JP3546782B2 - Synchronous motor and control method thereof - Google Patents

Synchronous motor and control method thereof Download PDF

Info

Publication number
JP3546782B2
JP3546782B2 JP32258899A JP32258899A JP3546782B2 JP 3546782 B2 JP3546782 B2 JP 3546782B2 JP 32258899 A JP32258899 A JP 32258899A JP 32258899 A JP32258899 A JP 32258899A JP 3546782 B2 JP3546782 B2 JP 3546782B2
Authority
JP
Japan
Prior art keywords
energization
synchronous motor
phase
sine wave
magnetic pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32258899A
Other languages
Japanese (ja)
Other versions
JP2001145384A (en
Inventor
峰明 磯田
悟史 玉木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP32258899A priority Critical patent/JP3546782B2/en
Publication of JP2001145384A publication Critical patent/JP2001145384A/en
Application granted granted Critical
Publication of JP3546782B2 publication Critical patent/JP3546782B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Control Of Linear Motors (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電気自動車などの駆動用モータおよびコントローラの制御方法に関するものである。
【0002】
【従来の技術】
近年、地球環境保護のため電気自動車の開発が進められている。この電気自動車に搭載される駆動用モータの制御方法は、モータに搭載されたロータの磁極位置センサの出力信号に応じてモータ電流を制御している。センサ信号にはCS信号とエンコーダ信号(A、B相)が利用される。
【0003】
絶対位置を出力しないタイプのエンコーダ信号を利用する場合、基準位置(Z相)が入力されるまでは、図6に示すように、電気角度60度毎のCS信号の出力に応じて、矩形波で2相通電(図5)によりモータを駆動している。基準位置(Z相)が入力されると、図7に示すように、エンコーダ信号を用いて(電気角度60度毎に出力されるCSセンサ出力を用いて、モータ回転状態に応じて、電気角度60度毎の矩形波通電から演算による)正弦波通電に切り替えて制御している。
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来の矩形波通電時に電気角度60度毎に通電すると、非常に低速でモータを駆動した時に、通電の切り替え振動が気になり、電気自動車に搭載した場合、ノッキンングに近いショックを感じる可能性があり、運転者に違和感をあたえる問題があった。
【0005】
さらに、従来の矩形波駆動と正弦波駆動の切替部の電流波形(図7)に示すように、矩形波通電と正弦波通電とを(モータ回転状態で)切り替えて制御する場合、矩形波駆動時に60度毎の通電であれば正弦波駆動時とのトルクリップルの差が大きく、制御が切り替わったことが体感され、運転者に違和感をあたえる問題があった。
【0006】
また、自動車に搭載すると磁極位置センサのないモータの制御はセンサ付きと比べると信頼性が劣る問題があった。
【0007】
本発明は上記の課題を解決するもので、ロータの磁極位置センサを備えた同期モータの通電切り替えに伴う振動を低減する同期モータの制御方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記の課題を解決するために本発明は、同期モータの通電電流を、電気角度30度毎に出力する磁極位置センサの出力を用いて2−3相通電により略正弦波で駆動するものである。
【0009】
【発明の実施の形態】
上記の課題を解決するために本発明は、ロータの磁極位置を検出して電気角度30度毎に出力する磁極位置センサを備えた同期モータの通電電流を、磁極位置センサの出力を用いて、2−3相通電により略正弦波で駆動するものである。
【0010】
また、同期モータの通電電流を矩形波通電と正弦波通電とを状態に応じて切り替える制御方法であって、電気角度30度毎に出力される磁極位置センサを用いて矩形波通電時に、2相通電時の電流または3相通電時の電流をそれぞれ制御して、同期モータを駆動するものである。
【0011】
さらに、同期モータの通電電流を2−3相通電で略正弦波通電と正弦波通電とを状態に応じて切り替える制御方法であって、電気角度30度毎に出力される磁極位置センサを用い、演算によって電気角度30度毎の磁極位置信号を補間して得られる正弦波通電により同期モータを駆動するものである。
【0012】
このように、モータに搭載されるセンサの形態によらず、電気角度で30度毎にロータの磁極位置検出し出力できる磁極位置センサを搭載したので、矩形波通電でモータを制御する際に、電気角度30度毎の2−3相通電でモータを制御できる。
【0013】
また、2相通電時あるいは3相通電時の電流値をそれぞれの近似の正弦波ポイントに制御することで、略正弦波の2−3相通電が可能になる。
【0014】
さらに、略正弦波通電から演算によって電気角度30度毎の磁極位置信号を補間して得られる正弦波通電により駆動するため、従来の矩形波通電から正弦波通電に切り替える場合に比べて切り替え時の変動(振動)を抑制できる。
【0015】
上記構成により、矩形波通電時に、略正弦波でモータ通電が可能となり、通電切り替えに伴う振動を低減でき、運転者に違和感を与えない同期モータの制御方法が得られる。
【0016】
【実施例】
以下本発明の一実施例について図を用いて説明する。
【0017】
図1は、本発明の一実施例における2−3相通電のモータの電流波形を示しており、矩形波通電時に、U、V、Wの各相を電気角度30度毎に2相通電と3相通電を交互に繰り返し通電している。これにより同期モータを2−3相通電で駆動することができる。
【0018】
また、図2は本発明の電気角度30度毎に出力する磁極位置センサの出力波形を示しており、具体的な構成は図示していないが、磁極位置センサの構成を問わず電気角度30度毎に出力するようにしたものであり、矩形波通電する際に、磁極位置センサ出力を30度毎の出力を用いて、同期モータを2−3相通電することが可能となる。
【0019】
さらに、矩形波駆動時、3相通電電流が100×sin60°(%)になるよう、相通電電流を制御することで、電気角度30度毎の波形を近似した正弦波(略正弦波)を構成することができる(図1の(2)、(4)、(6)、(8)、(10)、(12)のポイント)。
【0020】
また、同様に、相通電電流を制御し、相通電電流が100×sin60°(%)になるよう制御することで、電気角度30度毎の波形を近似した正弦波(略正弦波)を構成することができる(図1の(1)、(3)、(5)、(7)、(9)、(11)のポイント)。
【0021】
なお、略正弦波駆動時の電流制御の比率をsin60°としたが、その近傍でもよい。
【0022】
このように2相通電時あるいは3相通電時の電流をそれぞれの比率に制御することで、正弦波を12分割(30度毎)した略正弦波の電流制御ができるので、矩形波駆動時の振動をさらに低減することができる。
【0023】
図3は矩形波駆動(略正弦波駆動)から正弦波駆動の切替部の電流波形を示しており、従来の矩形波駆動から正弦波駆動への切替部の電流波形(図7)と比較して、2−3相通電(略正弦波駆動)から演算による正弦波駆動への切り替え段差が小さく滑らかな切り替えが可能となり、切り替え時の振動を低減できる。 さらに、図4は電気角度30度毎に出力される磁極位置信号をモータの状態から演算によって補間して算出された正弦波出力信号を示しており、演算により補間できない(30度の)間のみ上述した2−3相通電の略正弦波通電により同期モータを駆動し、その後、正弦波駆動に切り替える。
【0024】
【発明の効果】
上記の実施例から明らかなように本発明によれば、矩形波通電時に2−3相通電で駆動する際に、2相通電時あるいは3相通電時、それぞれ正弦波に近似した比率で電流制御するのでさらに振動を低減することができる。
【0028】
このように、2−3相通電または略正弦波で同期モータを駆動するので、通電切り替え時の振動を抑制できる。例えば電気自動車の駆動源として用いれば、運転者に違和感を与えない優れた制御方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施例における2−3相通電の説明図
【図2】本発明の一実施例における磁極位置センサの出力波形図
【図3】本発明の一実施例の矩形波駆動から正弦波駆動への切り替え説明図
【図4】本発明の一実施例の補間して算出された正弦波出力波形図
【図5】従来の矩形波通電の説明図
【図6】従来の磁極位置センサの出力波形図
【図7】従来の矩形波駆動から正弦波駆動への切り替え説明図
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a drive motor for an electric vehicle and a control method of a controller.
[0002]
[Prior art]
BACKGROUND ART In recent years, development of electric vehicles has been promoted to protect the global environment. In the control method of the driving motor mounted on the electric vehicle, the motor current is controlled according to the output signal of the magnetic pole position sensor of the rotor mounted on the motor. A CS signal and an encoder signal (A and B phases) are used as the sensor signal.
[0003]
When an encoder signal of a type that does not output an absolute position is used, until a reference position (Z phase) is input, as shown in FIG. Drives the motor by two-phase conduction (FIG. 5). When the reference position (Z phase) is input, as shown in FIG. 7, the electrical angle is determined according to the motor rotation state using the encoder signal (using the CS sensor output output every electrical angle of 60 degrees). The control is performed by switching from square wave energization every 60 degrees to sinusoidal energization (by calculation).
[0004]
[Problems to be solved by the invention]
However, when the conventional rectangular wave is energized at an electric angle of 60 degrees during energization, when the motor is driven at a very low speed, the switching vibration of energization becomes a concern, and when mounted on an electric vehicle, a shock similar to knocking is felt. There was a problem that could give the driver a sense of discomfort.
[0005]
Further, as shown in the current waveform (FIG. 7) of the conventional rectangular wave drive and sine wave drive switching unit, when the rectangular wave drive and the sine wave drive are switched and controlled (in the motor rotation state), the rectangular wave drive is performed. Sometimes, when the power is supplied every 60 degrees, the difference in torque ripple from the sine wave drive is large, and it is felt that the control has been switched, giving the driver an uncomfortable feeling.
[0006]
In addition, when mounted on an automobile, there is a problem that the control of a motor without a magnetic pole position sensor is inferior in reliability to a control with a sensor.
[0007]
An object of the present invention is to solve the above-mentioned problem, and an object of the present invention is to provide a synchronous motor control method for reducing a vibration accompanying a switching of energization of a synchronous motor including a rotor magnetic pole position sensor.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, the present invention is to drive a synchronous motor with a substantially sinusoidal wave by energizing 2-3 phases using an output of a magnetic pole position sensor that outputs an electric angle every 30 degrees. .
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
In order to solve the above problems, the present invention detects the magnetic pole position of the rotor, and supplies the current flowing through the synchronous motor including the magnetic pole position sensor that outputs the magnetic pole position sensor every 30 degrees using the output of the magnetic pole position sensor. It is driven by a substantially sinusoidal wave by energizing 2-3 phases.
[0010]
Also, this is a control method for switching the energizing current of the synchronous motor between square-wave energization and sine-wave energization according to the state. When a rectangular wave is energized by using a magnetic pole position sensor output every 30 electrical degrees, The synchronous motor is driven by controlling the current during energization or the current during three-phase energization, respectively.
[0011]
Further, there is provided a control method for switching the energizing current of the synchronous motor between substantially sinusoidal energization and sinusoidal energization in 2-3 phase energization according to a state, using a magnetic pole position sensor output every 30 electrical degrees, The synchronous motor is driven by sinusoidal energization obtained by interpolating magnetic pole position signals for every 30 electrical degrees by calculation.
[0012]
As described above, regardless of the type of the sensor mounted on the motor, a magnetic pole position sensor capable of detecting and outputting the magnetic pole position of the rotor every 30 degrees in electrical angle is mounted. The motor can be controlled by 2-3 phase energization every 30 electrical degrees.
[0013]
In addition, by controlling the current value at the time of two-phase energization or at the time of three-phase energization to approximate sine wave points, 2-3 phase energization of a substantially sine wave becomes possible.
[0014]
Furthermore, since the drive is performed by the sine wave energization obtained by interpolating the magnetic pole position signal for each electrical angle of 30 degrees by the calculation from the substantially sine wave energization, the switching at the time of switching is compared to the conventional case where the rectangular wave energization is switched to the sine wave energization. Fluctuation (vibration) can be suppressed.
[0015]
According to the above configuration, the motor can be energized with a substantially sine wave at the time of energizing the rectangular wave, so that a vibration associated with the energization switching can be reduced, and a synchronous motor control method that does not give a driver an uncomfortable feeling can be obtained.
[0016]
【Example】
An embodiment of the present invention will be described below with reference to the drawings.
[0017]
FIG. 1 shows a current waveform of a 2-3-phase energized motor according to an embodiment of the present invention. When a rectangular wave is energized, the U, V, and W phases are energized by two-phase energization every 30 degrees of electrical angle. The three-phase energization is alternately repeated. Thereby, the synchronous motor can be driven by 2-3 phase energization.
[0018]
FIG. 2 shows an output waveform of the magnetic pole position sensor according to the present invention, which outputs an electric angle of 30 degrees regardless of the configuration of the magnetic pole position sensor. When a rectangular wave is applied, the synchronous motor can be energized for 2-3 phases by using the output of the magnetic pole position sensor every 30 degrees.
[0019]
Further, during rectangular wave driving, by controlling the three- phase current so that the three- phase current becomes 100 × sin 60 ° (%), a sine wave (approximately a sine wave) approximating the waveform at each electrical angle of 30 ° (Points (2), (4), (6), (8), (10), and (12) in FIG. 1).
[0020]
Similarly, by controlling the two- phase conduction current and controlling the two- phase conduction current to be 100 × sin 60 ° (%), a sine wave (substantially sine wave) approximating the waveform at each electrical angle of 30 degrees ( Points (1), (3), (5), (7), (9), and (11) in FIG. 1).
[0021]
Although the current control ratio at the time of the substantially sine wave drive is set to sin 60 °, it may be in the vicinity thereof.
[0022]
By controlling the current at the time of two-phase conduction or three-phase conduction at the respective ratios as described above, a substantially sinusoidal current control in which a sine wave is divided into 12 (every 30 degrees) can be performed. Vibration can be further reduced.
[0023]
FIG. 3 shows a current waveform of a switching unit for switching from rectangular wave drive (substantially sine wave drive) to sine wave drive, and is compared with a current waveform of a conventional switch unit for switching from rectangular wave drive to sine wave drive (FIG. 7). Thus, the switching step from the 2-3 phase energization (substantially sinusoidal wave driving) to the sinusoidal wave driving by calculation can be performed smoothly with a small step and the vibration at the time of switching can be reduced. Further, FIG. 4 shows a sine wave output signal calculated by interpolating the magnetic pole position signal output every 30 degrees of the electric angle from the state of the motor by calculation, and only during the time when the interpolation cannot be performed (at 30 degrees). The synchronous motor is driven by the substantially sine wave energization of the above-described 2-3 phase energization, and thereafter, is switched to the sine wave drive.
[0024]
【The invention's effect】
As is apparent from the above embodiment, according to the present invention, when driving with two-phase current or three-phase current during rectangular-wave current conduction, current control is performed at a ratio approximate to a sine wave when two-phase current or three-phase current is applied. Therefore, vibration can be further reduced.
[0028]
As described above, since the synchronous motor is driven by the 2-3 phase energization or the substantially sinusoidal wave, vibration at the time of energization switching can be suppressed. For example, when used as a drive source for an electric vehicle, it is possible to provide an excellent control method that does not give a driver an uncomfortable feeling.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of 2-3 phase energization in one embodiment of the present invention. FIG. 2 is an output waveform diagram of a magnetic pole position sensor in one embodiment of the present invention. FIG. 4 is an explanatory diagram of switching from driving to sine wave driving. FIG. 4 is a diagram of a sine wave output waveform calculated by interpolation according to an embodiment of the present invention. FIG. 5 is an explanatory diagram of conventional rectangular wave energization. FIG. 7 is an explanatory diagram of switching from a conventional rectangular wave drive to a sine wave drive.

Claims (1)

同期モータの通電電流を2−3相通電で略正弦波通電と正弦波通電とを状態に応じて切り替える制御方法であって、電気角度30度毎に出力される磁極位置センサを用い、演算によって電気角度30度毎の磁極位置信号をその変化点を基準として時間の経過に従って補間して得られる正弦波通電により同期モータを駆動することを特徴とする同期モータの制御方法。This is a control method in which the energizing current of a synchronous motor is switched between substantially sinusoidal energization and sinusoidal energization according to the state in 2-3 phase energization. A synchronous motor control method characterized in that a synchronous motor is driven by a sine wave energization obtained by interpolating a magnetic pole position signal for each electrical angle of 30 degrees with time based on a change point thereof .
JP32258899A 1999-11-12 1999-11-12 Synchronous motor and control method thereof Expired - Fee Related JP3546782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32258899A JP3546782B2 (en) 1999-11-12 1999-11-12 Synchronous motor and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32258899A JP3546782B2 (en) 1999-11-12 1999-11-12 Synchronous motor and control method thereof

Publications (2)

Publication Number Publication Date
JP2001145384A JP2001145384A (en) 2001-05-25
JP3546782B2 true JP3546782B2 (en) 2004-07-28

Family

ID=18145385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32258899A Expired - Fee Related JP3546782B2 (en) 1999-11-12 1999-11-12 Synchronous motor and control method thereof

Country Status (1)

Country Link
JP (1) JP3546782B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5282985B2 (en) * 2009-06-22 2013-09-04 アイシン・エィ・ダブリュ株式会社 Control device for motor drive device
JP5502605B2 (en) * 2010-06-09 2014-05-28 本田技研工業株式会社 Motor control device
CN104702169A (en) * 2015-02-06 2015-06-10 宁波知上智能软件开发有限公司 Automatic sliding door linear permanent magnetism synchronous motor sine control method
WO2019091560A1 (en) 2017-11-09 2019-05-16 Pierburg Pump Technology Gmbh Electronically commutated electric motor and method for controlling the same

Also Published As

Publication number Publication date
JP2001145384A (en) 2001-05-25

Similar Documents

Publication Publication Date Title
JP4624619B2 (en) Method and apparatus for controlling torque in a permanent magnet brushless electronic motor
US6670784B2 (en) Motor Apparatus and control method therefor
JP3489285B2 (en) Motor control device for electric vehicles
JP3312520B2 (en) Magnetic pole position detection device for motor
JP3674919B2 (en) Electric power steering apparatus and control method thereof
JP3416494B2 (en) DC brushless motor control device and DC brushless motor control method
US5473725A (en) Method and device for controlling the speed of the brushless DC motor provided for an electric vehicle
JP2004147415A (en) Operation controller of motor
JP3546782B2 (en) Synchronous motor and control method thereof
JP2002300800A (en) Power converter
JPWO2016002745A1 (en) Motor drive control device
JPH09215382A (en) Method of driving permanent magnet synchronous motor
JP3183071B2 (en) Control drive device for sensorless DC brushless motor
WO2004079880A2 (en) A variable speed drive with a synchronous electric motor
JP2008259360A (en) Energization control circuit for brushless motor
JP2002281784A (en) Motor driver and controller
JP3077443B2 (en) Valve opening and closing control device
JP2662668B2 (en) Electric vehicle speed control device
JP7226263B2 (en) vehicle motor drive
JP7500391B2 (en) Motor control device, control system, and motor control method
JPH10243682A (en) Control method in motor drive controller
JP4154687B2 (en) Motor control device
JP2006033928A (en) Brushless motor
JP2008193790A (en) Electric motor driver for turbocharger with electric motor
JP6058085B1 (en) Rotating electric machine and control method of rotating electric machine

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees