JP3547002B2 - Method for producing esters - Google Patents

Method for producing esters Download PDF

Info

Publication number
JP3547002B2
JP3547002B2 JP2000169264A JP2000169264A JP3547002B2 JP 3547002 B2 JP3547002 B2 JP 3547002B2 JP 2000169264 A JP2000169264 A JP 2000169264A JP 2000169264 A JP2000169264 A JP 2000169264A JP 3547002 B2 JP3547002 B2 JP 3547002B2
Authority
JP
Japan
Prior art keywords
reaction
mol
roh
product
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000169264A
Other languages
Japanese (ja)
Other versions
JP2001348424A (en
Inventor
哲 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000169264A priority Critical patent/JP3547002B2/en
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to CA002408450A priority patent/CA2408450A1/en
Priority to CNB018098002A priority patent/CN1181921C/en
Priority to US10/275,758 priority patent/US7030057B2/en
Priority to EP01930172A priority patent/EP1308208A4/en
Priority to PCT/JP2001/004057 priority patent/WO2001087481A1/en
Priority to KR10-2002-7015282A priority patent/KR100520308B1/en
Publication of JP2001348424A publication Critical patent/JP2001348424A/en
Application granted granted Critical
Publication of JP3547002B2 publication Critical patent/JP3547002B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【0001】
【発明の属する技術分野】
この発明は、エステル類(即ち、複合エステル及びポリエステルを含む。)の製造方法に関し、特に、エステル交換反応により極めて狭い分子量分布を有する上記エステル類を製造する方法に関する。
【0002】
【従来の技術】
従来、末端にOH基を一つ有する反応物から高分子エステル類を製造することは困難であると考えられていた。即ち、二塩基酸とのエステル化反応においてはこのような反応物は鎖の延長を終結させてしまい、またこのような反応物中にエステル結合を有している場合のエステル交換反応においても、このような反応物は鎖の延長を終結させてしまうし、更にこのような反応物の鎖の延長を可能とする適切な触媒を見出すことができなかった。
【0003】
また、高分子エステルを従来の方法で製造するとnの数の異なる複数の化合物の混合物として製造され、n=1より順次その数が多くなるにしたがってその割合が級数的に少なくなる分子量分布を持つような高分子エステルしか製造できなかった。その理由として、エステルが生成する際に、式で書くように端から反応するとは限らず構造式の中にあるエステル結合が、主として末端アルコールROHの攻撃を受けてエステル交換をおこしながら反応が進んでいるために、生成物はn=1が多い組成となってしまう。特開平8−157418には、レトロ化反応、即ちHOXO(COACOOXO)OHの反応では両末端にエステル結合で酸が反応するとn=1は生成する筈がないのに、液体クロマトグラフィHPLCによる分布の測定ではn=1が一番多く生成していることが記載されている。一方、RO(COACOOXO)COACOORとして表される複合エステルの製造は既に多くの特許も報告されその反応プロセスも提案されている。改良された触媒を利用してエステル類を製造すると共に、有効にその性質を利用して、副生するジエステル類を循環使用することによって優れた性能を持つ複合エステルが製造されることも提案されている(特願2000−147554)。
【0004】
【発明が解決しようとする課題】
本発明は、このようなエステル結合を有しかつ末端にOH基を有する反応物をエステル交換反応により鎖の延長を可能とし、更に所望の重合度において極めて狭い分子量分布を有するエステル類の製造を可能にするエステル類の製造方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明の主題は、二塩基酸(HOOCACOOH)、ジオール(HOXOH)及び末端アルコール(ROH)の反応エステル組成物(RO(COACOOXO)H)(n≧1)から成る反応物を、チタン触媒の存在下、100mmHg以下の減圧下で反応させてエステル類を製造する方法である。この反応エステル組成物としては、二塩基酸(HOOCACOOH)、ジオール(HOXOH)及び末端アルコール(ROH)のモル比1:1:1の反応エステル組成物(ROCOACOOXOH)が好ましい。この反応物は更に一般式:
R’O(COACOOXO)COACOOR’
(式中、R’は、それぞれ同じか又は異なっていてもよく、前記Rと同じであってもよいアルキル基を表す。)で表されるエステル化合物を含んでもよい。
【0006】
ここで、二塩基酸(HOOCACOOH)はアジピン酸若しくはフタル酸又はこれらの混合物であってもよく、末端アルコール(ROH)のRはアルキル基が好ましく、その炭素数は4〜10がより好ましい。またジオール(HOXOH)はエチレングルコール、1,2−プロパンジオール、1,3−ブタンジオール、1,4−ブタンジオール、1,6−ヘキサンジオール、2−エチル−1,3−ヘキサンジオール、分子量が1000以下、好ましくは500以下、より好ましくは300以下のポリエチレングリコール及び分子量が1000以下、好ましくは500以下、より好ましくは300以下のポリプロピレングリコールから成る群から選択される少なくとも1種であってもよい。
【0007】
チタン触媒としては、アルコキシチタン、又はアルコキシチタン、水溶性ポリオール及び水の混合物若しくは該混合物の反応生成物であり、特に後者が好ましい。
ここでアルコキシチタンはテトラブトキシチタン及びその四量体、テトライソプロピルオキシチタン、テトラエトキシチタン、テトラオクチルオキチチタン等の4官能性テトラアルコキシチタン類、三塩化チタン、四塩化チタン等のアルコール溶液、オルトチタン酸エステル類と呼ばれる化合物等を含むが、テトラブトキシチタン、テトライソプロピルオキシチタン又はテトラオクチルオキシチタンが好ましく、テトラブトキシチタンがより好ましい。水溶性ポリオールは2以上の水酸基を有する水溶性化合物であれば特に制限は無いが、エチレングリコール、プロパンジオール、ジエチレングリコール又はグリセリンが好ましい。このアルコキシチタン中のチタン1モルに対する水溶性ポリオールのモル数は1〜50モル、好ましくは5〜20モル、より好ましくは8〜15モルであり、また同様に水のモル数は1〜60モル、好ましくは4〜40モル、より好ましくは10〜20モルである。これらを単に室温で又は加熱して混合するか又は溶媒中で溶解させてもよく、またその混合順序についても制限は無い。
【0008】
【発明の実施の形態】
以下、ジオールを一般式としてHOXOHとして記載し、一官能性末端アルコールをROH、フタール酸をHOCOPCOOH、アジピン酸をHOCOACOOHと記載する。更に、簡略のため、エステル結合(−COO−)を省略して記載する場合がある。
先ず二塩基酸ジオール末端アルコールの反応組成物について述べる。二塩基酸とジオールに等モル量の末端アルコールを添加してエステル化反応を行い酸をエステルにした時に二塩基酸の二当量に対して、ジオール及び末端アルコールのアルコール当量は三となり、反応は当然種々の生成物ができ、エステルアルコールとエステルが生成することになる。
ROH+HOCOACOOH+HOXOH →RAXOH+RAR+HOXAXOH+RAXAR+RAXAXOH+ROH
【0009】
実際上の内容は組成で示すものだけではなく、RARおよびHOXAXOHを含みこの2つは等モルの関係になる。この二者は、次にエステル交換反応が進むと、RAXAXOH+ROHとなり、R(AX)OHと同じ挙動を示すことが期待される。またRAXARとHOXAXOHが1対1の組成はエステル交換反応では、RAXOH+RAXAXOHとなり2R(AX)1.5OHと同じ挙動をすることが推測される。即ち、この生成物はR(AX)OHの組成で示すことができる。このnは反応の条件で異なる。
これらのことを配慮し1対1対1の脱水エステル化反応組成物は、理論組成としては、RAXOHであるが、副生物ができるので、生成物は前記のR(AX)OHとして取り扱うことができる。このような組成物はジエステルとジオール等モルの反応を行って製造することもできる。
【0010】
RAR+HOXOH → RAXOH+ROH+RAR+HOXOH+HOXAOH
次にこの組成物を使用してエステル交換反応を行うと
RAR+HOXOH → RAXOH+ROH (1)
RAR+RAXAXOH → RAXAXR+ROH (2)
RAXAR+RAXOH → RAXOH+RAXAR、又は RAXAXAR+ROH (3)
RAXAXAR+RAXOH → RAXAXOH+RAXAR、RAXOH+RAXAXAR、又はRAXAXAXAR+ROH (4)
RAXAR+nRAXOH → RAX(AX)AR+nROH (5)
【0011】
(1)〜(5)に示す逐次反応が進み、ジエステルRARとの反応では、ジエステル過剰使用で重合度nの小さな組成の複合エステルが、更に複合エステルからは、RAXOHの反応量に応じて、エステル交換反応でROHの離脱に応じて(5)式の重合度の高いエステル類が生成することになる。エステル交換反応は、末端だけでなく、ポリエステル構造の内部でも起こることが考えられるが、その際は末端アルコールが生成し再びエステル交換反応が進むので、結果として末端部で脱アルコール反応が進行し、生成物は重合度の高い生成物となる。実験の結果から分かるが、(1)の反応と(3)の反応では、(1)より(3)の反応の方がより進行しやすい。その結果、RARとRAXOHとの反応では、生成物である(3)以降の反応が同時または逐次進行するためにRARは定量的に反応させることはできず、最後まで未反応で残り、反応したRARの割合から、生成物の(AX)のnの値を計算することになる。
【0012】
複合エステルはRO(COACOOXO)COACOORとして記載され更にその組成は、nの数の異なる複数の化合物の混合物として製造され、特に従来の製造方法では、n=1より順次その数が多くなるにしたがってその割合が級数的こ少なくなる分子量分布を持っている。特別の製造方法でなければ正規分布を示す複合エステルの製造はできなかった。その理由として、エステルが生成する際に、式で書くように端から反応するとは限らず構造式の中にあるエステル結合が、主として末端アルコールROHの攻撃を受けてエステル交換をおこしながら反応が進んでいるために、生成物はn=1が多い組成となってしまう。
【0013】
RAR+HOXAXOH+RAR → RAXAXAR (6)
RAR+HOXAXOH → RAXAXOH+ROH (7)
RAXAXOH+ROH → RAR+HOXAXOH、RAXOH+RAXOH、又はRAXAR+HOXOH (8)
RAXOH+RAR → RAXAR+ROH (9)
RAR+HOXOH+RAR → RAXAR (10)
【0014】
その理由として、(7)の反応で先ずROHができ、そのROHが反応すると(8)記載の諸反応が進み、(9)ではn=1が多量にでき、また(8)でできたHOXOHは次にn=1の生成(10)となる。エステル交換反応で必ずROHができ、その液中で反応するとn=2ができる筈の(6)反応でも生成物は大部分が(8)〜(10)反応でn=1になるとして、説明される。
無水フタール酸2モルとジオール1モルを反応させると、無水物反応で殆ど定量的にジオールエステルカルボン酸ができることになる。これにROHを加えてエステル化すると
ROH+HOCOPXPCOOH+HOR → RPXPR (11)
RPXPR+ROH → RPR+RPXOH (12)
RPXOH+RPXPR → ROH+RPXPXPR (13)
RPXPXPR+ROH → RPR+RPXPXOH (14)
RPXPXOH 一一一→ n=3,n=4 (15)
【0015】
(11)式では定量的にビス化合物n=1が生成することになるが、実際に反応を行うとn=7までの混合物で、(12)〜(15)式の反応が次々と進み、更にn=7までも進んでしまうのである。エステル化反応を定量的に進めるためにROHは一般的には過剰に使用して初めて到達できるので、エステル交換反応の触媒であるチタンは勿論その他の触媒でもこのような反応が進んで、その結果生成する複合エステルはPXPXPの構造が原因と考えられる粘度の急上昇が結果として現れ、粘度が高いと可塑剤として使用すると可塑化性能が悪くなり、フタール酸ユニットのみのn=1、n=2に相当する複合エステルは作られていない。この2つの説明は何れもROHの影響について述べたが、複合エステルやポリエステルの脱水エステル化反応ではROHの影響が大きいので分子量分布のコントロールを目的にROHを少量づつ逐次添加する方法、更にジオール成分でもエステル基に攻撃され難いジオール成分として、2−エチル−1,3−ヘキサンジオールが比較的影響を受けにくく、結果として分布のコントロールができることも分かっている。従ってROHの影響を無くするために、減圧下で反応することによって、レトロ化反応が少なくなって、(6)式に相当する反応で、フタール酸ジオールジエステルを使用した場合にROHがオクタノールではジオクチルフタレートの副生((14)式)が防止されるとの記載がなされている。
【0016】
本発明で二塩基酸として無水フタール酸を使用すると先ずその1モルとジオール1モルで反応を開始し一官能性アルコール1モルを追加してエステル化して得られるエステルアルコールを使用し、減圧下添加エステル交換反応を行うことによって、初めて高分子量の(PX)を含まない複合エステルを造ることができる。エステル交換反応では、完全に等モル反応は不可能なので可能な限りジエステルを多く使って定量的に反応させることが好ましい。エステル交換反応は(1)のRAXOHに代えてRPXOH、アジピン酸に代わってフタール酸で記載されることになる。
ここで、この反応を混合液を加熱して生成するROHを除去すると生成物が得られることになるが(特許第2517245号)、レトロ化反応が同時に起こるので、フタール酸を使用した場合には(PX)のn=3以上のものが副生し、粘度が高くなる。
【0017】
本発明において、エステル交換反応は減圧下、好ましくは100mmHg以下、より好ましくは30mmHg以下、より好ましくは0.2〜25mmHg、特に好ましくは0.5〜2mmHgで行う。また温度は好ましくはRARの沸点に近く高い温度160〜250℃、好ましくは180〜220℃で行い、少量づつ添加エステル交換反応を行うことが、好ましいことになる。
この反応で使用するジエステルRARのモル数は、2以下では生成物の重合度が2以上となるので、低粘度生成物を得るためには2モル以上の使用が好ましく更に多いと循環使用するRARの量が多く効率が悪くなる。1.5モル以下では高粘度になって本方法の特長が無くなる。得られる生成物の組成は理論計算量から収得量を差し引きそのg数のRARモル数が、反応に関与しなかったとして、反応モル数並びに反応割合を計算し、その逆数が(PX)の重合度nと計算される。(PX)は必ずしもPXPXPを意味しているのではなく、この反応ではROHの反応への影響は無いと考えられ生成物のユニットはPXAXPの構造となっているので、低粘度生成物が得られたものと考えられる。
【0018】
アジピン酸ではフタール酸の無水物反応と異なって、選択的反応が行えないが、ジオールと酸との反応を優先し末端アルコールの添加を行うと、ジエステルRARの副生が少なくなるが、特に複合エステルnの小さなビス化合物を選択的に製造するので無ければ、むしろそのまま使用することによって、重合度の計算上は問題なく使用される。R(AX)OH、R(PX)OHの計算は反応生成物を減圧下で揮発分として、共沸肋材として使用したトルエンと、未反応の末端アルコール、1−オクタノールを除去し、生成物の重量から、計算量との差をオクタノールの分子量で割りモル数を計算使用量より引いた反応モル数を算出しその割合を計算することができる。その割合の逆数は(AX)のn重合度として計算される。反応の仕方で幾分変わるが、その値はおおよそ1.1〜1.3までの値で、ROHを除去して平均分子量を計算して使用することもできるが、ROHを除去しないでそのまま混合物としてn=1として、使用することもできる。
【0019】
アジピン酸エステル類では、部分的にレトロ化反応を行って、分子量分布の広い組成物を得ても良いが、減圧下添加エステル交換反応を行って、より高分子量とすることによって、目標とする重合度のポリエステルを特に低酸価低アルコール末端の生成物として、製造することができる。尚分子量分布については、末端部でエステル交換反応が進行しているが、ポリエステルの内部でもエステル交換反応が進行し、その際端から2番目では(4)式、レトロ反応も起こっていることになるので、完全に正規分布が、得られるとは考えていないが、ROHによるレトロ化反応が制御されているので、恐らく正規分布に近い分子量分布を持つものと期待される。
【0020】
後述の実施例6において、直接逐次添加脱水エステル化反応で得た、重合度4の複合エステルより3500の分子量を目的にポリエステル化反応を行ったが、低分子量のジエステルRARの副生は認められず、高分子化した後で高温蒸留で低分子量部分を除去する必要がない特長がある。これに対して、ジエステルとの反応(実施例5)では、2倍モル量のR(AX)OHエステルアルコールの使用でも尚20%近くのRARが反応しないで残り、従って目的の組成より2割近く分子量が上がる計算となった。
複合エステルのなかで、異種複合エステルにすることによって、耐水性が向上することはよく知られている。このような目的では、R(AX)OHおよびR(PX)OHをそれぞれ単独に作り或いは混合して作り、目的組成に合わせて、それぞれの添加量を決め、前または後に異種成分を添加して、エステル交換反応を行うことで目的を達成することができる。これらのことを合わせて、この反応の特長は、分子量並びに組成を目的に応じて容易にコントロールして製造でき、特に酸価アルコール価も実質的にゼロで、アルコール末端ポリエステルの分子量分布も規制されたものを提供できる可能性を持っている点が本特許の特長である。
【0021】
【実施例】
本実施例では、その組成を表すために、A:アジピン酸、P:フタール酸、R:末端アルコール(2エチルヘキサノール)、R’:末端アルコール(1−オクタノール)、XDP:ジオール成分として使用したジプロピレングリコール、X13B:ジオール成分として使用した1,3−ブタンジオールの各記号を使用し、組成として重合度を( )下つき字で記載した。これらのジオール類並びに末端アルコール類については、実施例記載のものに限定されるものではなく、従来使用されまた検討されて来た各種のジオール類並びに末端アルコール(C〜C10のアルコール)について同じ理論が適応されるものである。
なお下記実施例中で用いたエチレングリコール水活性化チタン触媒は以下のように調製した。エチレングリコール1.49g(24ミリモル)に水0.65g(36ミリモル)を加えて混合し、テトラブトキシチタンを0.41g(1.2ミリモル)を少量ずつ加えて混合すると、水を含むゲル状混合物となる。このゲル状ポリオールポリチタン酸触媒にオクタノール10gを加え撹拌分散させて、ポリオール水活性化チタン触媒を得た。
【0022】
実施例1
アジピン酸1モル(146g)、エチレングリコール1モル(62g)及び1−オクタノール1モル(130g)の混合物に、0.34gのテトラブトキシチタンから作ったエチレングリコール活性化チタン触媒1ミリモルを加え、少量のトルエンを共沸溶剤として加えて、2.5時間脱水エステル化反応を行ったところ、水36gが除去され、酸価が0.1になった。この生成物のうち30mlを500ml反応容器にいれて攪拌を始め、200℃で1mmHgに減圧し、オクタノールの溜出を確認した後、前記生成物の残量を少量づつ反応容器に添加して、脱オクタノールエステル交換反応を行い、最終的に200℃、0.5mmHgにした。この反応を2.5時間継続し、留出液135gを得た。これはトルエンを含む計算量のオクタノール量に近い。この反応生成物にトルエン及び少量の水を加えて触媒の不活性化を目的とする処理を行ったところ、トルエン水処理ロ過の処理のできない難溶性高粘度のポリエステル172.5gを得た。この生成物は冷却すると結晶化し白濁蝋状物となり、ポリエステル化が行した末端がオクチルエステル構造のポリエステルと考えられる。末端オクタノールのポリエステルのモル数は(172.5−172)/130=0.0038と計算され、重合度はその逆数の263、分子量は45366となる。
【0023】
実施例2(エステルアルコールとジエステル反応/モル比RPXOH:R’AR’=1:2)
無水フタール酸0.33モル(49.6g)及びジプロピレングリコール0.33モル(44.7g)の混合物を加熱撹幹して無水物反応を行い、2−エチルヘキサノール0.33モル(43.3g)にエチレングリコール水活性化チタン触媒1.5ミリモルを懸濁して、反応液に加えて脱水エステル化反応を行った。添加後1.5時間で酸価0.1となり30分継続して反応を終了した。反応液を2分して、この反応生成物66.4g(各1モルづつの反応生成物RPXOHとして0.166モル)をジオクチルアジペート(R’AR’)0.34モル(125.5g)及びチタン触媒0.8ミリモルを含む反応液中に減圧下5〜1mmHgで添加した。
添加に対応してトルエンを含むオクタノールが留出し、29.7gを回収した。添加エステル交換反応を終了し、100℃に温度が下がった時、水5m1を加えて撹拌し、2時間後トルエンを加えて希釈活性白土濾過し、この濾過液を蒸留して溶剤を除き、190〜250℃/0.5mmHgで揮発分(R’AR’等が該当する。)を除いて、残留液として生成物73.6gを得た。
理論値105.7gとの差32.1gはジオクチルアジペート(mw=370)0.087モルと計算され、反応したモル数0.08の割合は0.477、その逆数2.05が重合割合となる。その結果として、生成物はR(PX)2.05AR’分子量911.2となる。20℃の粘度は868センチポイズであった。
【0024】
実施例3(反応モル比RPXOH:R’AR’=1:2.5)
実施例2の前段で得たRPXOHエステル混合液65.7g(0.167モル)を反応で回収したジオクチルアジペート160.2gにオクタノール少量を加え活性チタン触媒と共に200℃で1時間撹拌酸価を0.06とし、減圧でオクタノールを除去して、5〜0.5mmHgで撹拌しながら添加した。エステル交換反応を1時間更に30分経過後前同様後処理蒸留190〜250℃/0.5mmHgを行い、前留分として、ジオクチルアジペートを除き残留液として生成物を得た。その重量は78.5g、反応モル数0.0935、割合0.559で、その逆数nは1.79、20℃の粘度は664センチポイズであった。
【0025】
実施例4(RAXOH:R’AR’=1:2.75)
無水フタール酸0.33モル(49.0g)及びジプロピレングリコール0.33モル(44.2g)を加熱撹拌した後、エチレングリコール水活性化チタン触媒1.2ミリモルを懸濁した43.3g(0.333モル)の2エチルヘキサノールを添加して、脱水エステル化反応を行った。2.5時間後、酸価0.08となり、更に20分後反応を終えた。
回収ジオクチルアジペート200g及び新規ジオクチルアジペート76gの混合物を減圧にして、加熱揮発分を十分除いた後、190℃/0.5mmHgで撹拌しながら脱水エステル化反応物を1.5時間にわたって添加し、生成したオクタノール42gを除去して反応を終了した。100℃で水を加えて触媒を不活性化活性白土濾過し、濾過液を濃縮し、減圧下190〜250℃/0.5mmHgで蒸留して揮発分としてジオクチルアジペート197gを除き、残留液として、157.9gを得た。理論量209.5gとの差をジエステルとして、反応モル数を計算その割合の0.576逆数から重合度1.736を得た。これから生成物の組成はR(PX 1.74AR’分子量829が計算される。20℃の粘度は464センチポイズで、RPXA(XP)0.74R’と推測され、(PX)が含まれないために粘度が低くなったものと思われる。反応モル比を2、2.5、2.75と変えて生成物を見ると、重合度は2.05、1.79、1.74と下がるが、粘度は対応してだんだん低くなるが、重合度2を越すと粘度が急上昇する。粘度が高くなるとポリ塩化ビニールの可塑剤として使用したとき可塑化効率は対応して悪くなるので、優れた可塑性を得るためには反応モル比は2.5〜2.75となる。
フタール酸ユニットが多いほど、耐水性対候性が上がることはよく知られている。
【0026】
実施例5
アジピン酸0.7モル(102.2g)、1,3−ブタンジオール0.7モル(63g)及び1−オクタノール0.7モル(91g)の混合液にエチレングリコール水活性化チタン触媒2ミリモルを加え、窒素置換を行った後加熱少量のトルエンの存在下脱水エステル化反応を行った。2時間15分後、酸価0.10となり、30分後エステル化反応を終えた。減圧下濃縮してトルエン1−オクタノールを除去し、214.2gを得た。
計算量より16.8g少なくオクタノールとして130で割り、分析使用量を1.8gを補正し反応モル量0.585モルその割合は0.837重合度1.196組成R(AX13B 196OH分子量369.3となった、ジオクチルアジペート103g0.278モルを加熱撹拌しながら180℃/0.5mmHgに保ち前記エステルアルコール0.58モル214g0.58/0.278=2.08倍モルを添加エステル交換を行った。理論組成はR(AX13B2.08AR’、0.278モル218.6gに対しオクタノール74gを回収先の量と合わせほぼ定量的量であった。前同様後処理し減圧下190〜250℃/0.5mmHgで蒸留揮発分を除き残留生成物を195.6gを得た。不足量23gをジエステル分子量で割り、0.062反応モル数は0.215その割合は0.776重合度は逆数1.28となった。これから組成はR(AX13B2.68AR’分子量905.8となった。20℃の粘度は224センチポイズとなった。
【0027】
実施例6
アジピン酸0.4モル(58.4g)、1,3−ブタンジオール0.4モル(36g)及び1−オクタノール0.4モル(52g)に少量のトルエンとともに、エチレングリコール水活性化チタン触媒2ミリモルを加え脱水エステル化反応を行った。200℃で2.5時間後、酸価0.08となった。減圧下にトルエンを除き130gの反応液を次の反応に使用した。別途製造したアジピン酸4モル当量1,3−ブタンジオール3モル当量混合で脱水エステル化を始め1−オクタノール2モル当量を逐次添加して脱水エステル化して製造したR(AX13B4.57AR’分子量1264、20℃の粘度588センチポイズ、0.035モル(44.2g)に0.8ミリモルのテトラブトキシチタンを加え、180℃/0.5mmHgで撹拌しながら前記エステルアルコール130gを1時間半をかけて、少量ずつ添加エステル交換反応を行い、生成したオクタノール50gを回収した。定法に従って触媒を不活性化白土濾過濾過液を濃縮減圧で蒸留して、揮発分を除去し、残留液として生成物122.0gを得た。揮発物は250℃/0.5mmHgでも沸点を示す程の留分が認められず殆どジエステルは反応して無くなったか、入っていなかったものと思われる。0.4/0.035=11.42倍のRAXOHを反応させたので重合度は4.57+11.42=15.98となり生成物の組成はR(AX13B16AR’分子量3570と計算される。20℃の粘度は1952センチポイズであった。
【0028】
実施例7
アジピン酸0.3モル(43.8g)及びジプロピレングリコール0.15モル(20.1g)の混合物に2−エチルヘキサノール0.45モル(58.5g)と共に活性化チタン触媒2.5ミリモルを使用して脱水エステル化反応を行った。生成物は、RAXOHとR’AR’各0.15モルの混合物である。別途それぞれの目的で製造したR(AX 1.2OHおよびR(PX )OHを別途用意した。0.5モルのアジピン酸と0.5モルのジプロピレングリコール及び0.5モルの2−エチルヘキサノールに活性化チタン触媒2ミリモルを加え少量のトルエンを使用して200〜210℃で脱水エステル化反応を行って、酸価を下げ次に減圧下25mmHg100℃以下で揮発性のオクタノールを除き生成物176.2gを得た。計算による重合度は1.20、分子量422.8となり、その0.3モルを使用した。一方R(PX )OHは以下の方法で作った。ジブチルフタレート0.1モル(27.8g)に0.1モル(13.4g)のジプロピレングリコール並びに0.1モル(13g)の2−エチルヘキサノール更に0.8ミリモル(0.3g)のテトラブトキシチタンを加え、180℃で最初は常圧最後は200mmHgで加熱撹拌して生成するブタノールを除去し、略計算量14gのブタノールを得て、反応を終え添加反応に使用した。
【0029】
最初にRAXOH+R’AR’の溶液を減圧にして、撹拌しながら昇温し生成するオクタノールを除去、180℃にして、減圧を15mmHgにした後R(AX 1.20OH0.3モル(126.8g)、ついでR(AX )OH反応液0.1モル(39g)を順次添加して、エステル交換を行って、生成するオクタノール約70gを除き2時間後減圧を0.5mmHgに上げ30分温度を保ち反応を終了した。定法に従って後処理溶剤を除き減圧下に蒸留揮発分を除き残留物として生成物を195.5gを得た。生成物の理論値R(AX 3.4(AX 0.66AR’ 206.3gに対し、n=1.24、従って生成物の組成はR(AX 4.22(PX 0.83AR’分子量1619、20℃の粘度820センチポイズであった
【0030】
【発明の効果】
上記の実施例から、エステル類R(AX)AR(nは0を含む整数)とRAXOHとの反応でポリエステルの中のエステル結合部分でもエステル交換反応が起こり、脱アルコール反応によって高分子化することが分る。
RAXOHのエステル結合とRAXOHとの反応では次式のように逐次反応が進行して高分子量化し、ROHの除去量に対応してポリエステル化する。
RAXOH+nRAXOH → R(AX)AXOH+nROH
ここで末端アルコールの除去が問題となる。アルコール除去と同時にジオール成分が除去されてしまうと、両末端アルコールとなって分子量が下がるので、ジオール成分は過剰であってもよいが、ジオールの反応量に応じて高分子化が進行し、片側末端アルコールを主とする末端アルコールのポリエステル類が生成する。本発明においては、このような末端アルコールの除去の問題を解決することにより、所望の重合度において極めて狭い分子量分布を有するエステル類の製造を可能にするものである。
【0031】
本発明のエステル類の製造方法は、エステル結合を有しかつ末端にOH基を有する反応物をエステル交換反応により鎖の延長を可能とし、更に所望の重合度において極めて狭い分子量分布を有するエステル類の製造を可能にする。
このようにして製造された所望の重合度において極めて狭い分子量分布を有するエステル類は以下のような特長を示す:
1)適当な分子量でかつ分子量分布の狭いため、低分子量成分が少ないか又はほとんど無いため、耐揮発性である。
2)500cp以下の複合エステルは可塑化効率が、DOPを50とした場合に、45〜52と良好である。また500〜1000cp以下の複合エステルは可塑化効率が50〜54で幾分悪いが上記複合エステルとポリエステルとの中間の性質を持つ。
3)分子量の大きい通常のポリエステルは可塑性が悪いが、本発明のエステル類は分子量に対応して塩ビポリマー中で移行性が少なく、耐溶剤性に優れた可塑剤となる。
4)複合エステル中にフタル酸を含むと、粘度が上昇して可塑性が悪くなるが耐水性は向上する。最低の耐水性を保持するためには0.3ユニット以上が必要である。実施例2〜4においては今まで作ることのできなかったフタル酸を用いて500cp以下のエステルを製造することができた。
5)二塩基酸としてアジピン酸のみを用いると、ジオール成分で変わるが一般にその耐水性は悪い。しかしその特長として低温特性に優れた可塑剤となる。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing esters (that is, including complex esters and polyesters), and more particularly to a method for producing the esters having an extremely narrow molecular weight distribution by a transesterification reaction.
[0002]
[Prior art]
Conventionally, it has been considered difficult to produce polymer esters from a reactant having one terminal OH group. That is, in an esterification reaction with a dibasic acid, such a reaction product terminates chain elongation, and also in a transesterification reaction having an ester bond in such a reaction product, Such reactants terminate the chain extension and, furthermore, no suitable catalyst has been found which allows such a reactant chain extension.
[0003]
In addition, when a polymer ester is produced by a conventional method, it is produced as a mixture of a plurality of compounds having different numbers of n, and has a molecular weight distribution in which the ratio decreases exponentially as the number increases sequentially from n = 1. Only such a high molecular ester could be produced. The reason for this is that when an ester is formed, the reaction does not always start from the end as shown in the formula, and the ester bond in the structural formula undergoes transesterification mainly due to attack by the terminal alcohol ROH. Therefore, the product has a composition where n = 1 is large. Japanese Patent Application Laid-Open No. 8-157418 discloses a retro reaction, that is, HOXO (COACOOXO).nIn the reaction of OH, n = 1 should not be produced when an acid reacts at both ends with an ester bond, but it is described that n = 1 is most frequently produced in distribution measurement by liquid chromatography HPLC. I have. On the other hand, RO (COACOOXO)nThe production of complex esters represented as COACOOR has already been reported in many patents and its reaction process has been proposed. It has also been proposed that, while producing esters using an improved catalyst, a composite ester having excellent performance can be produced by circulating diesters as a by-product by effectively utilizing their properties. (Japanese Patent Application 2000-147554).
[0004]
[Problems to be solved by the invention]
The present invention makes it possible to extend the chain of a reactant having such an ester bond and having an OH group at the terminal by a transesterification reaction, and further to produce an ester having a very narrow molecular weight distribution at a desired degree of polymerization. It is an object of the invention to provide a process for the production of esters which makes it possible.
[0005]
[Means for Solving the Problems]
The subject of the present invention is a reactive ester composition of dibasic acid (HOOCACOOH), diol (HOXOH) and terminal alcohol (ROH) (RO (COACOOXO)nH) (n ≧ 1) in which a reactant is reacted under reduced pressure of 100 mmHg or less in the presence of a titanium catalyst to produce esters. As the reactive ester composition, a reactive ester composition (ROCOACOOOXOH) having a molar ratio of dibasic acid (HOOCACOOH), diol (HOXOH) and terminal alcohol (ROH) of 1: 1: 1 is preferable. This reactant has the general formula:
R'O (COACOOXO)nCOACOOR '
(In the formula, R's may be the same or different, and each represents an alkyl group which may be the same as R.)
[0006]
Here, the dibasic acid (HOOCACOOH) may be adipic acid or phthalic acid or a mixture thereof, R of the terminal alcohol (ROH) is preferably an alkyl group, and more preferably 4 to 10 carbon atoms. Diol (HOXOH) is ethylene glycol, 1,2-propanediol, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol, 2-ethyl-1,3-hexanediol, molecular weight Is at least one selected from the group consisting of polyethylene glycol having a molecular weight of 1,000 or less, preferably 500 or less, more preferably 300 or less, and polypropylene glycol having a molecular weight of 1000 or less, preferably 500 or less, more preferably 300 or less. Good.
[0007]
The titanium catalyst is alkoxytitanium, or a mixture of alkoxytitanium, a water-soluble polyol and water, or a reaction product of the mixture, with the latter being particularly preferred.
Here, alkoxytitanium is tetrabutoxytitanium and tetramers thereof, tetraisopropyloxytitanium, tetraethoxytitanium, tetrafunctional titanium such as tetraoctyloxytitanium and the like, alcohol solutions such as titanium trichloride and titanium tetrachloride, Including compounds called orthotitanates and the like, tetrabutoxytitanium, tetraisopropyloxytitanium or tetraoctyloxytitanium is preferred, and tetrabutoxytitanium is more preferred. The water-soluble polyol is not particularly limited as long as it is a water-soluble compound having two or more hydroxyl groups, but ethylene glycol, propanediol, diethylene glycol or glycerin is preferable. The number of moles of the water-soluble polyol relative to 1 mole of titanium in the alkoxytitanium is 1 to 50 moles, preferably 5 to 20 moles, more preferably 8 to 15 moles, and similarly, the mole number of water is 1 to 60 moles. , Preferably 4 to 40 mol, more preferably 10 to 20 mol. These may be mixed simply at room temperature or by heating or dissolved in a solvent, and the mixing order is not limited.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the diol is described as a general formula as HOXOH, the monofunctional terminal alcohol is described as ROH, the phthalic acid is described as HOCOPCOOH, and the adipic acid is described as HOCOACOOH. Further, for the sake of simplicity, an ester bond (-COO-) may be omitted in the description.
First, a reaction composition of a dibasic acid diol-terminated alcohol will be described. When an equimolar amount of a terminal alcohol is added to a dibasic acid and a diol to perform an esterification reaction to convert the acid into an ester, the alcohol equivalent of the diol and the terminal alcohol becomes three with respect to two equivalents of the dibasic acid. Naturally, various products are formed, and an ester alcohol and an ester are formed.
ROH + HOCOACOOH + HOXOH → RAXOH + RAR + HOXAXOH + RAXAR + RAXAXOH + ROH
[0009]
The actual contents include not only the composition but also RAR and HOXAXOH, which are in equimolar relation. When the transesterification proceeds next, these two become RAXAXOH + ROH, and R (AX)2It is expected to show the same behavior as OH. Also, the composition of RAXAR and HOXAXOH in a one-to-one relationship becomes RAXOH + RAXAXOH in a transesterification reaction, and 2R (AX)1.5It is assumed that it behaves the same as OH. That is, the product is R (AX)nIt can be indicated by the composition of OH. This n varies depending on the conditions of the reaction.
Considering these facts, the one-to-one one-to-one dehydration esterification reaction composition has a theoretical composition of RAXOH, but since a by-product is formed, the product is R (AX).nCan be handled as OH. Such a composition can also be produced by reacting a diester with an equimolar amount of a diol.
[0010]
RAR + HOXOH → RAXOH + ROH + RAR + HOXOH + HOXAOH
Next, transesterification is performed using this composition.
RAR + HOXOH → RAXOH + ROH (1)
RAR + RAXAXOH → RAXAXR + ROH (2)
RAXAR + RAXOH → RAXOH + RAXAR or RAXAXAR + ROH (3)
RAXAXAR + RAXOH → RAXAXOH + RAXAR, RAXOH + RAXAXAR, or RAXAXAXAR + ROH (4)
RAXAR + nRAXOH → RAX (AX)nAR + nROH (5)
[0011]
The sequential reactions shown in (1) to (5) proceed, and in the reaction with the diester RAR, a complex ester having a composition with a small polymerization degree n due to excessive use of the diester, and further from the complex ester, depending on the reaction amount of RAXOH, Esters having a high degree of polymerization represented by the formula (5) are produced in accordance with the elimination of ROH in the transesterification reaction. It is conceivable that the transesterification reaction occurs not only at the terminal but also inside the polyester structure, but in that case, the terminal alcohol is generated and the transesterification reaction proceeds again, and as a result, the dealcoholization reaction proceeds at the terminal, The product is a product having a high degree of polymerization. As can be seen from the results of the experiment, in the reactions (1) and (3), the reaction (3) proceeds more easily than the reaction (1). As a result, in the reaction between RAR and RAXOH, the reaction after (3), which is a product, proceeds simultaneously or sequentially, so that RAR cannot be quantitatively reacted, and remains unreacted until the end and reacted. From the ratio of RAR, the product (AX)nWill be calculated.
[0012]
Composite ester is RO (COACOOXO)nIt is described as COACOOR and its composition is produced as a mixture of a plurality of compounds having different numbers of n. In particular, in the conventional production method, the proportion becomes smaller as the number increases sequentially from n = 1. Has a molecular weight distribution. Unless a special production method was used, a complex ester showing a normal distribution could not be produced. The reason for this is that when an ester is formed, the reaction does not always start from the end as shown in the formula, and the ester bond in the structural formula undergoes transesterification mainly due to attack by the terminal alcohol ROH. Therefore, the product has a composition where n = 1 is large.
[0013]
RAR + HOXAXOH + RAR → RAXAXAR (6)
RAR + HOXAXOH → RAXAXOH + ROH (7)
RAXAXOH + ROH → RAR + HOXAXOH, RAXOH + RAXOH, or RAXAR + HOXOH (8)
RAXOH + RAR → RAXAR + ROH (9)
RAR + HOXOH + RAR → RAXAR (10)
[0014]
The reason is that ROH is formed first in the reaction (7), and when the ROH reacts, the various reactions described in (8) proceed. In (9), n = 1 can be increased, and HOXOH formed in (8) can be obtained. Next, generation (10) of n = 1 is performed. It is assumed that ROH is always formed in the transesterification reaction, and n = 2 should be formed when the reaction is carried out in the solution. Even in the reaction (6), the product is mostly n = 1 in the reactions (8) to (10). Is done.
When 2 mol of phthalic anhydride is reacted with 1 mol of diol, diol ester carboxylic acid can be almost quantitatively produced by an anhydride reaction. When ROH is added and esterified,
ROH + HOCOXPXPCOOH + HOR → RPXPR (11)
RPXPR + ROH → RPR + RPXOH (12)
RPXOH + RPXPR → ROH + RPXPXPR (13)
RPXPXPR + ROH → RPR + RPXPOXOH (14)
RPPXOHH 11 → n = 3, n = 4 (15)
[0015]
In the formula (11), the bis compound n = 1 is quantitatively generated. However, when the reaction is actually performed, the reactions of the formulas (12) to (15) proceed one after another in a mixture up to n = 7. Further, the process proceeds to n = 7. Since ROH can generally be reached only by using an excess in order to quantitatively advance the esterification reaction, such a reaction proceeds not only with titanium, which is a catalyst for the transesterification reaction, but also with other catalysts. The resulting complex ester results in a sharp increase in viscosity, which is thought to be due to the structure of PXXPP. If the viscosity is high, the plasticizing performance becomes poor when used as a plasticizer, and n = 1 and n = 2 of only the phthalic acid unit. The corresponding complex ester has not been made. Both of these descriptions have described the effects of ROH. However, since the influence of ROH is large in the dehydration esterification reaction of a complex ester or polyester, a method of sequentially adding ROH in small amounts for the purpose of controlling the molecular weight distribution, and further, a diol component However, it is also known that 2-ethyl-1,3-hexanediol is relatively hardly affected as a diol component that is hardly attacked by an ester group, and as a result, the distribution can be controlled. Therefore, by performing the reaction under reduced pressure in order to eliminate the influence of ROH, the retro-reaction is reduced. In the reaction corresponding to the formula (6), when phthalic acid diol diester is used and ROH is octanol, dioctyl is used. It is described that phthalate by-product (formula (14)) is prevented.
[0016]
When phthalic anhydride is used as the dibasic acid in the present invention, the reaction is started with 1 mole of the phthalic anhydride and 1 mole of the diol, and the ester alcohol obtained by adding one mole of the monofunctional alcohol and esterifying is used. For the first time, high-molecular-weight (PX)nCan be produced. In the transesterification reaction, it is impossible to perform a completely equimolar reaction, so that it is preferable to use as many diesters as possible to carry out the reaction quantitatively. The transesterification reaction will be described with RPXOH in place of (1) RAXOH and phthalic acid in place of adipic acid.
In this reaction, the product is obtained by removing the ROH generated by heating the mixed solution (Patent No. 2517245). However, since retro-reaction occurs simultaneously, when phthalic acid is used, (PX)nN = 3 or more are by-produced and the viscosity is increased.
[0017]
In the present invention, the transesterification reaction is carried out under reduced pressure, preferably 100 mmHg or less, more preferably 30 mmHg or less, more preferably 0.2 to 25 mmHg, particularly preferably 0.5 to 2 mmHg. Further, it is preferable that the temperature is preferably 160 to 250 ° C., preferably 180 to 220 ° C., which is high near the boiling point of RAR, and the transesterification is carried out little by little.
When the number of moles of the diester RAR used in this reaction is 2 or less, the degree of polymerization of the product becomes 2 or more. The amount is large, resulting in poor efficiency. If the amount is less than 1.5 mol, the viscosity becomes high and the features of the present method are lost. The composition of the product obtained is obtained by subtracting the yield from the theoretical calculation amount, and assuming that the RAR mole number of the g number does not participate in the reaction, the reaction mole number and the reaction ratio are calculated, and the reciprocal is (PX)nIs calculated as n. (PX)2Does not necessarily mean PXXPP, and it is considered that there is no influence on the reaction of ROH in this reaction, and the unit of the product has a structure of PXAXP, so that a low-viscosity product is obtained. Conceivable.
[0018]
Adipic acid, unlike the anhydride reaction of phthalic acid, cannot perform a selective reaction.However, if the addition of a terminal alcohol is performed with priority on the reaction between a diol and an acid, by-products of diester RAR are reduced, but in particular, complex If a small bis compound of the ester n is not selectively produced, it is used without any problem in calculating the degree of polymerization by using it as it is. R (AX)nOH, R (PX)nOH was calculated by removing the reaction product as a volatile component under reduced pressure, removing toluene used as an azeotropic rib, unreacted terminal alcohol and 1-octanol, and calculating the difference between the calculated amount and the weight of the product. The reaction mole number can be calculated by dividing the mole number by the molecular weight of octanol and subtracting the mole number from the calculated usage amount, and the ratio can be calculated. The reciprocal of the ratio is (AX)nIs calculated as the degree of polymerization of n. The value varies somewhat depending on the manner of the reaction, but the value is approximately from 1.1 to 1.3. The value can be used by calculating the average molecular weight by removing ROH, but the mixture can be used without removing ROH. Can be used as n = 1.
[0019]
In the case of adipic esters, a composition having a wide molecular weight distribution may be obtained by partially performing a retro-reaction, but the target is obtained by performing a transesterification reaction under reduced pressure to obtain a higher molecular weight. Polyesters of a degree of polymerization can be produced, in particular, as low acid number, low alcohol terminated products. Regarding the molecular weight distribution, the transesterification reaction proceeds at the terminal, but the transesterification reaction also proceeds inside the polyester. At that time, the second from the end, the formula (4), the retro reaction also occurs. Therefore, it is not considered that a normal distribution can be completely obtained. However, since the retrofitting reaction by ROH is controlled, it is expected that the molecular weight distribution will probably be close to the normal distribution.
[0020]
In Example 6 to be described later, a polyesterification reaction was carried out for a molecular weight of 3500 from a complex ester having a degree of polymerization of 4 obtained by a direct sequential addition dehydration esterification reaction, but a by-product of a low molecular weight diester RAR was observed. And it is not necessary to remove the low-molecular-weight portion by high-temperature distillation after polymerization. On the other hand, in the reaction with the diester (Example 5), even with the use of twice the molar amount of R (AX) OH ester alcohol, almost 20% of the RAR still remains unreacted and, therefore, 20% of the intended composition. It was calculated that the molecular weight increased soon.
It is well known that, among composite esters, the formation of different composite esters improves water resistance. For this purpose, R (AX)nOH and R (PX)nOH can be produced individually or in a mixture, the addition amount can be determined according to the desired composition, and a different component can be added before or after, and the transesterification reaction can be carried out to achieve the purpose. Taken together, the features of this reaction are that the molecular weight and composition can be easily controlled according to the purpose, and the acid value alcohol value is substantially zero, and the molecular weight distribution of the alcohol-terminated polyester is regulated. It is a feature of this patent that it has the potential to provide such products.
[0021]
【Example】
In this example, in order to express the composition, A: adipic acid, P: phthalic acid, R: terminal alcohol (2-ethylhexanol), R ': terminal alcohol (1-octanol), XDP: Dipropylene glycol used as a diol component, X13B: Each symbol of 1,3-butanediol used as a diol component was used, and the degree of polymerization was described as a composition in parentheses (). These diols and terminal alcohols are not limited to those described in the examples, but various diols and terminal alcohols (C4~ C10The same theory applies to alcohols).
The ethylene glycol water-activated titanium catalyst used in the following examples was prepared as follows. 0.65 g (36 mmol) of water was added to 1.49 g (24 mmol) of ethylene glycol, mixed, and 0.41 g (1.2 mmol) of tetrabutoxytitanium was added little by little to mix. It becomes a mixture. 10 g of octanol was added to this gel-like polyol polytitanic acid catalyst, and the mixture was stirred and dispersed to obtain a polyol water-activated titanium catalyst.
[0022]
Example 1
To a mixture of 1 mol of adipic acid (146 g), 1 mol of ethylene glycol (62 g) and 1 mol of 1-octanol (130 g) was added 1 mmol of an ethylene glycol-activated titanium catalyst made from 0.34 g of tetrabutoxytitanium. Was added as an azeotropic solvent, and a dehydration esterification reaction was performed for 2.5 hours. As a result, 36 g of water was removed, and the acid value became 0.1. 30 ml of this product was put into a 500 ml reaction vessel and stirring was started. The pressure was reduced to 1 mmHg at 200 ° C., and after distilling off octanol, the remaining amount of the product was added little by little to the reaction vessel. Deoctanol transesterification was performed, and finally the temperature was adjusted to 200 ° C. and 0.5 mmHg. This reaction was continued for 2.5 hours to obtain 135 g of a distillate. This is close to the calculated amount of octanol, including toluene. Toluene and a small amount of water were added to the reaction product to carry out a treatment for the purpose of inactivating the catalyst. As a result, 172.5 g of a hardly soluble high-viscosity polyester which could not be treated with toluene water was obtained. This product crystallizes upon cooling to form a cloudy wax, and it is considered that the polyester-terminated end is a polyester having an octyl ester structure. The number of moles of the polyester having a terminal octanol is calculated as (172.5-172) /130=0.0038, the polymerization degree is the reciprocal of 263, and the molecular weight is 45366.
[0023]
Example 2 (Ester alcohol and diester reaction / molar ratio RPXOH: R'AR '= 1: 2)
A mixture of 0.33 mol (49.6 g) of phthalic anhydride and 0.33 mol (44.7 g) of dipropylene glycol was heated and stirred to carry out an anhydride reaction, and 0.33 mol of 2-ethylhexanol (43. In 3 g), 1.5 mmol of an ethylene glycol water-activated titanium catalyst was suspended and added to the reaction solution to carry out a dehydration esterification reaction. 1.5 hours after the addition, the acid value became 0.1, and the reaction was completed for 30 minutes. The reaction solution was divided into 2 minutes, and 66.4 g of this reaction product (0.166 mol as the reaction product RPXOH for each 1 mol) was added with 0.34 mol (125.5 g) of dioctyl adipate (R′AR ′) and It was added at a pressure of 5-1 mmHg under reduced pressure to a reaction solution containing 0.8 mmol of a titanium catalyst.
Octanol containing toluene was distilled off corresponding to the addition, and 29.7 g was recovered. When the addition transesterification reaction was completed and the temperature was lowered to 100 ° C., 5 ml of water was added and stirred. After 2 hours, toluene was added and the mixture was subjected to dilution activated clay filtration, and the filtrate was distilled to remove the solvent. At ~ 250 ° C / 0.5 mmHg, 73.6 g of a product was obtained as a residual liquid except for volatile components (corresponding to R'AR 'and the like).
The difference of 32.1 g from the theoretical value of 105.7 g was calculated to be 0.087 mol of dioctyl adipate (mw = 370), the ratio of the reacted mole number 0.08 was 0.477, and the reciprocal 2.05 was the polymerization ratio. Become. As a result, the product is R (PX)2.05AR 'molecular weight is 911.2. The viscosity at 20 ° C. was 868 centipoise.
[0024]
Example 3 (Reaction molar ratio RPXOH: R'AR '= 1: 2.5)
A small amount of octanol was added to 160.2 g of dioctyl adipate obtained by reacting 65.7 g (0.167 mol) of the RPXOH ester mixture obtained in the previous step of Example 2 and the mixture was stirred with an active titanium catalyst at 200 ° C. for 1 hour to reduce the acid value to 0. 0.06, octanol was removed under reduced pressure, and the mixture was added with stirring at 5 to 0.5 mmHg. After a further 30 minutes of the transesterification reaction, post-treatment distillation at 190 to 250 ° C./0.5 mmHg was carried out in the same manner as before, and dioctyl adipate was removed as a pre-fraction to obtain a product as a residual liquid. The weight was 78.5 g, the number of moles reacted was 0.0935, the ratio was 0.559, the reciprocal n was 1.79, and the viscosity at 20 ° C. was 664 centipoise.
[0025]
Example 4 (RAXOH: R'AR '= 1: 2.75)
After heating and stirring 0.33 mol (49.0 g) of phthalic anhydride and 0.33 mol (44.2 g) of dipropylene glycol, 43.3 g of 1.2 mmol of an ethylene glycol water-activated titanium catalyst was suspended. (0.333 mol) of 2-ethylhexanol was added to carry out a dehydration esterification reaction. After 2.5 hours, the acid value was 0.08, and the reaction was completed after another 20 minutes.
A mixture of 200 g of recovered dioctyl adipate and 76 g of new dioctyl adipate was evacuated to sufficiently remove the volatile matter under heating, and then the dehydration esterification reaction product was added thereto over 1.5 hours while stirring at 190 ° C./0.5 mmHg to form a mixture. The reaction was terminated by removing 42 g of the octanol. Water was added at 100 ° C. to inactivate the catalyst to remove the catalyst. The filtrate was concentrated, and the filtrate was concentrated and distilled under reduced pressure at 190 to 250 ° C./0.5 mmHg to remove 197 g of dioctyl adipate as a volatile matter. 157.9 g were obtained. Using the difference from the theoretical amount of 209.5 g as the diester, the number of moles of the reaction was calculated and the degree of polymerization 1.736 was obtained from the reciprocal of 0.576. From now on, the composition of the product is R (PXD P)1.74The AR 'molecular weight 829 is calculated. The viscosity at 20 ° C is 464 centipoise and RPXA (XP)0.74R's guessed, (PX)2It is presumed that the viscosity was lowered due to the absence of. When the reaction molar ratio is changed to 2, 2.5, 2.75 and the product is observed, the degree of polymerization decreases to 2.05, 1.79, 1.74, but the viscosity decreases correspondingly. When the degree of polymerization exceeds 2, the viscosity rises sharply. When the viscosity is increased, the plasticization efficiency is correspondingly deteriorated when used as a plasticizer for polyvinyl chloride. Therefore, in order to obtain excellent plasticity, the reaction molar ratio is 2.5 to 2.75.
It is well known that the greater the number of phthalic acid units, the higher the water resistance and weather resistance.
[0026]
Example 5
To a mixture of 0.7 mol (102.2 g) of adipic acid, 0.7 mol (63 g) of 1,3-butanediol and 0.7 mol (91 g) of 1-octanol was added 2 mmol of an ethylene glycol water-activated titanium catalyst. In addition, after purging with nitrogen, a dehydration esterification reaction was carried out in the presence of a small amount of toluene under heating. After 2 hours and 15 minutes, the acid value was 0.10, and after 30 minutes, the esterification reaction was completed. It was concentrated under reduced pressure to remove toluene 1-octanol to obtain 214.2 g.
16.8 g less than the calculated amount, divided by 130 as octanol, the analytical use amount was corrected to 1.8 g, the reaction molar amount was 0.585 mol, and the ratio was 0.837. Degree of polymerization 1.196 Composition R (AX13B)1 . 1960.278 mol of dioctyl adipate having an OH molecular weight of 369.3 was maintained at 180 ° C./0.5 mmHg while heating and stirring at 180 ° C./0.5 mmHg, and 0.58 mol of the ester alcohol was added. Transesterification was performed. The theoretical composition is R (AX13B)2.08AR ', 0.278 mol, 218.6 g, octanol 74 g was almost quantitative when combined with the amount of the recovery destination. The post-treatment was carried out in the same manner as before to remove volatile components by distillation at 190 to 250 ° C./0.5 mmHg under reduced pressure to obtain 195.6 g of a residual product. The shortage of 23 g was divided by the molecular weight of the diester, and the molar ratio of 0.062 was 0.215. The ratio was 0.776. From now on, the composition is R (AX13B)2.68The AR 'molecular weight was 905.8. The viscosity at 20 ° C. was 224 centipoise.
[0027]
Example 6
Ethylene glycol water-activated titanium catalyst 2 was prepared by adding 0.4 mol (58.4 g) of adipic acid, 0.4 mol (36 g) of 1,3-butanediol and 0.4 mol (52 g) of 1-octanol to a small amount of toluene. The reaction was subjected to dehydration esterification by adding mmol. After 2.5 hours at 200 ° C., the acid value was 0.08. The toluene was removed under reduced pressure, and 130 g of the reaction solution was used for the next reaction. R (AX) was prepared by starting dehydration esterification by mixing 4 mol equivalents of adipic acid and 3 mol equivalents of 1,3-butanediol, which were separately prepared, and sequentially adding 2 mol equivalents of 1-octanol to dehydrate esterification.13B)4.57AR ′ molecular weight 1264, viscosity 588 centipoise at 20 ° C., 0.035 mol (44.2 g), 0.8 mmol of tetrabutoxytitanium was added, and the above ester alcohol 130 g was stirred at 180 ° C./0.5 mmHg for 1 hour. Over half, the transesterification reaction was performed little by little, and 50 g of the produced octanol was recovered. The catalyst was inactivated according to a standard method, and the clay filtration filtrate was concentrated and distilled under reduced pressure to remove volatile components, thereby obtaining 122.0 g of a product as a residual liquid. Even at 250 ° C./0.5 mmHg, the volatiles did not show a distillate fraction showing the boiling point, and it was considered that almost no diester had reacted or disappeared. Since 0.4 / 0.035 = 11.42 times of RAXOH was reacted, the degree of polymerization was 4.57 + 11.42 = 15.98, and the composition of the product was R (AX13B)16The calculated AR 'molecular weight is 3570. The viscosity at 20 ° C. was 1952 centipoise.
[0028]
Example 7
To a mixture of 0.3 mol (43.8 g) of adipic acid and 0.15 mol (20.1 g) of dipropylene glycol was added 2.5 mmol of activated titanium catalyst together with 0.45 mol (58.5 g) of 2-ethylhexanol. To perform a dehydration esterification reaction. The product is a mixture of RAXOH and R'AR 'at 0.15 mole each. R (AX) manufactured separately for each purposeD P)1.2OH and R (PXD P) OH was prepared separately. To 0.5 mol of adipic acid, 0.5 mol of dipropylene glycol and 0.5 mol of 2-ethylhexanol, add 2 mmol of activated titanium catalyst and dehydrate esterify at 200-210 ° C. using a small amount of toluene. The reaction was carried out to reduce the acid value, and then 176.2 g of a product was obtained by removing volatile octanol at 25 mmHg and 100 ° C. or less under reduced pressure. The calculated degree of polymerization was 1.20 and the molecular weight was 422.8, of which 0.3 mol was used. On the other hand, R (PXD P) OH was made in the following manner. 0.1 mole (13.4 g) of dipropylene glycol in 0.1 mole (27.8 g) of dibutyl phthalate and 0.1 mole (13 g) of 2-ethylhexanol and 0.8 mmol (0.3 g) of tetraethyl Butoxytitanium was added, and the mixture was heated and stirred at 180 ° C. at normal pressure and finally at 200 mmHg to remove butanol produced. Thus, approximately 14 g of butanol was obtained, and the reaction was terminated and used for the addition reaction.
[0029]
First, the solution of RAXOH + R'AR 'is depressurized, and the temperature is increased while stirring to remove octanol produced. The temperature is lowered to 180 ° C, the depressurized pressure is set to 15 mmHg, and then R (AXD P)1.200.3 mol of OH (126.8 g) followed by R (AXD P) 0.1 mol (39 g) of an OH reaction solution was sequentially added, and transesterification was carried out, except for about 70 g of octanol produced, and after 2 hours, the pressure was increased to 0.5 mmHg, and the temperature was maintained for 30 minutes to terminate the reaction. According to an ordinary method, the solvent was distilled off under reduced pressure except for the post-treatment solvent to obtain 195.5 g of a product as a residue. Theoretical value of product R (AXD P)3.4(AXD P)0.66For 206.3 g of AR ', n = 1.24 and therefore the composition of the product is R (AXD P)4.22(PXD P)0.83AR 'molecular weight was 1619, and viscosity at 820 was 820 centipoise.
[0030]
【The invention's effect】
From the above examples, the esters R (AX)nIt can be seen that a transesterification reaction occurs in the ester bond portion of the polyester in the reaction between AR (n is an integer including 0) and RAXOH, and that the polymer is formed by a dealcoholization reaction.
In the reaction between the RAXOH ester bond and RAXOH, a sequential reaction proceeds as shown in the following formula to increase the molecular weight, and the polyester is formed according to the amount of ROH removed.
RAXOH + nRAXOH → R (AX)nAXOH + nROH
Here, removal of the terminal alcohol becomes a problem. If the diol component is removed at the same time as the alcohol is removed, the diol component becomes alcohol at both ends and the molecular weight decreases. Therefore, the diol component may be excessive, but the polymerization proceeds in accordance with the reaction amount of the diol, and one side of the diol component increases. Polyesters having terminal alcohols mainly containing terminal alcohols are formed. In the present invention, by solving such a problem of removing the terminal alcohol, it is possible to produce an ester having a very narrow molecular weight distribution at a desired degree of polymerization.
[0031]
The process for producing esters according to the present invention is characterized in that esters having an ester bond and having an OH group at the terminal can be extended by a transesterification reaction, and further, esters having an extremely narrow molecular weight distribution at a desired degree of polymerization. Enables the manufacture of
Esters thus prepared having a very narrow molecular weight distribution at the desired degree of polymerization exhibit the following characteristics:
1) Since it has an appropriate molecular weight and a narrow molecular weight distribution, it has little or no low molecular weight components, and thus is volatile-resistant.
2) The composite ester of 500 cp or less has a good plasticization efficiency of 45 to 52 when the DOP is 50. A composite ester having a plasticization efficiency of 500 to 1,000 cp or less has a plasticizing efficiency of 50 to 54 and is somewhat poor, but has an intermediate property between the composite ester and the polyester.
3) Although ordinary polyesters having a large molecular weight have poor plasticity, the esters of the present invention have a low migration property in a vinyl chloride polymer corresponding to the molecular weight and become a plasticizer excellent in solvent resistance.
4) When phthalic acid is contained in the composite ester, the viscosity increases and the plasticity deteriorates, but the water resistance improves. 0.3 units or more are required to maintain the minimum water resistance. In Examples 2 to 4, esters of 500 cp or less could be produced using phthalic acid, which could not be produced until now.
5) When only adipic acid is used as the dibasic acid, it varies depending on the diol component, but generally has poor water resistance. However, it is a plasticizer excellent in low-temperature characteristics as its feature.

Claims (3)

二塩基酸(HOOCACOOH)、ジオール(HOXOH)及び末端アルコール(ROH)の反応エステル組成物(RO(COACOOXO)H)(n≧1)から成る反応物を、チタン触媒の存在下、100mmHg以下の減圧下で反応させてエステル類を製造する方法。A reactant comprising a reactive ester composition (RO (COACOOXO) n H) (n ≧ 1) of a dibasic acid (HOOCACOOH), a diol (HOXOH) and a terminal alcohol (ROH) is treated in the presence of a titanium catalyst at a pressure of 100 mmHg or less. A method for producing esters by reacting under reduced pressure. 前記反応物が更に一般式:
R’O(COACOOXO)COACOOR’
(式中、R’は、それぞれ同じか又は異なっていてもよく、前記Rと同じであってもよいアルキル基を表す。)で表されるエステル化合物を含む請求項1に記載の製造方法。
The reactant is further represented by the general formula:
R'O (COACOOXO) n COACOOR '
(Wherein R ′ may be the same or different, and represents an alkyl group which may be the same as R).
前記チタン触媒がアルコキシチタン、水溶性ポリオール及び水の混合物又は該混合物の反応生成物から成るゲル状物であって、前記チタン1モルに対する前記水溶性ポリオール及び水のモル数がそれぞれ5〜20モル及び4〜40モルである請求項1又は2に記載の製造方法。The titanium catalyst is a mixture of alkoxytitanium, a water-soluble polyol and water, or a gel comprising a reaction product of the mixture, and the mole number of the water-soluble polyol and water is 5 to 20 moles per mole of the titanium. 3. The method according to claim 1, wherein the amount is from 4 to 40 mol.
JP2000169264A 2000-05-19 2000-06-06 Method for producing esters Expired - Fee Related JP3547002B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2000169264A JP3547002B2 (en) 2000-06-06 2000-06-06 Method for producing esters
CNB018098002A CN1181921C (en) 2000-05-19 2001-05-15 Catalyst for esterification and transesterification and process for producing ester
US10/275,758 US7030057B2 (en) 2000-05-19 2001-05-15 Catalyst for esterification and transesterification and process for producing ester
EP01930172A EP1308208A4 (en) 2000-05-19 2001-05-15 Catalyst for esterification and transesterification and process for producing ester
CA002408450A CA2408450A1 (en) 2000-05-19 2001-05-15 Catalyst for esterification reactions and transesterification reactions, and a method of producing esters
PCT/JP2001/004057 WO2001087481A1 (en) 2000-05-19 2001-05-15 Catalyst for esterification and transesterification and process for producing ester
KR10-2002-7015282A KR100520308B1 (en) 2000-05-19 2001-05-15 Catalyst for esterification and transesterification and process for producing ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000169264A JP3547002B2 (en) 2000-06-06 2000-06-06 Method for producing esters

Publications (2)

Publication Number Publication Date
JP2001348424A JP2001348424A (en) 2001-12-18
JP3547002B2 true JP3547002B2 (en) 2004-07-28

Family

ID=18672149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000169264A Expired - Fee Related JP3547002B2 (en) 2000-05-19 2000-06-06 Method for producing esters

Country Status (1)

Country Link
JP (1) JP3547002B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5431805B2 (en) 2009-06-24 2014-03-05 富士フイルム株式会社 Composition, compound and film forming method
JP5662726B2 (en) * 2009-09-28 2015-02-04 富士フイルム株式会社 Composite alcohol ester composition, method for producing the same, and use thereof

Also Published As

Publication number Publication date
JP2001348424A (en) 2001-12-18

Similar Documents

Publication Publication Date Title
KR100520308B1 (en) Catalyst for esterification and transesterification and process for producing ester
US6472500B2 (en) Crystalline polyester resins and processes for their preparation
US5364956A (en) Diester, composite ester and polyester having ether-ester terminal structure
JP4928698B2 (en) Method for esterifying 1,3-propanediol
EP0601059B1 (en) Preparation of polyesters with tin catalysts
JPH01117A (en) Method for producing polybutylene terephthalate
TW200528487A (en) Catalyst for manufacture of esters
US4096122A (en) Process for the production of polyesters of 1,4-butanediol
JPH0820638A (en) Production of polyester
JP3547002B2 (en) Method for producing esters
KR100734121B1 (en) Zero-heel polyester process
WO2001056694A1 (en) Esterification catalyst compositions
JP3525133B2 (en) Catalyst for at least one of esterification reaction and transesterification reaction and method for producing ester
JPH04169566A (en) Production of alkylene glycol solution containing 5-sulfoisophthalic acid alkylene glycol ester metal salt
JP2517245B2 (en) Method for producing complex ester
JP3422079B2 (en) Method for producing hyperbranched aliphatic-aromatic polyester polyol
JP3907470B2 (en) Method for producing heterogeneous complex ester
JP3409067B2 (en) Hetero complex ester
JPH05155810A (en) Improved production of octyl end complex ester plasticizer
JP3079718B2 (en) Method for producing high molecular weight aliphatic polyester
JP2001048968A (en) Production of polybutylene terephtahlate
JPH0773677B2 (en) Catalyst for esterification and transesterification
JP3305103B2 (en) Polyester production method
KR920011025B1 (en) Process for preparing excellent hue and heat stability polyester
EP1378533A1 (en) Crystalline polyester resins and processes for their preparation

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20031204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040407

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees