JP3547259B2 - Antimicrobial composite resin composition and method for producing the same - Google Patents
Antimicrobial composite resin composition and method for producing the same Download PDFInfo
- Publication number
- JP3547259B2 JP3547259B2 JP16642696A JP16642696A JP3547259B2 JP 3547259 B2 JP3547259 B2 JP 3547259B2 JP 16642696 A JP16642696 A JP 16642696A JP 16642696 A JP16642696 A JP 16642696A JP 3547259 B2 JP3547259 B2 JP 3547259B2
- Authority
- JP
- Japan
- Prior art keywords
- resin
- antibacterial
- weight
- parts
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、抗菌性複合体樹脂組成物並びにその製造方法に関する。
【0002】
【従来の技術】
近年、合成樹脂はあらゆる分野に使用されており、我々の日常生活においても多くの合成樹脂製品が普及している。これに伴い、例えば台所用品等のように衛生面で注意を払う必要がある分野に合成樹脂が用いられる場合に、合成樹脂表面の菌による汚染が問題となってきている。また、建築用資材のコーキング材として合成樹脂が使用される場合、衛生上の問題に加えて外観が悪化するという問題が、菌やカビの汚染により生じている。
【0003】
このような合成樹脂表面の菌やカビによる汚染への対策として、抗菌物質を合成樹脂表面に付着させて抗菌効果をもたせた合成樹脂製品が開発され、実用化されている。その付着方法としては、合成樹脂中に抗菌物質を混入し、合成樹脂表面にこの組成物を露出させる方法が一般的である。また、抗菌物質としては、有機系抗菌剤、銀イオンを用いた銀系抗菌剤などが挙げられる。特に、優れた抗菌効果を付与したい場合は、チアベンダゾールなどの有機系抗菌剤が用いられている。また、植物抽出のテルペン系化合物を抗菌物質として用いた製品も開発されている(特開昭63−30424号公報、特開昭61−228283号公報、特開昭61−268934号公報記載)。
【0004】
さらに、合成樹脂製品に付着された抗菌剤による抗菌性能は、永久的ではないため、合成樹脂表面の菌やカビによる汚染のもう一つの対策として、定期的に次亜塩素酸ナトリウム等の塩素系漂白剤を用いて表面殺菌が行なわれている。
【0005】
【発明が解決しようとする課題】
しかしながら、従来の技術では、抗菌物質をそのまま用いるため、合成樹脂に混練するのが困難であるという問題がある。すなわち、抗菌物質を合成樹脂中に均一分散するためには、分散助剤を添加する必要があり、混練時の温度条件を常に検討する必要があり、数回の混練操作を行なう必要がある。混練工程は手間がかかるばかりでなく、コストが高くなり、その結果として、抗菌性能をもつ合成樹脂は高価となってしまう。
【0006】
さらに、従来の抗菌剤にはつぎの問題点がある。まず、有機系抗菌剤は揮発性を有するため合成樹脂から溶出しやすく、また溶出した場合、周囲環境が汚染されるという問題がある。また、銀イオン(Ag+)を用いた銀系抗菌剤の場合、台所で常用する漂白剤を用いると、銀イオンが塩素系漂白剤中の塩素イオンと反応し不溶性の塩化銀を生成し、さらに塩化銀の光反応活性が高いためすぐに金属銀、酸化銀に変化することにより、黒変するのみならず、抗菌性能が低下するという問題がある。また、銀イオンを用いた銀系抗菌剤の場合、銀塩安定化のために樹脂中に共に混練する担持体の屈折率が混練樹脂のそれと異なるため樹脂を不透明にさせたり、担持体の吸湿性により成型樹脂表面の平滑性を損なうなどの問題もある。そして、植物抽出の抗菌剤の場合、植物内に存在する物質の多くは芳香性物質であり、揮発性を有するため、これらの物質を樹脂に混入する場合に、樹脂の成型時の加熱により蒸発するため、その効果がほとんど期待できないという問題がある。
【0007】
本発明は、前記従来の問題を解決し、合成樹脂に容易に均一混合でき、合成樹脂表面上で安定した抗菌効果を示し、合成樹脂中より溶出しても環境汚染の原因となりにくく、合成樹脂表面の外観を損なわない抗菌性複合体樹脂および抗菌性複合体樹脂組成物並びにその製造方法を提供する。
【0008】
【課題を解決するための手段】
前記目的を達成するために、本発明の抗菌性複合体樹脂組成物は、抗菌物質を担持する担持体粒子をオレフィン樹脂と相溶性のある樹脂中に分散させた抗菌性複合体樹脂が、樹脂ペレットの表面に付着している。本発明において、抗菌性複合体樹脂は、樹脂中に担持体粒子が分散し、この担持体粒子が抗菌物質を担持しており、前記樹脂が、オレフィン樹脂と相溶性のある樹脂であるという構成をとる。
【0009】
このような構成をとることにより、抗菌物質の合成樹脂への混練工程で生じていた従来の問題が解決される。すなわち、抗菌物質を担持した担持体粒子をさらに樹脂中に分散させることにより抗菌物質が凝集しにくくなり、合成樹脂中で均一に分散する。また、この抗菌性複合体樹脂は加熱することで軟化し、その周囲に樹脂を配置することでその樹脂中への均一分散が分散助剤を用いなくても容易になる。その結果、従来のような混練工程にかかる手間が省け、混練工程の時間が短縮でき、混練工程のコスト低減化が可能となる。
【0010】
本発明において、担持体粒子は、コロイダルシリカ、コロイダルアルミナおよびコロイダルチタンからなる群から選択された少なくとも一つの酸化物コロイダルであることが好ましい。
【0011】
また、本発明において、前記抗菌性複合体樹脂を構成する樹脂は、塩素化ポリプロピレン樹脂であることが好ましい。そして、本発明の抗菌性複合体樹脂組成物は、樹脂中に担持体粒子が分散し、この担持体粒子が抗菌物質を担持している抗菌性複合体樹脂が樹脂ペレットの表面に付着しているものである。
また、この抗菌性複合体樹脂を構成する樹脂は、塩素化ポリプロピレン樹脂であることが好ましい。
【0012】
本発明において、樹脂ペレットは、ポリエチレンペレット、ポリプロピレンペレットおよび塩素化ポリプロピレンペレットからなる群から選択された少なくとも一つの樹脂ペレットであることが好ましい。
【0013】
つぎに、抗菌性複合体樹脂の製造方法は、抗菌物質を可溶化して抗菌物質溶液を調製し、この抗菌物質溶液に担持体粒子を配合し、この担持体粒子表面に前記抗菌物質を吸着させ、この担持体粒子を配合した溶液に、オレフィン樹脂と相溶性のある樹脂からなる樹脂エマルションを混合し、ついでこの混合溶液を乾燥する方法である。
【0014】
この製法によれば、溶液を乾燥させて分散媒を除去することにより、抗菌物質を担持した担持体粒子をさらに担持したエマルション樹脂が、相互に凝集して一つの樹脂の塊を形成する。したがって、樹脂中に前記担持体粒子が分散した抗菌製複合体樹脂が形成されるのである。
【0015】
また、本発明の抗菌性複合体樹脂組成物の製造方法は、抗菌物質を可溶化して抗菌物質溶液を調製し、この抗菌物質溶液に担持体粒子を配合しこの担持体粒子表面に前記抗菌物質を吸着させ、この担持体粒子を配合した溶液に、オレフィン樹脂と相溶性のある樹脂からなる樹脂エマルションを混合し、この混合溶液に、オレフィン樹脂と相溶性のある樹脂からなる樹脂ペレットを配合し、ついでこの溶液を乾燥する方法である。
【0016】
抗菌性複合体樹脂の製造方法の好ましい例は、銀、銅および亜鉛から選択された少なくとも一つの金属の酢酸塩、硫酸塩および硝酸塩から選択された少なくとも一つの金属塩を抗菌物質とし、亜硫酸イオンおよびチオ硫酸イオンの少なくとも一方を前記金属塩1モルに対し2〜15モル添加して調製後の抗菌物質100重量部に対して前記金属の含有割合が0.1〜10重量部であるチオスルファト金属錯体溶液からなる抗菌物質溶液を調製し、この溶液に担持体粒子として無機酸化物コロイドを前記チオスルファト金属錯体溶液100重量部に対して固形分重量で0.1〜50重量部の割合で添加混合し、さらにオレフィン相溶性樹脂エマルションを前記チオスルファト金属錯体溶液100重量部に対して樹脂固形分換算0.5〜50重量部の割合で添加し、ついで前記樹脂の溶融温度以下の温度で乾燥させる方法である。
【0017】
また、本発明の抗菌性複合体樹脂組成物の製造方法の好ましい例は、前述の方法で抗菌性複合体樹脂溶液を調製し、これを前記エマルション樹脂と相溶性がありかつ熱可塑性を有する樹脂ペレットの表面に、前記チオスルファト金属錯体溶液100重量部に対して樹脂ペレットが200〜10000重量部の割合で被着させ、ついで前記樹脂および前記樹脂ペレットの溶融温度以下の温度で乾燥させる方法である。
【0018】
本発明において、例えば、抗菌物質として、チオスルファト銀錯体、チオスルファト亜鉛錯体、チオスルファト銅錯体からなる群から選択された少なくとも一つのチオスルファト金属錯体を用いた場合、このチオスルファト金属錯体は安定であることから、光安定性が得られるばかりではなく、錯体がアニオンを形成することから塩素に対しての安定性が確保され、塩素系漂白剤使用時における塩素との反応の問題が解決される。
【0019】
また、本発明の抗菌性複合体樹脂組成物の製造方法において、担持体粒子としては、前述したような酸化物コロイダルが好ましい。
このような担持体粒子を用いることにより、抗菌物質の熱安定性が得られることは言うまでもなく、この担持体を樹脂に混練しても、樹脂を不透明にさせることなく、樹脂表面の平滑性を損ねることがない。
【0020】
そして、本発明の抗菌性複合体樹脂組成物の製造方法において、前記エマルション樹脂として好ましいのは、塩素化ポリプロピレン樹脂エマルションである。
【0021】
オレフィン系樹脂(合成樹脂)は、同じオレフィン系樹脂でないと相溶性がなく、かつオレフィン系樹脂は、有機溶媒などの溶媒系に溶け難い。そこで、オレフィン系に相溶性があり、エマルションを形成可能な塩素化ポリプロピレン樹脂を用いることが好ましい。それにより、溶剤系で可溶性抗菌物質と混合し、乾燥させることで成形可能な樹脂、すなわち本発明の抗菌材料を構成することができる。
【0022】
さらに、本発明の抗菌性複合体樹脂組成物の製造方法において、樹脂ペレットとしては、前述したものが好適に用いられる。
【0023】
【発明の実施の形態】
つぎに、本発明を具体的に説明する。
本発明において、抗菌性複合体樹脂は、樹脂中に担持体粒子が分散し、この担持体粒子が抗菌物質を担持しているものであって、前記樹脂が、オレフィン樹脂と相溶性のある樹脂であることを特徴とする。
【0024】
前記担持体粒子としては、抗菌物質を担持吸着し、エマルション中の樹脂に付着するものであれば特に制限はない。その中でも、樹脂中に混練しても樹脂の外観を損ねないという理由から、コロイダルシリカ、コロイダルアルミナ、コロイダルチタン等の無機酸化物コロイドが好ましいことは先に述べたとおりである。担持体として用いる無機酸化物コロイドの粒径は、通常0.01〜10μmである。すなわち、0.01μm以下では担持効果が少なく、一方、10μm以上では樹脂成型物表面で肉眼での識別が可能となり表面のザラツキの原因となる。抗菌物質が担持体粒子に担持されることによりさらに抗菌物質の熱安定性が得られる。
【0025】
前記樹脂は、合成樹脂と相溶性があり、熱可塑性であり、また、有機溶媒中に分散できるものであることが好ましい。このような樹脂であれば、抗菌性複合体樹脂を合成樹脂に混練する際に、容易に混練することができる。このような樹脂としては、塩素化ポリプロピレン等が挙げられる。
【0026】
前記抗菌物質は、金属の酢酸塩、硫酸塩および硝酸塩を原料とするチオスルファト金属錯体、特にチオスルファト銀錯体、チオスルファト亜鉛錯体、チオスルファト銅錯体あるいはそれらの混合物であることがが好ましい。これら錯体は安定であることから光安定性が得られるばかりでなく、錯体がアニオンを形成することから塩素に対しての安定性が確保されるからである。
【0027】
また、本発明の抗菌性複合体樹脂組成物は、樹脂中に担持体粒子が分散し、この担持体粒子が抗菌物質を担持している抗菌性複合体樹脂が樹脂ペレットの表面に付着しているものである。抗菌性合成樹脂を作成する場合、この抗菌性複合体樹脂組成物をそのまま成型してもよいし、他のポリオレフィン等の合成樹脂に分散させて成型してもよい。この抗菌性複合体樹脂を構成する樹脂としては、例えば、塩素化ポリプロピレン樹脂等があげられる。
樹脂ペレットは、抗菌性複合体樹脂の樹脂と相溶性があることが好ましく、さらにポリオレフィン等の合成樹脂に相要請のある熱可塑性樹脂からなることが特に好ましい。最適には、ポリエチレン樹脂ペレット、ポリプロピレン樹脂ペレット、塩素化ポリプロピレン樹脂ペレット等である。
【0028】
【実施例】
(実施例1)
酢酸銀を原料とし、チオスルファアト金属錯体溶液を調製した。すなわち、まず、酢酸銀を溶解度に近い7.7g/lで60℃以下の条件下で水に溶解して酢酸銀水溶液を調製した。これに、Na2SO3・7H2OをNa2SO3/CH3COOAg=2.7g/1gの割合で添加し、充分攪拌した後、Na2S2O3・5H2OをNa2S2O3/CH3COOAg=6.6g/1gの割合で添加した。さらに、酢酸亜鉛を亜鉛換算量にして添加銀量の2倍量を添加してチオスルファト金属錯体溶液を得た。この一連の溶解工程は40℃〜室温の温度条件下で行なった。
【0029】
このチオスルファト金属錯体溶液にベーマイトコロイダル(固形分:約10%、日産化学社製、コロイダルシリカAS−200)を添加し、均一攪拌混合した。ここで、ベーマイトコロイダルの配合割合は、チオスルファト金属錯体溶液100重量部に対し、20重量部であった。また、その粒径は約0.1μmであった。
【0030】
さらに、塩素化ポリプロピレン樹脂の有機溶剤エマルションをチオスルファト金属錯体溶液100重量部に対し、20重量部の割合で添加し、均一攪拌混合して、この分散液を、常圧、60℃の条件下で乾燥させて抗菌性複合体樹脂を得た。なお、乾燥の条件は、これに限定されず、通常、圧力10−4〜常圧Pa、温度40〜120℃である。
【0031】
上記方法で製造した抗菌性複合体樹脂を、ポリプロピレン樹脂の成形時に、樹脂中に均一分散して樹脂成形体を作製した。抗菌性複合体樹脂の重量割合は、樹脂成形体100重量部とした時、樹脂成形体中の銀換算量で0.015重量部であった。
【0032】
なお、上記原料中のナトリウムイオンの一部あるいは全部をカリウムイオンに置き換えることも可能であり、カリウムイオンを用いたものは特性が若干劣るものの実用上は差し支えない抗菌性複合体樹脂が得られることを、本発明者らは確認している。
【0033】
さらに、本実施例では、可溶性金属塩として酢酸銀を用いたが、酢酸亜鉛、その他の可溶性亜鉛塩または可溶性銅塩を用いても、特性が若干劣るものの実用上は差し支えのない抗菌性複合体樹脂が得られる。
(実施例2)
実施例1と同様の方法で調製した抗菌性複合体樹脂分散液に、ポリプロピレン樹脂をチオスルファト金属錯体100重量部に対し333重量部の割合で添加し、均一混合した後、常圧、60℃の条件下で乾燥させて抗菌性複合体樹脂組成物を得た。
【0034】
上記の方法で製造した抗菌性複合体樹脂組成物をポリプロピレン樹脂の成形時に、樹脂中に均一分散して樹脂成形体を作製した。抗菌樹脂ペレットの重量割合は、ポリプロピレンナチュラル樹脂20重量部に対し、1重量部であった。
(比較例)
抗菌物質を含まずに実施例1と同様の方法で抗菌性複合体樹脂を調製し、これをポリプロピレン樹脂の成形時に樹脂中に均一分散して樹脂成形体を得た。抗菌材料の重量割合は、ポリプロピレンナチュラル樹脂20重量部に対し、1重量部であった。
【0035】
このようにして作製された実施例1,2、比較例1の樹脂成形体について、以下に示す方法により、抗菌試験を行なった。この結果を下記の表1に示す。
[抗菌試験]
試験菌として、E.coli,S.aureus,B.subtillisを用い、滴定法に準じ、24時間後の生菌数を測定した。評価は比較例の樹脂成形体に対する生菌数との対比で行ない、102以上の菌数減少の見られる実験区に対して抗菌性能効果ありとした。
【0036】
【表1】
【0037】
上記表1から、本実施例の抗菌性複合体樹脂および抗菌性複合体樹脂組成物は、実用的な抗菌性能を有することがわかる。
(実施例3)
実施例1および2に記載した方法を基本とし、下記表2に示されるように各種条件を変更した樹脂成形体を作製し、その抗菌性能、製造時の作業性および色調表面状態を主体とする成形仕上がり外観について評価した。その結果も同表に示す。
[抗菌試験]
試験菌として、E.coli,S.aureus,B.subtillisを用い、滴定法に準じ、24時間後の生菌数を測定した。評価は比較例の樹脂成形体に対する生菌数との対比で行なった。
【0038】
○:102以上の生菌数減少
△:102の生菌数減少
×:102以下の生菌数減少
【0039】
【表2】
【0040】
上記表2から、次のようなことがわかる。抗菌物質である金属錯体を添加しなかった樹脂成形体は、抗菌性能を示さない。また、抗菌物質を添加してもコロイダル酸化物を添加しなかった樹脂成形体は、抗菌性能が示されないばかりでなく、樹脂表面が黒変してしまう。また、両者を含んでいるものの中でも、樹脂エマルションとして塩素化ポリプロピレンを添加した成形樹脂体は、抗菌性能が示され、外観や作業性も向上した。すなわち、抗菌物質、コロイダル酸化物、塩素化ポリプロピレン樹脂により構成される抗菌性複合体樹脂を用いて樹脂成形体を作製すると、優れた抗菌性能を示すだけでなく、作業性も向上し、樹脂成形体の外観も損なわれないことがわかる。
【0041】
【発明の効果】
以上のように、抗菌性複合体樹脂は、樹脂中に担持体粒子が分散し、この担持体粒子が抗菌物質を担持しているものであって、前記樹脂が、オレフィン樹脂と相溶性のある樹脂であることを特徴とする。すなわち、このような構成をとることにより、これを合成樹脂に混練する場合、分散助剤を用いなくても容易に均一分散することができる。また、このような構成をとることにより、抗菌物質の安定性が増し、合成樹脂中から溶出しにくく、環境汚染の原因となりにくい。さらに、抗菌物質の安定性が増加すると、合成樹脂表面の抗菌性能安定性の向上も期待できる。
【0042】
また、担持体粒子として無機酸化物コロイドを用いた場合、樹脂の透明性および樹脂表面の平滑性を損ねず、そのまま維持する作用がある。
また、抗菌物質としてチオスルファト金属錯体を用いた場合、抗菌物質それ自体が安定なので、さらに安定した抗菌作用を示すばかりではなく、抗菌物質表面に外殻被膜層を形成しているので、抗菌物質の徐放性を有し、かつ熱安定性が向上する。また、抗菌物質として、チオスルファト金属錯体を用いた場合は、塩素濃度の高い雰囲気中で使用しても変色せず、抗菌性能の低下が防止される。なお、チオスルファト金属錯体の原料の酢酸銀の代わりに硫酸銀を用いることにより、生成チオスルファト金属錯体溶液中の酢酸残留をなくし、抗菌物質の酢酸臭および抗菌性材料の樹脂混練成形時の酢酸臭を除去できるという効果がある。
【0043】
そして、本発明では、抗菌性複合体樹脂から直接ペレットあるいは、マスターバッチを作製するものである。本発明では、液体状の抗菌物質を原料とし、液体状の抗菌材料を経てマスターバッチを作製するため、従来法に比べて抗菌操作工程の工数削減が可能となる。この結果、抗菌操作工程におけるコストが低減が可能となり、さらには、抗菌性能をもつ合成樹脂のコストの低減が期待できる。
【図面の簡単な説明】
【図1】本発明の製造方法の一実施例を示す工程図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is an anti-fungal complexes resin compositions and methods for the preparation thereof.
[0002]
[Prior art]
In recent years, synthetic resins have been used in various fields, and many synthetic resin products have become widespread in our daily lives. Along with this, when synthetic resin is used in a field where attention must be paid to hygiene, such as kitchen utensils, contamination of the surface of the synthetic resin by bacteria has become a problem. In addition, when a synthetic resin is used as a caulking material for architectural materials, a problem of deterioration in appearance in addition to hygienic problems is caused by bacteria and mold contamination.
[0003]
As a countermeasure against such contamination of the surface of the synthetic resin by bacteria and mold, a synthetic resin product having an antibacterial effect by attaching an antibacterial substance to the surface of the synthetic resin has been developed and put into practical use. As a method for attaching the composition, a method is generally used in which an antimicrobial substance is mixed into a synthetic resin to expose the composition on the surface of the synthetic resin. Examples of the antibacterial substance include an organic antibacterial agent and a silver antibacterial agent using silver ions. In particular, when it is desired to provide an excellent antibacterial effect, an organic antibacterial agent such as thiabendazole is used. Products using terpene compounds extracted from plants as antibacterial substances have also been developed (described in JP-A-63-30424, JP-A-61-228283, and JP-A-61-268934).
[0004]
Furthermore, since the antibacterial performance of the antibacterial agent attached to the synthetic resin product is not permanent, as another countermeasure against contamination of the synthetic resin surface by bacteria or mold, chlorine-based substances such as sodium hypochlorite should be periodically checked. Surface disinfection has been performed using bleach.
[0005]
[Problems to be solved by the invention]
However, in the conventional technique, since the antibacterial substance is used as it is, there is a problem that it is difficult to knead it with a synthetic resin. That is, in order to uniformly disperse the antibacterial substance in the synthetic resin, it is necessary to add a dispersing aid, and it is necessary to always study the temperature conditions during kneading, and it is necessary to perform several kneading operations. The kneading process is not only time-consuming but also expensive, and as a result, synthetic resins having antibacterial properties are expensive.
[0006]
Further, the conventional antibacterial agents have the following problems. First, the organic antibacterial agent has a problem that it is easily eluted from the synthetic resin due to its volatility, and if it is eluted, the surrounding environment is contaminated. In the case of a silver-based antibacterial agent using silver ions (Ag + ), if a bleaching agent commonly used in the kitchen is used, silver ions react with chlorine ions in the chlorine-based bleach to form insoluble silver chloride, Furthermore, since silver chloride has a high photoreaction activity, it immediately changes to metallic silver or silver oxide, which causes a problem that not only blackening occurs but also antibacterial performance decreases. In the case of a silver-based antibacterial agent using silver ions, the refractive index of a carrier kneaded together with the resin for stabilizing silver salt is different from that of the kneaded resin, so that the resin becomes opaque or the carrier absorbs moisture. There is also a problem such as impairing the smoothness of the molding resin surface due to the property. In the case of antibacterial agents for plant extraction, most of the substances present in plants are aromatic substances and have volatility, so when these substances are mixed into the resin, they are evaporated by heating during molding of the resin. Therefore, there is a problem that the effect can hardly be expected.
[0007]
The present invention solves the above-mentioned conventional problems, can be easily and uniformly mixed with a synthetic resin, exhibits a stable antibacterial effect on the surface of the synthetic resin, and does not easily cause environmental pollution even when eluted from the synthetic resin. Provided are an antibacterial composite resin which does not impair the appearance of the surface, an antibacterial composite resin composition, and a production method thereof.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the antibacterial composite resin composition of the present invention is an antibacterial composite resin obtained by dispersing carrier particles supporting an antibacterial substance in a resin compatible with an olefin resin. It adheres to the surface of the pellet. In the present invention, the antibacterial composite resin has a structure in which carrier particles are dispersed in a resin, the carrier particles carry an antibacterial substance, and the resin is a resin compatible with an olefin resin. Take.
[0009]
By adopting such a configuration, the conventional problem caused in the step of kneading the antibacterial substance into the synthetic resin can be solved. That is, by further dispersing the carrier particles carrying the antibacterial substance in the resin, the antibacterial substance is less likely to aggregate, and is uniformly dispersed in the synthetic resin. Further, the antibacterial composite resin is softened by heating, and by disposing the resin around the resin, uniform dispersion in the resin is facilitated without using a dispersing aid. As a result, the time required for the kneading step as in the related art can be omitted, the time of the kneading step can be shortened, and the cost of the kneading step can be reduced.
[0010]
In the present invention, the carrier particles are preferably at least one oxide colloid selected from the group consisting of colloidal silica, colloidal alumina, and colloidal titanium.
[0011]
In the present invention, the resin constituting the antibacterial composite resin is preferably a chlorinated polypropylene resin. Then, the antibacterial composite resin composition of the present invention has carrier particles dispersed in the resin, and the carrier particles have the antibacterial composite resin carrying the antibacterial substance adhered to the surface of the resin pellet. Is what it is.
The resin constituting the antibacterial composite resin is preferably a chlorinated polypropylene resin.
[0012]
In the present invention, the resin pellet is preferably at least one resin pellet selected from the group consisting of a polyethylene pellet, a polypropylene pellet, and a chlorinated polypropylene pellet.
[0013]
Next, a manufacturing method of an anti-fungal complexes resin, an antimicrobial substance solution was prepared by solubilizing the antimicrobial agent, blended with carrier particles to the antimicrobial solution, the antimicrobial agent to the carrier particle surface This is a method in which a resin emulsion composed of a resin compatible with an olefin resin is mixed with a solution in which the carrier particles are adsorbed, and the mixed solution is dried.
[0014]
According to this manufacturing method, by drying the solution and removing the dispersion medium, the emulsion resins further supporting the carrier particles supporting the antibacterial substance are mutually aggregated to form one resin mass. Therefore, it is the anti-bacterial made complex resins in which the support particles in a resin is dispersed is formed.
[0015]
Further, the method for producing the antibacterial composite resin composition of the present invention comprises the steps of: solubilizing an antibacterial substance to prepare an antibacterial substance solution; blending the carrier particles with the antibacterial substance solution; A substance is adsorbed, a resin emulsion composed of a resin compatible with the olefin resin is mixed with the solution containing the carrier particles, and a resin pellet composed of a resin compatible with the olefin resin is blended with the mixed solution. Then, the solution is dried.
[0016]
Preferred examples of the method for manufacturing the anti-fungal complexes resin, silver, at least one metal acetate selected from copper and zinc, at least one metal salt selected from sulfates and nitrates and antimicrobials, sulfite Thiosulfate having a metal content of 0.1 to 10 parts by weight based on 100 parts by weight of an antibacterial substance prepared by adding at least one of an ion and a thiosulfate ion to 1 mole of the metal salt An antibacterial substance solution comprising a metal complex solution is prepared, and an inorganic oxide colloid is added as a carrier particle to the solution at a ratio of 0.1 to 50 parts by weight in terms of solid content based on 100 parts by weight of the thiosulfato metal complex solution. The olefin-compatible resin emulsion is mixed with the thiosulfato metal complex solution in an amount of 0.5 to 50 wt. It was added at a ratio of a subsequently method of drying at a melt temperature below the temperature of the resin.
[0017]
Further, a preferred example of the method for producing the antibacterial composite resin composition of the present invention is to prepare an antibacterial composite resin solution by the above-described method, and to prepare a resin having compatibility with the emulsion resin and having thermoplasticity. On the surface of the pellet, a resin pellet is applied at a rate of 200 to 10000 parts by weight based on 100 parts by weight of the thiosulfato metal complex solution, and then dried at a temperature equal to or lower than a melting temperature of the resin and the resin pellet. .
[0018]
In the present invention, for example, as an antibacterial substance, when using at least one thiosulfato metal complex selected from the group consisting of thiosulfato silver complex, thiosulfato zinc complex, and thiosulfato copper complex, the thiosulfato metal complex is stable, Not only is the photostability obtained, but also the stability of chlorine is secured because the complex forms an anion, and the problem of reaction with chlorine when using a chlorine bleach is solved.
[0019]
In the method for producing anti-fungal complexes resin composition of the present invention, the carrier particles, preferably oxide colloidal as described above.
By using such carrier particles, it is needless to say that the thermal stability of the antibacterial substance can be obtained. Even if the carrier is kneaded with the resin, the resin surface is not opaque and the smoothness of the resin surface is improved. No damage.
[0020]
Then, in the manufacturing method of an anti-fungal complexes resin composition of the present invention, preferred as the emulsion resin is a chlorinated polypropylene resin emulsion.
[0021]
The olefin-based resin (synthetic resin) is not compatible unless it is the same olefin-based resin, and the olefin-based resin is hardly soluble in a solvent system such as an organic solvent. Therefore, it is preferable to use a chlorinated polypropylene resin which is compatible with the olefin system and can form an emulsion. Thereby, a resin which can be molded by mixing with a soluble antibacterial substance in a solvent system and drying, that is, the antibacterial material of the present invention can be constituted.
[0022]
Furthermore, in the method for producing the antibacterial composite resin composition of the present invention, the resin pellets described above are preferably used.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the present invention will be specifically described.
In the present invention , the antibacterial composite resin has carrier particles dispersed in the resin, and the carrier particles carry an antibacterial substance, and the resin is a resin compatible with the olefin resin. It is characterized by being.
[0024]
The carrier particles are not particularly limited as long as they carry and adsorb the antibacterial substance and adhere to the resin in the emulsion. Among them, inorganic oxide colloids such as colloidal silica, colloidal alumina, and colloidal titanium are preferable because they do not impair the appearance of the resin even when kneaded in the resin, as described above. The particle size of the inorganic oxide colloid used as a support is usually 0.01 to 10 μm. That is, when the thickness is 0.01 μm or less, the supporting effect is small. On the other hand, when the thickness is 10 μm or more, the surface of the resin molded product can be visually identified and causes roughness on the surface. The heat stability of the antibacterial substance is further obtained by supporting the antibacterial substance on the carrier particles.
[0025]
The resin is preferably compatible with the synthetic resin, is thermoplastic, and can be dispersed in an organic solvent. Such a resin can be easily kneaded when kneading the antibacterial composite resin with the synthetic resin. Examples of such a resin include chlorinated polypropylene.
[0026]
The antibacterial substance is preferably a thiosulfato metal complex, particularly a thiosulfato silver complex, a thiosulfato zinc complex, a thiosulfato copper complex, or a mixture thereof using metal acetates, sulfates, and nitrates as raw materials. This is because not only are these complexes stable, so that light stability can be obtained, but also, since the complexes form anions, stability to chlorine is ensured.
[0027]
Further, the antibacterial composite resin composition of the present invention , the carrier particles are dispersed in the resin, the carrier particles adhere to the surface of the resin pellets antibacterial composite resin carrying an antibacterial substance. Is what it is. When preparing an antibacterial synthetic resin, the antibacterial composite resin composition may be molded as it is, or may be dispersed in another synthetic resin such as polyolefin and molded. Examples of the resin constituting the antibacterial composite resin include a chlorinated polypropylene resin.
The resin pellet is preferably compatible with the resin of the antibacterial composite resin, and is particularly preferably made of a thermoplastic resin which is required for a synthetic resin such as polyolefin. Most preferably, they are polyethylene resin pellets, polypropylene resin pellets, chlorinated polypropylene resin pellets and the like.
[0028]
【Example】
(Example 1)
A thiosulfato metal complex solution was prepared using silver acetate as a raw material. That is, first, silver acetate was dissolved in water at a temperature of 60 ° C. or less at 7.7 g / l, which is close to the solubility, to prepare a silver acetate aqueous solution. Thereto,
[0029]
Boehmite colloid (solid content: about 10%, colloidal silica AS-200, manufactured by Nissan Chemical Industries, Ltd.) was added to the thiosulfato metal complex solution, and the mixture was uniformly stirred and mixed. Here, the blending ratio of the boehmite colloid was 20 parts by weight based on 100 parts by weight of the thiosulfato metal complex solution. The particle size was about 0.1 μm.
[0030]
Further, an organic solvent emulsion of a chlorinated polypropylene resin is added at a ratio of 20 parts by weight with respect to 100 parts by weight of the thiosulfato metal complex solution, and the mixture is uniformly stirred and mixed. After drying, an antibacterial composite resin was obtained. The drying conditions are not limited to these, and are usually 10 −4 to normal Pa and a temperature of 40 to 120 ° C.
[0031]
The antibacterial composite resin produced by the above method was uniformly dispersed in the resin at the time of molding the polypropylene resin to produce a resin molded product. The weight ratio of the antibacterial composite resin was 0.015 parts by weight in terms of silver in the resin molded product when the resin molded product was 100 parts by weight.
[0032]
In addition, it is also possible to replace part or all of sodium ions in the above-mentioned raw materials with potassium ions, and an antibacterial composite resin using potassium ions can be obtained, although its properties are slightly inferior but are not harmful to practical use. Have been confirmed by the present inventors.
[0033]
Furthermore, in this example, silver acetate was used as the soluble metal salt. However, even if zinc acetate, other soluble zinc salts or soluble copper salts were used, the antibacterial complex with practically no problem, although its properties were slightly inferior. A resin is obtained.
(Example 2)
To an antibacterial composite resin dispersion prepared in the same manner as in Example 1, 333 parts by weight of a polypropylene resin was added to 100 parts by weight of a thiosulfato metal complex, and after uniform mixing, at normal pressure and 60 ° C. The mixture was dried under the conditions to obtain an antibacterial composite resin composition.
[0034]
The antibacterial composite resin composition produced by the above method was uniformly dispersed in the resin at the time of molding the polypropylene resin to produce a resin molded article. The weight ratio of the antibacterial resin pellet was 1 part by weight based on 20 parts by weight of the polypropylene natural resin.
(Comparative example)
An antibacterial composite resin was prepared in the same manner as in Example 1 without containing an antibacterial substance, and this was uniformly dispersed in the polypropylene resin during molding to obtain a resin molded article. The weight ratio of the antibacterial material was 1 part by weight based on 20 parts by weight of the polypropylene natural resin.
[0035]
Antibacterial tests were performed on the resin molded bodies of Examples 1 and 2 and Comparative Example 1 thus manufactured by the following method. The results are shown in Table 1 below.
[Antibacterial test]
As test bacteria, E. coli coli, S .; aureus, B .; Using a subtilis, the viable count after 24 hours was measured according to the titration method. Evaluation performed in comparison with the number of viable bacteria with respect to the resin molded article of Comparative Example was that there antibacterial effect against 10 2 or more experimental group found the bacteria count reduction.
[0036]
[Table 1]
[0037]
From Table 1 above, it can be seen that the antibacterial composite resin and the antibacterial composite resin composition of this example have practical antibacterial performance.
(Example 3)
Based on the methods described in Examples 1 and 2, resin moldings were prepared with various conditions changed as shown in Table 2 below, and their antibacterial performance, workability during production, and color tone surface condition were mainly used. The appearance of the finished molding was evaluated. The results are also shown in the table.
[Antibacterial test]
As test bacteria, E. coli coli, S .; aureus, B .; Using a subtilis, the viable count after 24 hours was measured according to the titration method. The evaluation was performed in comparison with the viable cell count for the resin molded body of the comparative example.
[0038]
○: 10 2 or more of the viable cell count decrease △: 10 2 of the viable cell count decrease ×: 10 2 less than or equal to the number of viable bacteria reduction [0039]
[Table 2]
[0040]
The following can be seen from Table 2 above. A resin molded article to which no metal complex as an antibacterial substance is added does not exhibit antibacterial performance. In addition, a resin molded body to which no colloidal oxide is added even when an antibacterial substance is added, not only does not exhibit antibacterial performance, but also has a blackened resin surface. Also, among those containing both, the molded resin body to which chlorinated polypropylene was added as a resin emulsion exhibited antibacterial performance and improved appearance and workability. That is, when a resin molded body is manufactured using an antibacterial composite resin composed of an antibacterial substance, colloidal oxide, and chlorinated polypropylene resin, not only excellent antibacterial performance is exhibited, but also workability is improved, and resin molding is improved. It can be seen that the appearance of the body is not impaired.
[0041]
【The invention's effect】
As described above, the anti-fungal complexes resin, carrier particles are dispersed in the resin, there is this carrier particles carrying the antibacterial agent, the resin is an olefin resin compatible It is characterized by being a certain resin. That is, by adopting such a configuration, when kneading it with a synthetic resin, it can be easily and uniformly dispersed without using a dispersing aid. In addition, by adopting such a configuration, the stability of the antibacterial substance is increased, it is difficult to elute from the synthetic resin, and it is unlikely to cause environmental pollution. Further, when the stability of the antibacterial substance increases, the antibacterial performance stability of the synthetic resin surface can be expected to be improved.
[0042]
In addition, when an inorganic oxide colloid is used as the carrier particles, there is an effect that the transparency of the resin and the smoothness of the resin surface are not impaired and are maintained as they are.
In addition, when a thiosulfato metal complex is used as an antibacterial substance, the antibacterial substance itself is stable, and thus not only exhibits a more stable antibacterial effect, but also forms an outer shell layer on the surface of the antibacterial substance. It has a sustained release property and improved thermal stability. Further, when a thiosulfato metal complex is used as the antibacterial substance, no discoloration occurs even when used in an atmosphere having a high chlorine concentration, and a decrease in antibacterial performance is prevented. By using silver sulfate instead of silver acetate as the raw material of the thiosulfato metal complex, residual acetic acid in the resulting thiosulfato metal complex solution is eliminated, and the odor of acetic acid of the antibacterial substance and the acetic acid odor at the time of resin kneading and molding of the antibacterial material are reduced. There is an effect that it can be removed.
[0043]
And in this invention, a pellet or a masterbatch is produced directly from an antibacterial composite resin. In the present invention, since a masterbatch is manufactured using a liquid antibacterial substance as a raw material and passing through a liquid antibacterial material, the number of steps in the antibacterial operation process can be reduced as compared with the conventional method. As a result, the cost in the antibacterial operation step can be reduced, and further, the cost of the synthetic resin having antibacterial performance can be expected to be reduced.
[Brief description of the drawings]
FIG. 1 is a process chart showing one embodiment of a manufacturing method of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16642696A JP3547259B2 (en) | 1996-06-26 | 1996-06-26 | Antimicrobial composite resin composition and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16642696A JP3547259B2 (en) | 1996-06-26 | 1996-06-26 | Antimicrobial composite resin composition and method for producing the same |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004004562A Division JP3865315B2 (en) | 2004-01-09 | 2004-01-09 | Method for producing antibacterial composite resin solution |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH107916A JPH107916A (en) | 1998-01-13 |
JP3547259B2 true JP3547259B2 (en) | 2004-07-28 |
Family
ID=15831207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16642696A Expired - Fee Related JP3547259B2 (en) | 1996-06-26 | 1996-06-26 | Antimicrobial composite resin composition and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3547259B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK1536848T3 (en) * | 2002-09-10 | 2008-03-17 | Josef Peter Guggenbichler Dr C | Process for producing an antimicrobial plastic product |
KR101057250B1 (en) | 2004-05-03 | 2011-08-16 | 주식회사 옥시 레킷벤키저 | Method for producing transparent beads having excellent antibacterial and sterilizing ability and excellent deodorizing ability, laminate comprising transparent beads and transparent beads produced by the method |
WO2012150633A1 (en) * | 2011-05-02 | 2012-11-08 | トヨタ自動車株式会社 | Vehicle seat and seat back board |
CN103509362B (en) * | 2012-06-29 | 2016-08-31 | 罗门哈斯公司 | Argentiferous concentrate |
-
1996
- 1996-06-26 JP JP16642696A patent/JP3547259B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH107916A (en) | 1998-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2590653B2 (en) | Antimicrobial composite, method for producing the same, resin and coking material using the same | |
JPH11263705A (en) | Antimicrobial and antimicrobial resin composition | |
JP3547259B2 (en) | Antimicrobial composite resin composition and method for producing the same | |
JP3865315B2 (en) | Method for producing antibacterial composite resin solution | |
JPH08133918A (en) | Inorganic antimicrobial agent | |
JP3585059B2 (en) | Antimicrobial composition and method for producing antimicrobial resin composition | |
JPH07252378A (en) | Antibacterial mildewproof thermoplastic composition | |
JPH03145410A (en) | Antimicrobial silver zeolite and antimicrobial polymer composition free from change of color | |
JP3064753B2 (en) | Method for producing antibacterial thermoplastic resin molding | |
JPH07316009A (en) | Antibacterial, antiviral and antifungal agent and its complex | |
JPH0826921A (en) | Production of antimicrobial material | |
JPH1179921A (en) | Antimicrobial and antifungal composition and its production | |
JPH01164722A (en) | Weatherability antibacterial zeolite composition | |
WO2006041251A1 (en) | Colorless and transparent antibiotic material including silver, and a method for the preparation of it | |
JP2006089380A (en) | Method for producing antibacterial and deodorizing colloidal solution of titanium oxide | |
JPH11263703A (en) | Antimicrobial and antimicrobial resin composition | |
JPH08333209A (en) | Antimicrobial composition and production of antimicrobial material by using the composition | |
JPH01306473A (en) | Expandable thermoplastic resin composition | |
JP3154371B2 (en) | Manufacturing method of antibacterial material | |
AU2022451711A1 (en) | Antimicrobial/antiviral resin composition and method of manufacturing the same, and foamed resin product, film product, and fiber product made from the resin composition | |
JP3085682B2 (en) | Antimicrobial composition | |
JPH07247205A (en) | Antimicrobial agent | |
KR20210158308A (en) | Method of manufacturing antimicrobial film for card and the film thereof | |
KR20040011699A (en) | Nano-powder containing antibiotics and use thereof | |
JPH07238001A (en) | Antimicrobial additive for resin and molding of antimicrobial resin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040109 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040126 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20040130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040224 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040315 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040407 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040413 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |