretched cold steel sheet 4B are measured by measuring devices 19,18. According to one preferred embodiment of the present invention, the speed of the draw mill 10 and the speed of the second brake mill 13 produce a large elongation such that the speed difference reduces the width of the steel sheet to a certain width. As controlled and adjusted. The thickness of the steel sheet having the desired thickness is measured by the measuring device 18. Thereafter, the reduction in thickness in the cold rolling mill 16 due to rolling in the cold rolling mill 16 and the reduction in thickness in the annealing furnace 7 due to the permanent elongation of the material in the annealing furnace are combined. The cold rolling mill 16 is adjusted such that the reduced thickness reduces the thickness of the steel sheet 4 to such an extent that it gives the steel sheet 4B a thickness corresponding to the desired final thickness for the desired strip width. Is done. In other words, this preferred embodiment makes it possible to achieve the desired plate width and the desired plate thickness, which includes a number of significant advantages. That the adjustment of the cold rolling mill 16 can affect the relative ratio between thickness reduction and width reduction in the annealing furnace 7, and that the speed of the draw mill 10 and the speed of the brake mill 13 And the adjustment of the rolling pressure in the cold rolling mill 16 require repetition of measurement and adjustment, in other words, an appropriate run-up period is required before a stable state is reached. You should understand that there is. However, these problems can be solved by known control techniques. Empirical knowledge can also be used for this adjustment task.
Table 1 shows the results from ten tests on the continuous elongation of steel sheets in an annealing furnace. All steel sheets tested were Avesta 18-9 (SIS 2333) grade austenitic stainless steel with a nominal composition of chromium 18, nickel 9, carbon 0.04, manganese 0.5, silicon 0.7 and the balance of iron and unavoidable impurities. . These sheets were initially hot rolled to a thickness of about 2.75 mm and a width of about 1050 mm. These steel sheets were heated in an annealing furnace to a temperature of 1170 ° C, except in one case at a temperature of 1130 ° C. Two different elongations were applied in these experiments, namely 8% and 14%. When the elongation was 8%, the feed speed to the furnace 7 was 5 m / min, but when the elongation was 14%, the feed speed was changed between 5 m / min and 15 m / min. In the last test, with an elongation of 14% and a feed rate of 15 m / min, the annealing temperature was also reduced from 1170 ° C. to 1130 ° C. Width and thickness values were measured before and after stretching, and the required sheet tensile force was also recorded. From these results, it was possible to draw the following conclusions that are believed to apply at least for austenitic stainless steels:
○ The width decrease is almost constant at a constant elongation even when the feeding speed is changed.
○ The decrease in thickness is almost constant at a constant elongation even when the feed rate is changed.
○ The tension of the thin plate calculated based on the reduced area increases with an increase in the elongation value.
Figure 0003547431

Claims (5)

薄鋼板を焼鈍炉(7)の中でその鋼の再結晶温度を超える温度において連続的に処理することを含む、薄鋼板の製造に関連する方法において、その薄鋼板(4A)を或る供給速度で焼鈍炉へ供給し、そしてそれより高い別な引き出し速度でその炉から引き出し、その際その薄鋼板に上記温度の焼鈍炉の中で上記温度においてその材料のクリープ限界を超える引張り力を加え、その結果その供給速度と引き出し速度との間の差に対応する薄鋼板の永久延伸(伸び)およびこの伸びに対応して、薄鋼板厚さ並びに薄鋼板幅の減少を含めて、薄鋼板の断面積の減少がもたらされることを特徴とする方法。Feeding the steel sheet (4A) to a feed in a method related to the production of the steel sheet, comprising continuously treating the steel sheet in an annealing furnace (7) at a temperature above the recrystallization temperature of the steel. To the annealing furnace at a rate and withdraw from the furnace at another higher withdrawal rate, wherein the steel sheet is subjected to a tensile force exceeding the creep limit of the material at the temperature in the annealing furnace at the temperature. The resulting elongation (elongation) of the steel sheet corresponding to the difference between its feed rate and the withdrawal rate and, corresponding to this elongation, the reduction of the steel sheet thickness and the steel sheet width, A method characterized in that a reduction in cross section is provided. 薄鋼板に、1000℃と1250℃との間の温度において上記引張り力を加えることを特徴とする、請求の範囲1に従う方法。The method according to claim 1, characterized in that the tensile force is applied to the steel sheet at a temperature between 1000C and 1250C. 薄鋼板に、1080℃1200℃との間の温度において上記引張り力を加えることを特徴とする、請求の範囲2に従う方法。3. The method according to claim 2, wherein the tensile force is applied to the steel sheet at a temperature between 1080 ° C. and 1200 ° C. 熱間圧延した後の薄鋼板に、この薄鋼板を第2の厚さ減少をもたらす焼鈍炉内での上記連続的焼鈍及び延伸により処理するに先立って、少なくとも1回の冷間圧延操作を加えることにより薄鋼板の第1の厚さ減少をもたらすことを特徴とする、請求の範囲1ないし3のいずれか1項に従う方法。The hot rolled steel sheet is subjected to at least one cold rolling operation prior to treating the steel sheet by the continuous annealing and stretching in an annealing furnace that results in a second thickness reduction. A method according to any one of claims 1 to 3, characterized in that this results in a first thickness reduction of the steel sheet. 薄鋼板を、上記第2の厚さ減少が行われるのと同時に、その薄鋼板の幅がしかるべき最終幅にまで減少する程度にその焼鈍炉の中で連続的に延伸し、そして先行の冷間圧延操作においてはこの仕上げの第2の厚さ減少程度で決まる程度までこの薄鋼板を加工することによって、その冷間圧延および焼鈍炉内での伸びの双方により達成される合計の厚さ減少が最終製品の所望の薄板厚さに相当する焼鈍後の厚さをその薄鋼板に与えるようにすることを特徴とする、しかるべき所望の幅と厚さとを有する薄鋼板の製造のための請求の範囲4に従う方法。The steel sheet is continuously stretched in the annealing furnace to the extent that the width of the steel sheet is reduced to the appropriate final width at the same time that the second thickness reduction is performed, and In the cold rolling operation, by processing the steel sheet to an extent determined by the second thickness reduction of the finish, the total thickness reduction achieved by both cold rolling and elongation in the annealing furnace. To give the steel sheet a thickness after annealing corresponding to the desired sheet thickness of the final product, characterized in that it has a desired width and thickness. According to range 4.
JP50871792A 1990-09-21 1992-03-17 Continuous recrystallization annealing method for thin steel sheet Expired - Lifetime JP3547431B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE9003018A SE467055B (en) 1990-09-21 1990-09-21 PROCEDURE PROVIDES CONTINUOUS RECRISTALIZATION ANGLE OF A STEEL BAND, WHERE THE STEEL BAND IS EXPOSED BEFORE A TENSION TENSION
PCT/SE1992/000162 WO1993019211A1 (en) 1990-09-21 1992-03-17 Method for continuous recrystallization annealing of a steel strip

Publications (2)

Publication Number Publication Date
JPH07500871A JPH07500871A (en) 1995-01-26
JP3547431B2 true JP3547431B2 (en) 2004-07-28

Family

ID=40379726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50871792A Expired - Lifetime JP3547431B2 (en) 1990-09-21 1992-03-17 Continuous recrystallization annealing method for thin steel sheet

Country Status (11)

Country Link
US (1) US5690757A (en)
EP (1) EP0628087B1 (en)
JP (1) JP3547431B2 (en)
AT (1) ATE162228T1 (en)
AU (1) AU1655792A (en)
CA (1) CA2131282A1 (en)
DE (1) DE69224078T2 (en)
ES (1) ES2112902T3 (en)
FI (1) FI100603B (en)
SE (1) SE467055B (en)
WO (1) WO1993019211A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE508892C2 (en) * 1996-10-15 1998-11-16 Avesta Sheffield Ab Process for making a stainless steel strip
FR3027920B1 (en) * 2014-10-29 2019-03-29 Fives Stein METHOD FOR ORIENTING STEEL SHEET GRAINS, DEVICE THEREFOR, AND INSTALLATION USING SAID METHOD OR DEVICE

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE302470B (en) * 1964-07-13 1968-07-22 Svenska Metallverken Ab
US3388011A (en) * 1965-10-08 1968-06-11 Atomic Energy Commission Usa Process for the production of high strength steels
SU602573A1 (en) * 1976-07-09 1978-04-15 Научно-исследовательский институт автотракторных материалов Method of heat and mechanical treatment of steel articles

Also Published As

Publication number Publication date
SE467055B (en) 1992-05-18
FI100603B (en) 1998-01-15
EP0628087B1 (en) 1998-01-14
WO1993019211A1 (en) 1993-09-30
FI943986A0 (en) 1994-08-31
AU1655792A (en) 1993-10-21
DE69224078T2 (en) 1998-05-07
EP0628087A1 (en) 1994-12-14
DE69224078D1 (en) 1998-02-19
SE9003018L (en) 1992-03-22
ATE162228T1 (en) 1998-01-15
FI943986A (en) 1994-08-31
CA2131282A1 (en) 1993-09-30
ES2112902T3 (en) 1998-04-16
SE9003018D0 (en) 1990-09-21
US5690757A (en) 1997-11-25
JPH07500871A (en) 1995-01-26

Similar Documents

Publication Publication Date Title
KR101232259B1 (en) Method for producing hot strips consisting of lightweight steel
EP0541574B1 (en) Process and plant for obtaining steel strip coils having cold-rolled characteristics and directly obtained in a hot-rolling line
JP4231932B2 (en) Hot rolled strip processing method
JP3763041B2 (en) A method to increase the yield strength of cold formed steel shapes.
US4505141A (en) Apparatus for thermomechanically rolling hot strip product to a controlled microstructure
JP3547431B2 (en) Continuous recrystallization annealing method for thin steel sheet
US4583387A (en) Apparatus for thermomechanically rolling hot strip product to a controlled microstructure
JP4687255B2 (en) Steel plate manufacturing method
US4291558A (en) Process of rolling iron-silicon strip material
KR100239281B1 (en) Method for continuous recrystallization annealing of a steel strip
US4537643A (en) Method for thermomechanically rolling hot strip product to a controlled microstructure
JP2825986B2 (en) Method for producing thin hot rolled steel sheet with excellent surface properties
JP3214351B2 (en) Method for producing Cr-Mo based seamless steel pipe excellent in high temperature strength
JP2820805B2 (en) Method for producing thin hot rolled steel sheet with excellent surface properties
JPH08176676A (en) Production of chromium-nickel-type stainless steel sheet excellent in surface quality
SU995925A1 (en) Method of working low carbon steel strip
DE2312253A1 (en) PROCESS FOR THE PRODUCTION OF GRAIN ORIENTED FLAT ROLLED MATERIAL FROM SI STEEL
Garcia-Vargas et al. Control of Mechanical Properties in Low Carbon Steel Using an Anneal–Strain–Anneal Method
US1907019A (en) Process of producing sheet metal
JP2002066605A (en) Hot rolling method and apparatus
JPS5830925B2 (en) Manufacturing method for low-grade electrical steel sheets
JPH09295028A (en) Production of hot-rolled steel plate excellent in pickling property and surface characteristic
JPS55125228A (en) Method and apparatus of continuous annealing of steel strip
JP2006334599A (en) Method for producing steel sheet
JPH09108701A (en) Direct rolling process of continuous cast slab and apparatus therefor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040121

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040121

RD14 Notification of resignation of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7434

Effective date: 20040121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040414

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

EXPY Cancellation because of completion of term