JP3547154B2 - Ceramic heating element - Google Patents

Ceramic heating element Download PDF

Info

Publication number
JP3547154B2
JP3547154B2 JP15230993A JP15230993A JP3547154B2 JP 3547154 B2 JP3547154 B2 JP 3547154B2 JP 15230993 A JP15230993 A JP 15230993A JP 15230993 A JP15230993 A JP 15230993A JP 3547154 B2 JP3547154 B2 JP 3547154B2
Authority
JP
Japan
Prior art keywords
sintered body
weight
compound
heating element
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15230993A
Other languages
Japanese (ja)
Other versions
JPH0712338A (en
Inventor
一穂 立松
公則 堀木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP15230993A priority Critical patent/JP3547154B2/en
Publication of JPH0712338A publication Critical patent/JPH0712338A/en
Application granted granted Critical
Publication of JP3547154B2 publication Critical patent/JP3547154B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Resistance Heating (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、セラミック焼結体に発熱線を埋設して成るセラミック発熱体に関し、特にディーゼルエンジンのグロープラグに用いて好適である。
【0002】
【従来の技術】
従来より、窒化珪素質(Siの他、サイアロンを包含する概念を言う)焼結体中にタングステンからなる発熱線を埋設したセラミック発熱体が製造されている。
【0003】
【発明が解決しようとする課題】
ところが、従来のセラミック発熱体をディーゼルエンジンに用いられるグロープラグの発熱源として使用した場合には、室温から1200℃程度の温度域(特に1100℃付近)にて、十分な強度および耐酸化性が得られない。
また、従来のセラミック発熱体をグロープラグの発熱源として使用し、そのセラミック発熱体に直流電圧を断続的に印加した場合には、焼結体の粒界相のイオンが移動することによって正極側コイル近傍の焼結体にクラックが生じる等の組織劣化を起こす。このため、焼結体の強度劣化や、発熱抵抗線の抵抗変化あるいは断線が生じ易くなり、その結果、通電性能の低下を招く。
本発明は、上記事情に基づいて成されたもので、その目的は、室温から1200℃程度(特に1100℃付近)までの強度および耐酸化性に優れ、且つ直流電圧を印加した場合の通電性能の低下を抑えることのできるセラミック発熱体の提供にある。
【0004】
【課題を解決するための手段】
本発明は、上記目的を達成するために、セラミック焼結体に発熱線を埋設して成るセラミック発熱体において、前記セラミック焼結体は、焼結助剤成分としてAlまたはAl化合物、および希土類元素化合物を添加したサイアロン基焼結体であり、且つそのサイアロン基焼結体は、AlまたはAl化合物をAl換算で1〜5重量%、およびYbを酸化物換算で80重量%以上含有した希土類元素または希土類元素化合物を酸化物換算で5〜12重量%含有するとともに、主として前記焼結助剤成分からなる偏析部の最大長さが3μm以下であることを技術的手段とする。
【0005】
【作用】
上記構成より成る本発明のセラミック発熱体は、セラミック焼結体の焼結助剤成分として、AlまたはAl化合物(以下Al化合物等と言う)を添加することにより、焼結可能な温度を低下させる効果が生じる。これによって、緻密な焼結体が焼結温度1700℃以下で得ることができれば、サイアロン粒子の成長が抑制されて、高強度の焼結体を得ることができる。
焼結助剤成分としてのAl化合物等は、その含有量がAl換算で1重量%未満であると、焼結助剤として十分に作用することができず、緻密な焼結体を得ることができない。一方、5重量%を越えると、耐熱性、高温強度、および耐酸化性が低下するとともに、通電性能(抵抗変化、通電後強度)が低下する。従って、Al化合物等の含有量は、Al換算で1〜5重量%とするものである。
【0006】
希土類元素または希土類元素化合物(以下希土類元素化合物等と言う)は、焼結剤成分としての含有量が5重量%未満であると、焼結助剤としての効果がなく、12重量%を越えると、高温強度、耐酸化性が低下するとともに、通電性能(抵抗変化、通電後強度)が低下する。従って、希土類元素化合物等の含有量は、酸化物換算で5〜12重量%とするものである。また、希土類元素化合物等に含有されるYb以外の希土類酸化物が20重量%を越えると、強度レベルを向上させるために焼結温度を1700℃以下に下げた場合に、焼結助剤の偏析[Si/RE(RE:希土類元素):メリライト型化合物、RE−Si−Al−ON化合物等から成る]を生成するとともに、800〜1000℃の中温域において耐酸化性を劣化させるSi・REのメリライト型化合物を生成し易く成る。従って、希土類元素中にYbを酸化物換算で80重量%以上含有することとする。
【0007】
また、主として焼結助剤成分から成る偏析部の最大長さが3μmを越える場合には、これらの凝集部が破壊起源となって強度が低下し、特に高温強度が著しく影響を受ける。なお、この最大長さが3μmを越える偏析部は、上記の様なYb以外の希土類酸化物を20重量%越えて用いた場合の他、焼成条件が適していない場合、例えば適正温度よりも高いか、もしくは低い温度で焼成した場合にも生じる。従って、焼結助剤成分から成る偏析部の最大長さを3μm以下とする。
なお、「主として焼結助剤成分から成る偏析部」とは、焼結助剤成分のみから成る偏析部であっても、焼結助剤成分とSiとの化合物からなる偏析部であっても良いという意味である。
【0008】
【実施例】
次に、本発明のセラミック発熱体をグロープラグの発熱源として使用した一実施例を図1に基づいて説明する。
図1はグロープラグの断面図である。
本実施例のグロープラグ1は、外周に取付け用の螺子部2aが形成されて、外側電極を構成する筒状の取付金具2、この取付金具2の先端(図1下端)内部に嵌め込まれて接合された金属製の支持筒3、先端側が支持筒3より突出した状態で、中央部が支持筒3に支持されたセラミック発熱体4、断面コの字形を呈する金属キャップ5aが一体に形成されて、この金属キャップ5aの内面がセラミック発熱体4の後端面にろう付けされた状態で取付金具2の軸心を通って配された中軸5、この中軸5の後端部に接続されて、取付金具2の後端で絶縁体10を介してナット11によって保持された端子電極12等より構成される。
【0009】
セラミック発熱体4は、窒化珪素質セラミック焼結体6、この焼結体6に埋設された発熱線7、および一対の電極取出し線8、9より成り、支持筒3より突出する先端部が、ディーゼルエンジンの予燃焼室(図示しない)に晒される。
セラミック焼結体6は、平均粒径0.7μm、α率95%のSi粉末に、平均粒径2μm、純度99.9%のYb、Y、Er、平均粒径1μmのAl、平均粒径0.7μmのAlNの各粉末を下記の表1に示す割合で配合し、No.1〜14までの試験品を製造した。なお、表中の「Al量」とは、焼結助剤成分中のAl化合物等の量をAl換算で示した量(重量%)である。
【0010】
【表1】

Figure 0003547154
【0011】
発熱線7は、線径0.2mmのコイル状のタングステン線を略U字形に成形して成り、両端部がそれぞれタングステン製の電極取出し線8、9に接続されている。
一対の電極取出し線8、9は、セラミック焼結体6の後方側に平行的に埋設されている。一方の電極取出し線8は、後端部8aがセラミック焼結体6の側面より露出して設けられ、その露出した後端部8aがろう付けによって支持筒3の内面に接合されている。他方の電極取出し線9は、後端部9aがセラミック焼結体6の後端側面より露出して設けられ、その露出した後端部9aがろう付けによって金属キャップ5aの内壁に接合されている。
【0012】
次に、セラミック発熱体4の製造方法の一例を説明する。
ア)Si、Yb、Y、Er、Al、およびAlNの各粉末を上記の表1に示す割合で配合した後、ボールミルにてアルコール湿式混合を20時間行った後、乾燥して混合粉末を得る。
イ)続いて、タングステン、モリブデン、レニウム等の高融点金属、もしくはこれらを主体とする合金、これら金属の炭化物、これら金属とセラミック焼結体材との混合物等より成る発熱線7(本実施例ではタングステン線)を所定の形状に成形し、前記ア)で得られた混合粉末中に埋設する。
ウ)続いて、その発熱線7が埋設された混合粉末を、非酸素雰囲気中でホットプレス焼成することにより、No.1〜14のセラミック発熱体4を得る。なお、焼成条件は、焼成温度:1700℃、保持時間:30分、圧力:300kg/cmである。
【0013】
次に、上記製造方法によって得られたセラミック発熱体4を以下の各試験方法によって評価し、その評価結果を下記の表2に示す。なお、耐酸化性の評価については、セラミック自体の特性を評価するために、発熱線7を埋設する上記イ)の工程を省略して行った。
▲1▼偏析部最大長
焼結体断面を鏡面研磨し、走査電子顕微鏡(SEM:日本電子株式会社製)により観察し、偏析部最大長(μm)の測定を行った。
▲2▼気孔率
アルキメデス法により焼結体の気孔率を測定した。
▲3▼抗析強度
室温および1100℃にてJIS−R1601およびJIS−R1604に従う4点曲げ試験を行い、抗析強度(MPa)を測定した。
▲4▼酸化増量
各試験品から、3×4×35mmの試験片を切り出し、次いで、大気中温度1000℃の雰囲気中で、100時間放置し、酸化した後、重量増加分(mg/cm)を測定することにより行った。
▲5▼通電性能
各試験品に試験用の電極を取付け、直流電流を印加して、飽和温度が1100℃となるように電圧を制御し、1分間通電、1分間エアー吹き付けによる急冷の通電耐久テストを10000回行って、抵抗の変化および抗析強度を測定した。
【0014】
【表2】
Figure 0003547154
【0015】
上記表2に示すように、No.9、10の試験品は、希土類元素中のYbの割合が低い(80重量%より少ない)ため、焼結助剤の偏析部最大長が3μm以上となり、室温および1100℃において抗析強度が低く、耐酸化性も低い。No.11の試験品は、「Al+AlN」(Al量)が過剰(5重量%を越える)であるため、耐熱性が低下して高温強度、耐酸化性が低下し、さらには、通電性能(抵抗変化、通電後強度)も低下する。No.12の試験品はAl化合物の量が少なく(1重量%より少ない)、またNo.13の試験品はYbの量が少ない(5重量%より少ない)ことから、焼結助剤が不十分であるため十分緻密化せず、抗析強度、耐酸化性、さらには通電後強度が低下する。No.14の試験品は、Ybが過剰(12重量%を越える)であるため、高温強度、耐酸化性が低下し、さらには、通電性能(抵抗変化、通電後強度)が低下する。
【0016】
これに対して、Al化合物等をAl換算で1〜5重量%、およびYbを酸化物換算で80重量%以上含有した希土類元素化合物等を酸化物換算で5〜12重量%含有したNo.1〜8の各試験品(本発明の組成を満足するセラミック発熱体4)は、室温および1100℃の抗析強度が極めて高く、1100℃においても900MPa以上の高抗析強度を示す。また、耐酸化性においても、1000℃×100時間で0.1mg/cm以下と非常に小さく、耐酸化性も優れている。さらには、通電性能においても抵抗変化は見られず、通電後強度も900MPa以上と優れていることが確認された。
【0017】
【発明の効果】
本発明のセラミック発熱体は、セラミック焼結体に含有されるAl化合物等の含有量および希土類元素化合物等の含有量を特定するとともに、主として焼結助剤成分からなる偏析部の最大長さを3μmとしたことにより、高強度で耐酸化性に優れ、且つ通電性能(抵抗変化、通電後強度)にも優れる。
【図面の簡単な説明】
【図1】本実施例に係るセラミック発熱体を用いたグロープラグの断面図である。
【符号の説明】
4 セラミック発熱体
6 セラミック焼結体
7 発熱線[0001]
[Industrial applications]
The present invention relates to a ceramic heating element having a heating wire embedded in a ceramic sintered body, and is particularly suitable for use in a glow plug of a diesel engine.
[0002]
[Prior art]
BACKGROUND ART Conventionally, a ceramic heating element has been manufactured in which a heating wire made of tungsten is embedded in a sintered body of silicon nitride (which includes a sialon in addition to Si 3 N 4 ).
[0003]
[Problems to be solved by the invention]
However, when a conventional ceramic heating element is used as a heat source of a glow plug used in a diesel engine, sufficient strength and oxidation resistance are obtained in a temperature range from room temperature to about 1200 ° C. (particularly around 1100 ° C.). I can't get it.
When a conventional ceramic heating element is used as a heat source for a glow plug and a DC voltage is applied intermittently to the ceramic heating element, the ions of the grain boundary phase of the sintered body move to move the positive electrode to the positive electrode side. Structural degradation such as cracking occurs in the sintered body near the coil. For this reason, the strength of the sintered body is deteriorated, the resistance of the heating resistance wire is changed, or the wire is easily broken. As a result, the current-carrying performance is reduced.
The present invention has been made on the basis of the above circumstances, and has as its object to have excellent strength and oxidation resistance from room temperature to about 1200 ° C. (particularly around 1100 ° C.), and to have an energizing performance when a DC voltage is applied. It is an object of the present invention to provide a ceramic heating element capable of suppressing a decrease in the temperature.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a ceramic heating element in which a heating wire is embedded in a ceramic sintered body, wherein the ceramic sintered body includes Al or an Al compound as a sintering aid component, and a rare earth element. A sialon-based sintered body to which a compound is added, wherein the sialon-based sintered body contains 1 to 5% by weight of Al or an Al compound in terms of Al and 80% by weight or more of Yb in terms of an oxide. Alternatively, the technical means is that a rare earth element compound is contained in an amount of 5 to 12% by weight in terms of oxide, and the maximum length of the segregated portion mainly composed of the sintering aid component is 3 μm or less.
[0005]
[Action]
The ceramic heating element of the present invention having the above-described structure reduces the sinterable temperature by adding Al or an Al compound (hereinafter referred to as an Al compound or the like) as a sintering aid component of the ceramic sintered body. The effect occurs. Thus, if a dense sintered body can be obtained at a sintering temperature of 1700 ° C. or less, the growth of sialon particles is suppressed, and a high-strength sintered body can be obtained.
If the content of the Al compound or the like as a sintering aid component is less than 1% by weight in terms of Al, it cannot function sufficiently as a sintering aid, and a dense sintered body may be obtained. Can not. On the other hand, when the content exceeds 5% by weight, heat resistance, high-temperature strength, and oxidation resistance decrease, and the current-carrying performance (resistance change, strength after current-carrying) decreases. Therefore, the content of the Al compound and the like is set to 1 to 5% by weight in terms of Al.
[0006]
When the content of the rare earth element or the rare earth element compound (hereinafter referred to as the rare earth element compound, etc.) as the sintering agent component is less than 5% by weight, there is no effect as a sintering aid, and when it exceeds 12% by weight. In addition, the high-temperature strength and the oxidation resistance are reduced, and the energization performance (resistance change, strength after energization) is reduced. Therefore, the content of the rare earth element compound and the like is set to 5 to 12% by weight in terms of oxide. If the rare earth oxide other than Yb 2 O 3 contained in the rare earth element compound exceeds 20% by weight, the sintering temperature is reduced to 1700 ° C. or lower in order to improve the strength level. agents segregation [Si 3 N 4 / RE 2 O 3 (RE: rare earth element): melilite type compound, consisting of RE-Si-Al-ON compounds] generates the, acid at intermediate temperature range of 800 to 1000 ° C. A melilite type compound of Si 3 N 4 .RE 2 O 3 which degrades the chemical property is easily formed. Therefore, the rare earth element contains Yb in an amount of 80% by weight or more in terms of oxide.
[0007]
Further, when the maximum length of the segregated portion mainly composed of the sintering aid component exceeds 3 μm, the strength of the segregated portion is reduced due to the origin of the fracture, and the high-temperature strength is particularly affected. The segregated portion having a maximum length of more than 3 μm is formed when the above-mentioned rare earth oxide other than Yb 2 O 3 is used in an amount exceeding 20% by weight, or when the firing conditions are not suitable, for example, when the appropriate temperature It also occurs when firing at higher or lower temperatures. Therefore, the maximum length of the segregated portion composed of the sintering aid component is set to 3 μm or less.
The “segregated portion mainly composed of the sintering aid component” refers to a segregated portion composed of the compound of the sintering aid component and Si 3 N 4 even if it is a segregated portion composed only of the sintering aid component. It means that there may be.
[0008]
【Example】
Next, an embodiment using the ceramic heating element of the present invention as a heat source of a glow plug will be described with reference to FIG.
FIG. 1 is a sectional view of a glow plug.
The glow plug 1 according to the present embodiment has a mounting screw portion 2a formed on the outer periphery, and is fitted into a cylindrical mounting member 2 constituting an outer electrode, and a tip (lower end in FIG. 1) of the mounting metal member 2. A joined metal supporting tube 3, a ceramic heating element 4 supported at the center by the supporting tube 3 in a state where the tip side protrudes from the supporting tube 3, and a metal cap 5a having a U-shaped cross section are integrally formed. Then, a center shaft 5 disposed through the axis of the mounting bracket 2 in a state where the inner surface of the metal cap 5a is brazed to the rear end surface of the ceramic heating element 4, and connected to the rear end of the center shaft 5, It is composed of a terminal electrode 12 and the like held at the rear end of the mounting bracket 2 by a nut 11 via an insulator 10.
[0009]
The ceramic heating element 4 includes a silicon nitride ceramic sintered body 6, a heating wire 7 buried in the sintered body 6, and a pair of electrode lead wires 8 and 9, and a tip protruding from the support cylinder 3 has a It is exposed to a pre-combustion chamber (not shown) of the diesel engine.
The ceramic sintered body 6 is obtained by adding Yb 2 O 3 , Y 2 O 3 , Er 2 O having an average particle diameter of 2 μm and a purity of 99.9% to Si 3 N 4 powder having an average particle diameter of 0.7 μm and an α ratio of 95%. 3, an average particle size 1μm of Al 2 O 3, in proportions showing each powder having an average particle size of 0.7μm of AlN in Table 1 below, No. Test items 1 to 14 were produced. The “Al amount” in the table is an amount (% by weight) of the amount of the Al compound in the sintering aid component in terms of Al.
[0010]
[Table 1]
Figure 0003547154
[0011]
The heating wire 7 is formed by forming a coil-shaped tungsten wire having a wire diameter of 0.2 mm into a substantially U-shape, and both end portions are connected to tungsten electrode lead wires 8 and 9, respectively.
The pair of electrode lead wires 8 and 9 are buried in parallel behind the ceramic sintered body 6. One of the electrode lead wires 8 has a rear end 8a exposed from the side surface of the ceramic sintered body 6, and the exposed rear end 8a is joined to the inner surface of the support cylinder 3 by brazing. The other electrode lead wire 9 has a rear end portion 9a exposed from the rear end side surface of the ceramic sintered body 6, and the exposed rear end portion 9a is joined to the inner wall of the metal cap 5a by brazing. .
[0012]
Next, an example of a method for manufacturing the ceramic heating element 4 will be described.
A) After blending each powder of Si 3 N 4 , Yb 2 O 3 , Y 2 O 3 , Er 2 O 3 , Al 2 O 3 , and AlN at a ratio shown in Table 1 above, alcohol wet by a ball mill. After mixing for 20 hours, the mixture is dried to obtain a mixed powder.
B) Subsequently, a heating wire 7 made of a refractory metal such as tungsten, molybdenum, rhenium or the like, an alloy mainly composed of these, a carbide of these metals, a mixture of these metals and a sintered ceramic material, etc. Then, a tungsten wire) is formed into a predetermined shape and embedded in the mixed powder obtained in the above a).
C) Subsequently, the mixed powder in which the heat generating wires 7 are embedded is hot-pressed in a non-oxygen atmosphere to obtain No. 2 powder. 1 to 14 ceramic heating elements 4 are obtained. The firing conditions were as follows: firing temperature: 1700 ° C., holding time: 30 minutes, pressure: 300 kg / cm 2 .
[0013]
Next, the ceramic heating element 4 obtained by the above manufacturing method was evaluated by the following test methods, and the evaluation results are shown in Table 2 below. The oxidation resistance was evaluated by omitting the step a) of embedding the heating wire 7 in order to evaluate the characteristics of the ceramic itself.
{Circle around (1)} Maximum length of segregation part The cross section of the sintered body was mirror-polished, observed with a scanning electron microscope (SEM: manufactured by JEOL Ltd.), and the maximum length of the segregation part (μm) was measured.
(2) Porosity The porosity of the sintered body was measured by the Archimedes method.
{Circle around (3)} Electrodeposition strength A four-point bending test according to JIS-R1601 and JIS-R1604 was performed at room temperature and 1100 ° C., and the anti-deposition strength (MPa) was measured.
{Circle around (4)} Oxidation weight increase A 3 × 4 × 35 mm test piece was cut out from each test product, then left in an atmosphere at a temperature of 1000 ° C. for 100 hours, oxidized, and then increased in weight (mg / cm 2). ) Was measured.
(5) Conducting performance Attach test electrodes to each test product, apply DC current, control the voltage so that the saturation temperature becomes 1100 ° C, conduct for 1 minute, and endurance of rapid cooling by blowing air for 1 minute The test was performed 10,000 times to measure the change in resistance and the precipitation strength.
[0014]
[Table 2]
Figure 0003547154
[0015]
As shown in Table 2 above, no. Since the proportion of Yb 2 O 3 in the rare earth element was low (less than 80% by weight), the maximum length of the segregation portion of the sintering aid was 3 μm or more in the test samples 9 and 10, and the anti-deposition at room temperature and 1100 ° C. Low strength and low oxidation resistance. No. In the test sample No. 11, since “Al 2 O 3 + AlN” (the amount of Al) was excessive (exceeding 5% by weight), the heat resistance was lowered, the high-temperature strength and the oxidation resistance were lowered, and furthermore, the current was not applied. The performance (resistance change, strength after energization) also decreases. No. Test specimen No. 12 had a low amount of Al compound (less than 1% by weight), and Test sample No. 13 has a small amount of Yb 2 O 3 (less than 5% by weight), and therefore does not sufficiently densify due to insufficient sintering aid, and has a high anti-deposition strength, oxidation resistance, and electric current. After strength decreases. No. In the test sample No. 14, since Yb 2 O 3 is excessive (exceeding 12% by weight), high-temperature strength and oxidation resistance are reduced, and furthermore, current carrying performance (resistance change, strength after current passing) is reduced.
[0016]
On the other hand, No. 1 containing 5 to 12% by weight of a rare earth element compound or the like containing an Al compound or the like in an amount of 1 to 5% by weight in terms of Al and Yb in an amount of 80% by weight or more in terms of oxide. Each of the test articles 1 to 8 (the ceramic heating element 4 satisfying the composition of the present invention) has extremely high anti-deposit strength at room temperature and 1100 ° C., and shows high anti-deposit strength of 900 MPa or more even at 1100 ° C. In addition, the oxidation resistance is very small, 0.1 mg / cm 2 or less at 1000 ° C. for 100 hours, and the oxidation resistance is excellent. Furthermore, no change in resistance was observed in the current-carrying performance, and it was confirmed that the strength after current-carrying was excellent at 900 MPa or more.
[0017]
【The invention's effect】
The ceramic heating element of the present invention specifies the content of the Al compound and the like and the content of the rare earth element compound and the like contained in the ceramic sintered body, and sets the maximum length of the segregated portion mainly composed of the sintering aid component. By setting the thickness to 3 μm, high strength, excellent oxidation resistance, and excellent current-carrying performance (resistance change, strength after current-carrying) are obtained.
[Brief description of the drawings]
FIG. 1 is a sectional view of a glow plug using a ceramic heating element according to the present embodiment.
[Explanation of symbols]
4 Ceramic heating element 6 Ceramic sintered body 7 Heating wire

Claims (1)

セラミック焼結体に発熱線を埋設して成るセラミック発熱体において、
前記セラミック焼結体は、焼結助剤成分としてAlまたはAl化合物、および希土類元素化合物を添加したサイアロン基焼結体であり、且つそのサイアロン基焼結体は、AlまたはAl化合物をAl換算で1〜5重量%、およびYbを酸化物換算で80重量%以上含有した希土類元素または希土類元素化合物を酸化物換算で5〜12重量%含有するとともに、主として前記焼結助剤成分からなる偏析部の最大長さが3μm以下であることを特徴とするセラミック発熱体。
In a ceramic heating element having a heating wire embedded in a ceramic sintered body,
The ceramic sintered body is a sialon-based sintered body to which Al or an Al compound as a sintering aid component and a rare earth element compound are added, and the sialon-based sintered body is obtained by converting Al or an Al compound into Al. A segregation part mainly containing the sintering aid component, while containing 5 to 12% by weight of a rare earth element or a rare earth element compound containing 1 to 5% by weight and Yb in an amount of 80% by weight or more in terms of oxide; Wherein the maximum length of the ceramic heating element is 3 μm or less.
JP15230993A 1993-06-23 1993-06-23 Ceramic heating element Expired - Fee Related JP3547154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15230993A JP3547154B2 (en) 1993-06-23 1993-06-23 Ceramic heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15230993A JP3547154B2 (en) 1993-06-23 1993-06-23 Ceramic heating element

Publications (2)

Publication Number Publication Date
JPH0712338A JPH0712338A (en) 1995-01-17
JP3547154B2 true JP3547154B2 (en) 2004-07-28

Family

ID=15537716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15230993A Expired - Fee Related JP3547154B2 (en) 1993-06-23 1993-06-23 Ceramic heating element

Country Status (1)

Country Link
JP (1) JP3547154B2 (en)

Also Published As

Publication number Publication date
JPH0712338A (en) 1995-01-17

Similar Documents

Publication Publication Date Title
CN1129348C (en) Ceramic heater device and method of making same and glow plug into which ceramic heater device is incorporated
EP2107854B1 (en) Ceramic heater and glow plug
EP2676946A1 (en) Ti3sic2 material, electrode, spark plug, and processes for production thereof
JP4808852B2 (en) Silicon nitride / tungsten carbide composite sintered body
JP5342694B2 (en) Ceramic heater element, ceramic heater, and glow plug
US6657166B2 (en) Silicon nitride sintered material and production process thereof
JP2001064080A (en) Silicon nitride sintered body and its production
JP3600658B2 (en) Ceramic heater and method of manufacturing the same
JP3547154B2 (en) Ceramic heating element
EP1213274A2 (en) Silicon nitride-tungsten carbide composite sintered material
JP3601079B2 (en) Ceramic heater
JP3078418B2 (en) Ceramic heating element
JP4018998B2 (en) Ceramic heater and glow plug
JP4795534B2 (en) Silicon nitride sintered body and manufacturing method thereof
JPH1025162A (en) Ceramic sintered material
JP6214418B2 (en) Ceramic heater element, ceramic heater and glow plug
JP2002124365A (en) Ceramic heater and its manufacturing method
JP3594660B2 (en) Ceramic heater
JP2735725B2 (en) Ceramic heating element
JP2019021501A (en) Ceramic heater and glow plug
JP3886684B2 (en) Ceramic heater
JPH10300086A (en) Ceramic heater and ceramic glow plug
JPH051817A (en) Ceramic exothermic element
JP3004141B2 (en) Ceramic heating element
JP4587135B2 (en) Silicon carbide heating element

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040413

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees