JP3547246B2 - Lance for molten iron refining and molten iron refining method - Google Patents

Lance for molten iron refining and molten iron refining method Download PDF

Info

Publication number
JP3547246B2
JP3547246B2 JP01903996A JP1903996A JP3547246B2 JP 3547246 B2 JP3547246 B2 JP 3547246B2 JP 01903996 A JP01903996 A JP 01903996A JP 1903996 A JP1903996 A JP 1903996A JP 3547246 B2 JP3547246 B2 JP 3547246B2
Authority
JP
Japan
Prior art keywords
nozzle
lance
molten iron
absolute pressure
refining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01903996A
Other languages
Japanese (ja)
Other versions
JPH09209021A (en
Inventor
憲一郎 内藤
信也 北村
雄司 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP01903996A priority Critical patent/JP3547246B2/en
Publication of JPH09209021A publication Critical patent/JPH09209021A/en
Application granted granted Critical
Publication of JP3547246B2 publication Critical patent/JP3547246B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ランスを用いた溶鉄精錬におけるランスの構造および溶鉄精錬方法に関する。
【0002】
【従来の技術】
転炉等の精錬容器で溶鉄を精錬する際に用いられるランスには、酸素ガス噴流による鋼浴の攪拌を促進するために、ランス下端面に設けたノズルの入り側圧を高効率で噴流の運動エネルギーに変換する複数孔の中細ノズルが一般的に採用され、そのノズルの適正膨張圧の範囲で精錬が行われている(鉄鋼便覧、第3版分冊II、日本鉄鋼協会編、1982発行、p.468)。しかし、この場合には、噴流の運動エネルギーが高い(ハードブロー)ためダストが発生することにより、鉄の歩留まりが低下する弊害は回避できない。そこで、こうしたダストの発生を抑制するために、噴流の運動エネルギーの低下(ソフトブロー化)を指向して、ランス先端−溶鉄静止湯面間距離を大きくして噴流の運動エネルギーの減衰を図ったり、ノズルのスロート径を大径化してノズルの入り側圧を低下させたり、多孔のノズルを使用して噴流の減衰を促進するという試みがなされている。しかし、いずれの方法でも炉内空間ガスの巻き込み量が増大し、二次燃焼率が上昇するため、脱炭酸素効率の低下や二次燃焼の燃焼熱による炉内耐火物の溶損を生じるという難点がある。すなわち、従来の方法では「ダストの発生」と「二次燃焼率の上昇」とは表裏一体の関係にあり、両方の問題を同時に回避することは不可能であった。
【0003】
なお、ここで言う「ランス下端部に設けるノズル」とは、その上端をガス供給管に連結され、縦断面上にくびれを有してランス下端に開口した管路(中細ノズル)であり、ノズル下端の開口部を孔と称する構造体を指す。また、スロート径とはこの管路の最も狭い部分の内径を指す。
また、ダスト発生量を低減することを目的として、ノズルの配置や傾斜角を適正化して酸素噴流により形成されるキャビティ(溶鉄湯面上の凹み)の重なり率を低減するランスなどが提案されている(例えば、特公昭62−46611号公報、特開平6−57320号公報)。これらでは噴流の総運動エネルギー一定のもとで、噴流方向を分散させることにより、ダスト発生の一因と考えられているキャビティの重なり範囲を低減することを技術思想としている。しかし、これらの場合でもノズルの傾斜角を広角化するため、炉壁と噴流の距離が接近して炉内耐火物との損耗を招くおそれがある。このため、キャビティの重なりに起因するダストは低減できても、噴流の総運動エネルギーは変わらないので、運動エネルギーに起因するダスト発生量を低減することはできない。結局、先述の表裏一体の2つの問題点はいずれも解決できない。
【0004】
【発明が解決しようとする課題】
本発明は、前記の解決手段が相矛盾するような表裏一体の問題、すなわち、二次燃焼率の上昇による脱炭酸素効率の低下や、炉内耐火物の溶損の問題、およびダストの発生の問題の2つを同時に解決し得る画期的な溶鉄精錬用ランスおよび溶鉄精錬方法を提供する。
【0005】
【課題を解決するための手段】
本発明者は、ダスト発生量とガス噴流の溶鉄湯面への到達速度(噴流流速=U)が正相関の関係があることを詳細な実験により確認した。その時、精錬炉内雰囲気絶対圧(=P)一定のもとで、ノズルから吐出するガス噴流量(酸素ガスの場合、送酸速度(=FO2)を意味する)は、ノズル入り側絶対圧(=P)およびノズルのスロート径(=d)が、同一の条件下では一義的に決定される。一方、噴流流速UはPおよびdが同一の条件下でも、出口径(=d)により変化する現象に着目し、dを変更することによりスロートから出口へかけての噴流の膨張の状態、つまり噴流の運動エネルギーの損失量(噴流流速Uの減衰度合い)を、変化させ得る工業的手段として、本発明を発明するに至ったのである。
【0006】
すなわち、FO2,dおよびランス先端−溶鉄静止湯面間距離(=LG)が同一の場合にでも、従来は達成し得なかった噴流の総運動エネルギーの減衰度合い(ソフトブロー化)を得る画期的な条件、つまり、最適なdとdの比(=d/d)があることを知見したのである。さらに、dを変更して噴流流速Uを減衰しても、その他の条件(P、ノズル数(=n),d、ノズルの配置および位置関係、ノズルの傾斜角、LG)が同一の場合は、精錬炉内の二次燃焼率に影響がないこと、換言すれば、二次燃焼率に影響を与えずに噴流流速Uを変えられることを知見したのである。
【0007】
以上の2つの新たな知見をもとに、噴流流速Uを減衰させてダスト発生量を低減しながら、二次燃焼率の上昇を回避できる全く新しいランスの設計条件に基づいた構造を有する溶鉄精錬用ランスおよびそれを用いた溶鉄精錬方法を発明するに至った。
すなわち、本発明の要旨は、下記のとおりである。
【0009】
)酸素ガスを供給しながら溶鉄を精錬する際に用いる溶鉄精錬用ランスであって、該ランスの先端部に設けたノズルの少なくとも一つのノズルの出口径(de (cm))とスロート径(de (cm))との比de /dt をノズルの出口部雰囲気絶対圧(Pe (kgf/cm2 ))、およびノズルの適正膨張絶対圧(POp(kgf/cm2 ))との関係式(1) から決定し、かつ関係式(1) のPOpを該ノズルの入り側絶対圧PO との比で下記(2) あるいは(3) 式の範囲に限定したことを特徴とする溶鉄精錬用ランス。
【0010】
de /dt =0.509 ・(Pe /POp) -5/14 ・{1−(Pe /POp)2/7-1/4 …(1)
Po /2.0≦ Pop≦ Po /1.2 …(2)
PO /0.8≦ Pop …(3)
)(1)記載の溶鉄精錬用ランスによって、総ガス供給速度を最大にした場合の特定ランス下端〜溶鉄湯面間距離に対するダスト発生率を極力低減することを特徴とする溶鉄精錬方法。
【0011】
)ランスの先端部に設けたノズルの少なくとも一つのノズルの出口径(de (cm))とスロート径(dt (cm))との比de /dt をノズルの出口部雰囲気絶対圧(Pe (kgf/cm2 ))およびノズルの適正膨張絶対圧(POp(kgf/cm2 ))との関係式(1) から決定した溶鉄精錬用ランスを用いて、かつ該ノズルの入り側絶対圧PO とPOpとの比を下記(4) あるいは(5) 式の範囲で用いることを特徴とする溶鉄精錬方法。
【0012】

Figure 0003547246
なおここでいう「溶鉄精錬用ランス」は、ステンレス鋼を含む溶鋼の精錬に用いても良く、精錬設備としも転炉、電気炉、真空脱ガス装置などいかなるものに用いても良い。
【0013】
【発明の実施の形態】
本発明の実施の形態を図1に従って説明する。
図1は、ノズルの入り側絶対圧Pが4.5 kgf/cmのときの「ノズルの出口径dとスロート径dの比d/d」と「入り側絶対圧Pと適正膨張絶対圧POpの比P/POp」の関係および「ノズルの出口径dとスロート径dの比d/d」と「噴流進行方向に垂直な断面における噴流中心軸上流速Umax と当該スロート径でノズルの入り側絶対圧Pで適正膨張するように出口径を定めたノズルの噴流中心軸上流速Umaxpの比Umax /Umaxp」の関係を示す図である。
【0014】
まず、図1の縦軸(2種類)および横軸について説明する。(a)図の縦軸P/POpは一般的な物理量であり、ノズルの適正膨張絶対圧(POp(kgf/cm))とノズルの入り側絶対圧Pとの比である。PおよびPOpはいずれも下記(6) および(6) ′式によって表される数値であり、ノズルのスロート径d(mm)が決まれば、送酸速度FO2あるいはFO2p (適正膨張絶対圧の時の送酸速度)により一義的に決まる。縦軸をこれらの比P/POpとしたのは操業時の送酸速度の絶対値(精錬炉の操業規模)に依存せず、適正膨張条件との乖離度合いを表現するためである。
【0015】
=FO2/(0.456×d ) …(6)
=FO2p /(0.456×d ) …(6) ′
次に(b)図の縦軸のUmax /Umaxpとは、ノズル下端から噴出するガス噴流の溶鉄浴面への衝突時の噴流流速U(噴流進行方向に垂直な断面における噴流中心軸上流速であり、Uは流速分布を持つ)に関して、そのうちの最大値をUmax と定義し、同じスロート径でノズルの入り側絶対圧Pで適正膨張するように出口径を定めたノズルのUmax をUmaxpと定義する。この時、FO2の絶対値によらない値としてそれらの比で図示している。また、これらのUmax やUmaxpは本発明者がピトー管を用いて行った噴流流速測定結果を基に算出した値を用いている。
【0016】
ここで、或る送酸速度FO2に対して、ノズルのスロート径が一定dの条件下で、すなわちノズルの入り側絶対圧Pが一定の条件下で、(1) 式および(2) 式、あるいは(1) 式および(3) 式のいずれかの条件を満たすような出口径dのノズルを使用すると、図1に示すようにUmax を大幅に低減できる。
またこのことから、或るノズルの出口径dとスロート径dの比d/dで設計された既存のランスに対して、(1) 式および(4) 式、あるいは(1) 式および(5) 式のいずれかの条件を満たすようなノズルの入り側絶対圧P(実操業では、(6) あるいは(6) ′式からFO2に置き換えられる)で操業することによっても、同様にUmax を大幅に低減することができる。
【0017】
また、図1に示すように、請求項に対応する本発明のより望ましい範囲として、前記(1) 式および下記(7) 式、あるいは前記(1) 式および下記(8) 式のいずれかの条件を満たすランスを使用することにより、Umax をさらに抑制できて、ダスト発生量低減効果を高めることができる。
O /1.8≦POp≦PO /1.3 …(7)
O /0.7≦POp …(8)
同様に、請求項に対応する本発明のより望ましい範囲として、前記(1) 式および下記(9) 式、あるいは前記(1) 式および下記(10)式のいずれかの条件を満たすようなノズルの入り側絶対圧PO (実操業では、(6) あるいは(6) ′式からFO2に置き換えられる)で操業することによりUmax をさらに抑制できて、ダスト発生量低減効果を高めることができる。
【0018】
Figure 0003547246
本発明の請求の範囲をより具体的に示すために、該d/dとノズル入り側の絶対圧Pの関係の一例を示したものが図4である。本発明の範囲は、操業時の出口部雰囲気絶対圧P、および送酸速度FO2あるいはノズルの入り側絶対圧Pの値によりd/dおよびPOpの取るべき絶対値はいろいろな値になるが、それぞれが互いに請求項中の(1)〜(5)式の関係を満足することにより、ランス下端〜溶鉄湯面間距離および送酸速度を同一にしたままで、溶鉄湯面における最大噴流流速を従来の値より小さくすることができるというものである。図4では一例として、(1)式中のPを通常の転炉の場合の大気圧1.033kgf /cmとし、(2)式(P/2.0≦POp≦P/1.2)を、P/2.0=POp (2)′ と、POp=P/1.2 (2)″ の2つの式に分割し、それぞれを(1)式中に代入して(1)式をd/dとPの2つの関係式としてそれぞれの曲線を図示してある。(3)式についても同様である。つまり、本発明のP=1.033kgf /cmの場合については、図4中の斜線で示されるP/POp=0.8の曲線よりd/dが大なる範囲およびP/POp=1.2〜2.0の領域であって、この領域に存在する請求の範囲のd/dとPとの関係は1つではない。実際には、操業で使用するPの範囲は約3〜25kgf /cmであって、これらに対応するd/dは約1以上の範囲である。d/d決定の手順としてはPを決定してこの図4のような関係図を求めて、例えばPを(6)式から操業時のFO2によって5.0kgf /cmと決まれば、d/dの最適領域は約1.02〜1.11及び1.21以上の2つの領域となり、Pを15.0kgf /cmと決めればd/dの最適領域は約1.27〜1.47及び1.65以上の2つの領域となるわけである。これらの領域の中から他の条件、例えばランス本体形状あるいはランス冷却方式などからd/dを更に絞り込むのである。また、この図4の横軸P=4.5kgf /cmについて、P/POpとd/dとの関係に置換したものが図1である。
【0019】
【実施例】
内径約1.2mの上底吹き転炉を用いて、6tの溶鉄を装入し、A,B,C,D,E,Fの6種類のランスについて、それぞれランス先端−溶鉄静止湯面間距離を2段階に変更し、酸素ガス流量1200Nm/h、ノズル入り側絶対圧4.5 kgf/cm一定で計12水準の脱炭試験を行った。いずれの水準でも底吹きガスとして窒素300Nm/hを用いた。また、精錬開始直後に塩基度が約3.5となるように石灰を130kg投入した。各ランスの設計値を表1に、試験条件および試験結果を表2に示す。また、本発明例のランスのうち、E,Fはより望ましい範囲に該当する。
【0020】
【表1】
Figure 0003547246
【0021】
【表2】
Figure 0003547246
【0022】
本実施例の結果について説明する。本実施例は実炉ベースの6t転炉によって、ランス条件(表1)における実操業水準としてランス高さを2水準(600,1000mm)、としたものである。すなわち、比較例Aと比べて本発明のB〜Fでは、ダスト発生量および二次燃焼率がどのように改善されるかを定量的に表わしたものである。
【0023】
従来方法においては、ダストを減らすと二次燃焼率が上昇していたが、本発明B〜Fでは、比較例Aをベースに、同一ランス高さのもとではダストが減少し、かつ二次燃焼率(PCR)が比較例Aより高くならない。なお、耐火物損耗程度は前記PCRに比例するので、本実施例では、ダスト発生量と一次的関係を有する前記二次燃焼率で整理した。
【0024】
【発明の効果】
本発明により、炉内耐火物への悪影響や二次燃焼率の上昇を生じることなく、ダスト発生量を低減することが可能となる。
【図面の簡単な説明】
【図1】本発明に係るノズルの入り側絶対圧Pが4.5 kgf/cmの時の(a)ノズルの出口径dとスロート径dの比d/dと入り側絶対圧Pと適正膨張絶対圧POpの比P/POpの関係、(b)ノズルの出口径dとスロート径dの比d/dと噴流進行方向に垂直な断面における噴流中心軸上流速Umax と当該スロート径でノズルの入り側絶対圧Pで適正膨張するように出口径を定めたノズルの噴流中心軸上流速Umaxpの比Umax /Umaxpの関係を示す図である。
【図2】本発明の実施の態様を示す図で、(a)本発明の実施の態様を示す概略図、(b)ランス先端部の態様を示す概略図である。
【図3】実施例の各水準の試験結果で、二次燃焼率とダスト発生量の関係を示す図である。
【図4】本発明の請求の範囲2および4を前記d/dと前記Pの関係によってより具体的に示す図である。
【符号の説明】
1…精錬容器
2…ランス
3…溶鉄
4…ランス先端−溶鉄静止湯面間距離
5…ランスノズル
6…スロート径
7…出口径
8…酸素ガス流[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a lance structure and a molten iron refining method in molten iron refining using a lance.
[0002]
[Prior art]
The lance used for refining molten iron in a smelting vessel such as a converter uses a high-efficiency jet motion to control the inlet side pressure of the nozzle provided at the lower end of the lance in order to promote agitation of the steel bath by the oxygen gas jet. A multi-hole medium-sized nozzle that converts energy is generally used, and refining is performed within the range of the appropriate expansion pressure of the nozzle (Iron and Steel Handbook, Third Edition, Volume II, edited by The Iron and Steel Institute of Japan, 1982, 468). However, in this case, since the kinetic energy of the jet is high (hard blow), dust is generated, and the adverse effect of reducing the iron yield cannot be avoided. Therefore, in order to suppress the generation of such dust, the kinetic energy of the jet is reduced by increasing the distance between the tip of the lance and the molten metal surface of the molten iron in order to reduce the kinetic energy of the jet (soft blow). Attempts have been made to increase the throat diameter of the nozzle to reduce the pressure on the inlet side of the nozzle or to use a porous nozzle to promote the attenuation of the jet. However, in any method, the amount of space gas entrained in the furnace increases, and the secondary combustion rate increases, so that the decarbonation efficiency decreases and the refractory in the furnace is damaged by the combustion heat of the secondary combustion. There are difficulties. That is, in the conventional method, "dust generation" and "increase in the secondary combustion rate" are inextricably linked, and it is impossible to avoid both problems at the same time.
[0003]
The “nozzle provided at the lower end of the lance” here is a pipe (medium-thin nozzle) whose upper end is connected to the gas supply pipe, has a constriction on a vertical cross section, and opens at the lower end of the lance. The opening at the lower end of the nozzle refers to a structure called a hole. Also, the throat diameter refers to the inner diameter of the narrowest part of this conduit.
In addition, for the purpose of reducing the amount of dust generated, a lance has been proposed that optimizes the arrangement and inclination angle of the nozzle to reduce the overlapping rate of the cavity (depression on the molten metal surface) formed by the oxygen jet. (For example, JP-B-62-46611 and JP-A-6-57320). In these, the technical idea is to reduce the overlapping range of the cavity, which is considered to be one of the causes of dust generation, by dispersing the jet direction under a constant total kinetic energy of the jet. However, even in these cases, since the angle of inclination of the nozzle is widened, the distance between the furnace wall and the jet may be so small that the refractory in the furnace may be worn. For this reason, even if dust resulting from the overlap of the cavities can be reduced, the total kinetic energy of the jet does not change, so that the amount of dust generated due to kinetic energy cannot be reduced. After all, neither of the two problems described above can be solved.
[0004]
[Problems to be solved by the invention]
The present invention provides a two-sided problem in which the above-mentioned solutions are inconsistent, that is, a problem of a decrease in decarbonation efficiency due to an increase in the secondary combustion rate, a problem of erosion of refractories in a furnace, and generation of dust. The present invention provides an innovative lance for refining molten iron and a method for refining molten iron that can simultaneously solve the two problems described above.
[0005]
[Means for Solving the Problems]
The present inventor has confirmed through detailed experiments that there is a positive correlation between the amount of dust generated and the speed at which the gas jet reaches the molten iron surface (jet flow velocity = U). At that time, under a constant absolute pressure of the atmosphere in the refining furnace (= P e ), the gas injection flow rate (in the case of oxygen gas, the acid supply rate (= FO 2 ) in the case of oxygen gas) is set to the absolute value on the inlet side of the nozzle. The pressure (= P O ) and the throat diameter of the nozzle (= dt ) are uniquely determined under the same conditions. On the other hand, the jet velocity U is also under the same conditions is P O and d t, outlet diameter (= d e) focused on the phenomenon that varies with the expansion of the jet over the throat to the outlet by changing the d e In other words, the present invention has been invented as an industrial means capable of changing the state, that is, the loss amount of the kinetic energy of the jet (the degree of attenuation of the jet flow velocity U).
[0006]
That, F O2, d t, and the lance tip - molten iron stationary molten steel surface distance (= LG) even in the case of the same, conventionally obtained attenuation degree of the total kinetic energy of the jet which could not have been achieved (soft blow of) breakthrough conditions, which means he has to finding that there is a ratio of the optimum d e and d t (= d e / d t). Furthermore, even if attenuate the jet flow velocity U by changing the d e, other conditions (P O, the number of nozzles (= n), d t, arrangement and positional relation of the nozzles, the inclination angle of the nozzle, LG) is identical In this case, it was found that the secondary combustion rate in the refining furnace was not affected, in other words, the jet flow velocity U could be changed without affecting the secondary combustion rate.
[0007]
Based on the above two new findings, molten iron smelting having a structure based on a completely new lance design condition that can avoid an increase in the secondary combustion rate while attenuating the jet flow velocity U to reduce the amount of dust generated Lance and a method of refining molten iron using the lance have been invented.
That is, the gist of the present invention is as follows.
[0009]
( 1 ) A lance for refining molten iron used for refining molten iron while supplying oxygen gas, wherein an outlet diameter (d e (cm)) of at least one nozzle of a nozzle provided at the tip of the lance and a throat diameter (d e (cm)) the ratio d e / d t the outlet atmosphere absolute pressure of the nozzle between (P e (kgf / cm 2 )), and proper inflation absolute pressure (P Op nozzle (kgf / cm 2 )) And P Op in relational expression (1) is limited to the range of the following expression (2) or (3) by the ratio to the absolute pressure P O on the inlet side of the nozzle. A lance for smelting molten iron, characterized by that:
[0010]
d e / d t = 0.509 ・ (P e / P Op ) -5/14・ {1- (P e / P Op ) 2/7-1 / 4 … (1)
P o /2.0≦ P op ≦ P o /1.2 ... (2)
P O /0.8≦P op … (3)
( 2 ) A molten iron refining method characterized in that the molten iron refining lance described in (1) minimizes a dust generation rate with respect to a distance between a specific lance lower end and a molten metal surface when the total gas supply speed is maximized.
[0011]
(3) lance tip is provided with at least one of the outlet diameter of the nozzles of the nozzle (d e (cm)) and the throat diameter (d t (cm)) and the ratio d e / d t the nozzle outlet Atmosphere Using the lance for molten iron refining determined from the relational expression (1) between the absolute pressure (P e (kgf / cm 2 )) and the proper expansion absolute pressure of the nozzle (P Op (kgf / cm 2 )), and using the nozzle The molten iron refining method characterized by using the ratio of the absolute pressures P O and P Op on the entry side within the range of the following formula (4) or (5).
[0012]
Figure 0003547246
The "lance for refining molten iron" used herein may be used for refining molten steel including stainless steel, and may be used for any refining equipment such as a converter, an electric furnace, a vacuum degassing device, and the like.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to FIG.
1, the "inlet side absolute pressure P" ratio d e / d t of output nozzle diameter d e and the throat diameter d t "when the entrance side absolute pressure P O of the nozzles 4.5 kgf / cm 2 jet in the cross section perpendicular O and proper inflation absolute pressure relationship P ratio P O / P Op of Op "and" specific d e / d t of exit diameter d e and the throat diameter d t of the nozzle "to" jet traveling direction the ratio U max / U maxp "relationship of the central axis upstream speed U max and jet central axis upstream speed U maxp nozzle that defines the outlet diameter to properly inflated in the throat diameter at the inlet side absolute pressure P O of the nozzle FIG.
[0014]
First, the vertical axis (two types) and the horizontal axis in FIG. 1 will be described. (A) The vertical axis P O / P Op in the figure is a general physical quantity, and is the ratio between the appropriate absolute expansion pressure (P Op (kgf / cm 2 )) of the nozzle and the absolute pressure P O on the inlet side of the nozzle. . Both P O and P Op are numerical values represented by the following equations (6) and (6) ′, and when the throat diameter dt (mm) of the nozzle is determined, the acid supply rate F O2 or F O2p (proper expansion) It is uniquely determined by the acid transfer rate at absolute pressure). The vertical axis is set to these ratios P O / P Op in order to express the degree of deviation from the appropriate expansion conditions without depending on the absolute value of the acid supply rate during operation (the operation scale of the refining furnace).
[0015]
P O = F O2 / (0.456 × dt 2 ) (6)
P O = F O2p /(0.456×d t 2 ) ... (6) '
Then A U max / U maxp the longitudinal axis of the (b) diagram, the jet flow velocity U at the time of collision of the molten iron bath surface of the gas jet to be ejected from the nozzle lower end (on the jet central axis in a cross section perpendicular to the jet direction of travel U has a flow velocity distribution), the maximum value of which is defined as U max, and the U of the nozzle whose outlet diameter is determined so as to appropriately expand with the same throat diameter as the absolute pressure P O on the inlet side of the nozzle. Define max as U maxp . At this time, the ratio is shown as a value not depending on the absolute value of FO2. In addition, U max and U maxp use values calculated by the present inventors based on the results of jet flow velocity measurement performed using a pitot tube.
[0016]
Here, for a certain acid feed rate F O2 , under the condition that the throat diameter of the nozzle is constant dt , that is, under the condition that the absolute pressure P O on the inlet side of the nozzle is constant, the formula (1) and (2) ) expression, or (1) using the nozzle of the formula and (3) exit diameter d e that satisfies any of the conditions of expression can be significantly reduced U max as shown in FIG.
Also from this fact, for existing lance designed in the ratio of the diameter out of one nozzle d e and the throat diameter d t d e / d t, (1) and Equation (4), or (1) By operating with the absolute pressure P O on the inlet side of the nozzle that satisfies either of the conditions of the formulas (5) and (5) in actual operation, the formula (6) or (6) ′ is replaced by F O2 ). Similarly, U max can be greatly reduced.
[0017]
Further, as shown in FIG. 1, as a more desirable range of the present invention corresponding to claim 1, any one of the above formula (1) and the following formula (7), or the above formula (1) and the following formula (8) the use of satisfying lance can be made further suppress U max, increase the dust generation amount reducing effect.
P O /1.8≦P Op ≦ P O /1.3 (7)
P O /0.7≦P Op … (8)
Similarly, as a more desirable range of the present invention corresponding to claim 3 , the above formula (1) and the following formula (9) or the above formula (1) and the following formula (10) are satisfied. By operating with the absolute pressure P O on the inlet side of the nozzle (in actual operation, it can be replaced with F O2 from equation (6) or (6) ′), it is possible to further reduce U max and enhance the dust generation reduction effect. Can be.
[0018]
Figure 0003547246
FIG. 4 shows an example of the relationship between the de / dt and the absolute pressure Po on the nozzle entrance side in order to more specifically show the claims of the present invention. The scope of the invention, the outlet portion atmosphere absolute pressure P e during operation, and the absolute value to be taken by the d e / d t and P Op by the value of the oxygen-flow-rate F O2 or entrance side absolute pressure P o of nozzles different However, by satisfying the relations of the expressions (1) to (5) in the claims, the distance between the lower end of the lance and the molten metal surface and the acid feed rate are kept the same, and the molten iron The maximum jet flow velocity at the surface can be made smaller than the conventional value. As an example in Figure 4, the atmospheric pressure 1.033kgf / cm 2 in the case of the conventional converter of P e in equation (1), (2) (P o /2.0≦P Op ≦ P o / 1.2) is divided into two expressions, P o /2.0=P Op (2) ′ and P Op = P o /1.2 (2) ″, and each is divided into the expression (1). by substituting the equation (1) is shown the respective curves as two relations of d e / d t and P o. (3) the same applies to the type. that is, P e = 1 of the present invention .033Kgf / for the case of cm 2 is, d e / d t is larger than the curve of P o / P Op = 0.8 indicated by oblique lines in FIG. 4 range and P o / P Op = 1.2~ 2.0 a region, the relationship between d e / d t and P o of the claims that are present in this region is not one. in fact, it is used in the operation Range that P o is from about 3~25kgf / cm 2, to determine the P o as the procedure of d e / d t is about 1 or more ranges .d e / d t determined corresponding to these this a seeking relationship diagram shown in FIG. 4, for example if Kimare the P o and 5.0 kgf / cm 2 by F O2 during operation from (6) Te, the optimal region of d e / d t is about 1. becomes 02 to 1.11 and 1.21 above two areas, the optimum area of d e / d t be determined to P o and 15.0kgf / cm 2 is about 1.27 to 1.47 and 1.65 From these areas, de / dt is further narrowed down from other conditions, such as the shape of the lance body or the lance cooling method, etc. Further, the horizontal axis P in FIG. o = about 4.5kgf / cm 2, P o / P Op and d e obtained by substituting the relationship between the d t is 1.
[0019]
【Example】
Using a top and bottom blown converter with an inner diameter of about 1.2 m, 6 tons of molten iron were charged, and for each of the six types of lances A, B, C, D, E, and F, the distance between the lance tip and the molten iron stationary metal surface The distance was changed to two stages, and a total of 12 levels of decarburization tests were performed at an oxygen gas flow rate of 1200 Nm 3 / h and a nozzle inlet side absolute pressure of 4.5 kgf / cm 2 . At any level, 300 Nm 3 / h of nitrogen was used as the bottom blown gas. Immediately after the refining was started, 130 kg of lime was added so that the basicity became about 3.5. Table 1 shows the design values of each lance, and Table 2 shows the test conditions and test results. Further, among the lances of the present invention, E and F correspond to a more desirable range.
[0020]
[Table 1]
Figure 0003547246
[0021]
[Table 2]
Figure 0003547246
[0022]
The result of this example will be described. In the present embodiment, a 6-ton converter based on an actual furnace is used to set the lance height to two levels (600, 1000 mm) as the actual operation level under the lance conditions (Table 1). That is, BF of the present invention compared with Comparative Example A quantitatively expresses how the dust generation amount and the secondary combustion rate are improved.
[0023]
In the conventional method, when the dust was reduced, the secondary combustion rate increased. However, in the present inventions B to F, based on Comparative Example A, the dust decreased under the same lance height and the secondary combustion rate decreased. The burn rate (PCR) is not higher than Comparative Example A. In addition, since the degree of wear of the refractory is proportional to the PCR, in the present embodiment, the secondary combustion rate which has a primary relationship with the amount of generated dust is arranged.
[0024]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to reduce the amount of dust generation, without causing a bad influence on the refractory in a furnace and an increase in a secondary combustion rate.
[Brief description of the drawings]
[1] inlet side absolute pressure P O of the nozzle according to the present invention enters the ratio d e / d t of 4.5 outlet diameter of (a) a nozzle when kgf / cm 2 d e and the throat diameter d t relationship side absolute pressure P O and proper inflation absolute pressure P Op ratio P O / P Op, perpendicular to the ratio d e / d t and the jet traveling direction of (b) out of the nozzle diameter d e and the throat diameter d t nozzles in the jet central axis upstream speed U max and the throat diameter in the cross section entrance side absolute nozzle that defines the outlet diameter to properly inflated with pressure P O of the jet central axis upstream speed U maxp ratio U max / U maxp of It is a figure showing a relation.
FIGS. 2A and 2B are diagrams illustrating an embodiment of the present invention, in which FIG. 2A is a schematic diagram illustrating an embodiment of the present invention, and FIG.
FIG. 3 is a diagram showing the relationship between the secondary combustion rate and the amount of dust generated, based on the test results at each level of the example.
FIG. 4 is a diagram showing claims 2 and 4 of the present invention more specifically based on the relationship between the de / dt and the PO .
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Refining vessel 2 ... Lance 3 ... Molten iron 4 ... Distance between lance tip and molten iron stationary metal surface 5 ... Lance nozzle 6 ... Throat diameter 7 ... Outlet diameter 8 ... Oxygen gas flow

Claims (3)

酸素ガスを供給しながら溶鉄を精錬する際に用いる溶鉄精錬用ランスであって、該ランスの先端部に設けたノズルの少なくとも一つのノズルの出口径(de (cm))とスロート径(dt (cm))との比de /dt を、ノズルの出口部雰囲気絶対圧(Pe (kgf/cm2 ))、およびノズルの適正膨張絶対圧(POp(kgf/cm2 ))との関係式(1) から決定し、かつ関係式(1) のPOpを該ノズルの入り側絶対圧PO との比で下記(2) あるいは(3) 式の範囲に限定したことを特徴とする溶鉄精錬用ランス。
de /dt =0.509 ・(Pe /POp) -5/14 ・{1−(Pe /POp)2/7-1/4 …(1)
Po /2.0≦ Pop≦ Po /1.2 …(2)
PO /0.8≦ Pop …(3)
A lance for refining molten iron used for refining molten iron while supplying oxygen gas, wherein an outlet diameter (d e (cm)) and a throat diameter (d) of at least one of nozzles provided at the tip of the lance are provided. t (cm)) the ratio d e / d t between the outlet portion atmosphere absolute pressure of the nozzle (P e (kgf / cm 2 )), and proper inflation absolute pressure of the nozzle (P Op (kgf / cm 2 )) From the relational expression (1), and that the value of P Op in the relational expression (1) was limited to the range of the following expression (2) or (3) by the ratio with the absolute pressure P O on the inlet side of the nozzle. A characteristic lance for molten iron smelting.
d e / d t = 0.509 ・ (P e / P Op ) -5/14・ {1- (P e / P Op ) 2/7-1 / 4 … (1)
P o /2.0≦ P op ≦ P o /1.2 ... (2)
P O /0.8≦P op … (3)
請求項1記載の溶鉄精錬用ランスによって、総ガス供給速度を最大にした場合の特定ランス下端〜溶鉄湯面間距離に対するダスト発生率を極力低減することを特徴とする溶鉄精錬方法。2. A method for refining molten iron according to claim 1, wherein the rate of dust generation with respect to the distance between the lower end of the specific lance and the molten metal surface when the total gas supply speed is maximized is minimized by the molten metal refining lance according to claim 1. ランスの先端部に設けたノズルの少なくとも一つのノズルの出口径(de (cm))とスロート径(dt (cm))との比de /dt をノズルの出口部雰囲気絶対圧(Pe (kgf/cm2 ))およびノズルの適正膨張絶対圧(POp(kgf/cm2 ))との関係式(1) から決定した溶鉄精錬用ランスを用いて、かつ該ノズルの入り側絶対圧PO とPOpとの比を下記(4) あるいは(5) 式の範囲で用いることを特徴とする溶鉄精錬方法。
de /d t=0.509 ・(Pe /POp) -5/14 ・{1−(Pe /POp)2/7-1/4 …(1)
1.2・ Pop≦ Po ≦2.0 ・ Pop …(4)
Po ≦0.8 ・ Pop …(5)
At least one of the outlet diameter of the nozzle (d e (cm)) and the throat diameter (d t (cm)) and the ratio d e / d t the outlet atmosphere absolute pressure of the nozzles of the nozzle provided at the tip portion of the lance ( P e (kgf / cm 2 )) and the appropriate expansion absolute pressure of the nozzle (P Op (kgf / cm 2 )) using the molten metal smelting lance determined from equation (1) and the inlet side of the nozzle A molten iron smelting method characterized by using the ratio between the absolute pressures P O and P Op in the range of the following formula (4) or (5).
d e / d t = 0.509 ・ (P e / P Op ) -5/14・ {1- (P e / P Op ) 2/7-1 / 4 … (1)
1.2 ・ P op ≦ P o ≦ 2.0 ・ P op … (4)
P o ≦ 0.8 ・ P op … (5)
JP01903996A 1996-02-05 1996-02-05 Lance for molten iron refining and molten iron refining method Expired - Lifetime JP3547246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01903996A JP3547246B2 (en) 1996-02-05 1996-02-05 Lance for molten iron refining and molten iron refining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01903996A JP3547246B2 (en) 1996-02-05 1996-02-05 Lance for molten iron refining and molten iron refining method

Publications (2)

Publication Number Publication Date
JPH09209021A JPH09209021A (en) 1997-08-12
JP3547246B2 true JP3547246B2 (en) 2004-07-28

Family

ID=11988299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01903996A Expired - Lifetime JP3547246B2 (en) 1996-02-05 1996-02-05 Lance for molten iron refining and molten iron refining method

Country Status (1)

Country Link
JP (1) JP3547246B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4273688B2 (en) * 2000-11-16 2009-06-03 Jfeスチール株式会社 Converter blowing method
JP4980175B2 (en) * 2007-08-27 2012-07-18 新日本製鐵株式会社 Lance for molten iron refining and molten iron refining method
JP5884197B2 (en) * 2013-04-17 2016-03-15 Jfeスチール株式会社 Converter refining method
JP7003947B2 (en) * 2019-03-01 2022-01-21 Jfeスチール株式会社 Top-blown lance and molten iron refining method

Also Published As

Publication number Publication date
JPH09209021A (en) 1997-08-12

Similar Documents

Publication Publication Date Title
KR100464279B1 (en) Converter oxygen blowing method and upward blowing lance for converter oxygen blowing
JP3547246B2 (en) Lance for molten iron refining and molten iron refining method
EP0802262B1 (en) Converter top-blow refining method having excellent decarburization characteristics and top-blow lance for converter
JP7003947B2 (en) Top-blown lance and molten iron refining method
JP3580177B2 (en) Decarburization refining method for Cr-containing molten steel
JP4980175B2 (en) Lance for molten iron refining and molten iron refining method
JP4206736B2 (en) Top blowing lance and converter operation method using it
JP2012082492A (en) Converter refining method
JP4385855B2 (en) Converter blowing method and top blowing lance for converter blowing
JP4218234B2 (en) Converter blowing method
JP4686873B2 (en) Hot phosphorus dephosphorization method
JP7036147B2 (en) Top-blown lance and refining method of molten iron using it
JPH1143714A (en) Lance for refining
JPH11158527A (en) Top-blown lance for refining molten metal
JP4244546B2 (en) Top blowing lance for converter smelting
JPH1112633A (en) Lance for refining molten metal and refining method
JP3577959B2 (en) Oxygen blowing lance
JP3655662B2 (en) Liquid iron refining method using improper expansion jet
JP4686874B2 (en) Hot phosphorus dephosphorization method
JP4862860B2 (en) Converter blowing method
JP4466287B2 (en) Method of refining molten steel under reduced pressure and top blowing lance for refining
JP2003138312A (en) Method for refining molten metal and top-blowing lance for refining molten metal
KR19980052518A (en) Refining method of molten steel for producing ultra low carbon steel
JP2001011524A (en) Top-blown lance for dephosphorizing molten iron and method for dephosphorizing molten iron
JP3849571B2 (en) Converter blowing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040308

TRDD Decision of grant or rejection written
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040402

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 10

EXPY Cancellation because of completion of term