JP3546550B2 - Vehicle body tilting method and apparatus for railway vehicle capable of tilting vehicle body when passing through a curve - Google Patents

Vehicle body tilting method and apparatus for railway vehicle capable of tilting vehicle body when passing through a curve Download PDF

Info

Publication number
JP3546550B2
JP3546550B2 JP20121095A JP20121095A JP3546550B2 JP 3546550 B2 JP3546550 B2 JP 3546550B2 JP 20121095 A JP20121095 A JP 20121095A JP 20121095 A JP20121095 A JP 20121095A JP 3546550 B2 JP3546550 B2 JP 3546550B2
Authority
JP
Japan
Prior art keywords
vehicle body
vehicle
height
air
air spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20121095A
Other languages
Japanese (ja)
Other versions
JPH0948345A (en
Inventor
由輝 堺
秀二 明石
邦彦 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP20121095A priority Critical patent/JP3546550B2/en
Publication of JPH0948345A publication Critical patent/JPH0948345A/en
Application granted granted Critical
Publication of JP3546550B2 publication Critical patent/JP3546550B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Vehicle Body Suspensions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鉄道車両の車体を傾斜させることによって、車両が曲線軌道部分を通過する際に乗客に作用する超過遠心加速度を軽減させるための曲線通過時に車体を傾斜可能な鉄道車両の車体傾斜制御方法および装置に関する。
【0002】
【従来の技術】
鉄道車両が走行する路線の曲線軌道部分には、遠心力を軽減するためにカントと呼ばれる傾斜が設けられている。カントを生じさせるために、曲率半径の内側のレールよりも外側のレールの方が高くなるように敷設してある。しかしながら、車体に生じる遠心力は、車両の曲線通過速度に従って変化する。通過速度が等しいときには、曲線軌道の曲率半径が小さくなるほど大きな遠心力が作用する。実際の線路にはいろいろな速度の列車が通るので、一般にはその路線の平均速度に対応させる。しかし、車両速度の高速化に伴って、カント量が不足し、車両に乗車している乗客には超過遠心加速度が加わり、乗り心地を悪化させる原因となる。
【0003】
このような超過遠心加速度を軽減する方法として、台車に設ける弧状のレールガイドに沿って車体が傾斜するような、いわゆる振子式車体傾斜方式が用いられることがある。振子式車体傾斜方式の車両は、超過遠心加速度の軽減に優れた性能を発揮するけれども、台車に弧状のレールガイドを設けるために重量が増加し、かつ高価となる。振子式車体傾斜方式の先行技術は、たとえば特開平6−270806などに開示されている。
【0004】
振子方式を用いないで台車上で車体を支えるばねなどの傾斜で車体傾斜を実現する先行技術は、たとえば特開平6−263031、特開平6−278604、特開平6−316265および特開平6−316266などで開示されている。本件出願人も、特願平5−248730で台車上で車体を支える空気ばね装置を利用して、車体を傾斜させる方法および装置を提案している。
【0005】
【発明が解決しようとする課題】
車両速度の高速化に伴って、超過遠心加速度を軽減するために必要な車体の傾斜角度は増大する。傾斜角度が増大すると、車両の走行の安全かつ円滑な運用を可能とするために予め規定されている車両限界から外れるおそれがある。これに対しては、車両の進行方向に垂直な車体の断面形状を、たとえば上方で幅が狭くなるように絞っておくことによって、ある程度まで対処可能である。しかしながら、通常車体の上部に設置されるパンタグラフなどの集電装置も車体の傾斜とともに、架線から外れるおそれがある。振子式車両として実現されている或る先行技術によれば、車体上部でパンタグラフを移動可能とし、傾斜角度が大きくなるときにはワイヤで引張り、パンタグラフの位置を修正するようにしている。しかしながら、パンタグラフには高い電圧がかかり、ワイヤなどで引張る構成では、架線への通電を遮断して、ある期間ごとに保守が必要という課題がある。
【0006】
本発明の目的は、軽量かつ安価で安全に乗客の超過遠心加速度を軽減することができる曲線通過時に車体を傾斜可能な鉄道車両の車体傾斜制御方法および装置を提供することである。
【0007】
【課題を解決するための手段】
本発明は、各台車上で車体を支えるため車幅方向に間隔をあけて配置される一対の空気ばね装置に、曲線軌道通過時にはそれぞれ独立に圧縮空気を供給して、車体を傾斜させる曲線通過時に車体を傾斜可能な鉄道車両の車体傾斜制御方法において、
車体のヨー方向の回転角速度をレートジャイロで検出して曲線軌道通過時か否かを判断し、
曲線軌道通過時に、遠心加速度を加速度計で検出し、乗客にかかる超過遠心加速度を軽減するために必要な軌道曲率半径方向内方への車体の傾斜角度を算出し、
算出結果に基づいて、空気ばね装置に圧縮空気を供給して車体を傾斜させながら、
傾斜動作における回動中心である仮想傾斜中心が進行方向に垂直な車体の断面形状内で着席乗客の頭の高さ付近であるレール面上の高さH3=2250mmとなり、車体上部に設けられる集電装置が架線から外れないように、車体を軌道曲率半径方向外方へ移動させることを特徴とする曲線通過時に車体を傾斜可能な鉄道車両の車体傾斜制御方法である。
本発明に従えば、曲線軌道通過時に乗客の超過遠心加速度を軽減するための傾斜角度が算出され、算出結果に基づいて、各台車の車幅方向に間隔をあけて配置される一対の空気ばね装置に圧縮空気を供給して車体が軌道曲率半径方向の内方へ傾けられる。車体の傾斜によって、車体上部に設けられる集電装置が架線から外れないように、車体を軌道曲率半径方向外方へ移動させるので、車体を充分に傾斜させて高速走行時の乗客に作用する超過遠心加速度を軽減させ、曲線通過時に車体を傾斜可能な鉄道車両としての乗り心地を向上させることができる。車体を台車上に支える空気ばね装置を用いるので、重量の増加を避け、安価に乗り心地の向上を図ることができる。車体上で集電装置を移動させる必要がないので、架線の通電を遮断せずに、かつ保守のインターバルを長くできる。
【0008】
また、車体の軌道曲率半径方向外方への移動は、傾斜動作における回動中心(以下、「仮想傾斜中心」という)が進行方向に垂直な車体の断面形状内で着席乗客の頭の高さ付近となるように行われるので、車体の傾斜に伴う車体上部の集電位置の変位量が機械的な振子式と等価となり、振子式車両がすでに走行している路線の区間では、車両限界等の制限を検証することなく走行させることができる。これによって車体の傾斜角度を大きくすることができ、高速で曲線軌道を通過する際に乗客に与える超過遠心加速度を充分に軽減することができる。
【0009】
また本発明で、車体の傾斜のための空気ばね装置への圧縮空気の供給は、車体の曲線通過速度および遠心加速度それぞれの検出結果に従って行い、
車体の軌道曲率半径方向外方への移動は、空気ばね装置間の高さの変化の検出結果に従って行うことを特徴とする。
本発明に従えば、鉄道車両が路線の曲線部分に進入すると遠心加速度が作用し、そのときの車体の曲線通過速度に基づいて超過遠心加速度を軽減するための車体の傾斜角度が算出される。算出された傾斜角度に車体を傾斜させるために、空気ばね装置に空気を供給して膨張させる。空気ばね装置間の高さの変化は車体の傾斜角度に対応するので、これに従って車体を軌道曲率半径方向外方へ移動させれば、車体の傾斜に伴う集電装置の架線からのずれを修正することができる。
【0010】
また本発明の車体の傾斜角度は、予め記憶される軌道の曲率についての情報を、軌道上の通過位置に対応して読出し、曲率半径および通過速度に基づいて算出し、
車体の軌道曲率半径方向外方への移動は、予め記憶される軌道のカントについての情報を軌道上の通過位置に対応して読出し、算出された傾斜角度をカントについての情報に基づいて補正して行うことを特徴とする。
本発明に従えば、軌道の曲率とカントとは、予め記憶される。車体の傾斜角度は、軌道上の通過位置に対応して曲率を読出し、曲率半径および通過速度に基づいて算出する。集電装置の架線からのずれを生ずる車体の傾斜は、算出された傾斜角度から軌道のカントによる傾斜角度を除いたものであり、記憶されているカントについての情報から容易に補正することができる。
【0011】
さらに本発明は、各台車上で車体を支えるため、車幅方向に間隔をあけて配置される一対の空気ばね装置と、
空気ばね装置にそれぞれ独立に圧縮空気を供給するための空気供給手段と、
空気ばね装置の高さ方向の変化を検出する高さ検出手段と、
一端を台車側に、他端を車体側にそれぞれ連結し、車体を台車上で水平、かつ軌道と直交する両方向に対して移動可能な直動型のアクチュエータと、
アクチュエータの移動時のストロークを検出するストローク検出手段と、
車体のヨー方向の回転角速度を検出するレートジャイロと、
車体の遠心加速度を検出する加速度検出手段と、
レートジャイロおよび加速度検出手段からの出力に応答し、車両の曲線通過時に乗客にかかる超過遠心加速度を軽減するような角度に車体を傾斜させるため、高さ検出手段からの出力によってフィードバック制御しながら空気供給手段を介して空気ばね装置に圧縮空気を供給して車体を傾斜させ、傾斜動作における回動中心である仮想傾斜中心が進行方向に垂直な車体の断面形状内で着席乗客の頭の高さ付近であるレール面上の高さH3=2250mmとなり、車体上部に設けられる集電装置が架線から外れないように、傾斜角に対して予め定める移動量だけ、ストローク検出手段からの出力によってフィードバック制御しながらアクチュエータを作動させて車体を移動させる制御手段とを含むことを特徴とする曲線通過時に車体を傾斜可能な鉄道車両の車体傾斜制御装置である。
本発明に従えば、曲線通過時に車体を傾斜可能な鉄道車両が路線の曲線部分に進入したことを、遠心加速度を検出する加速度検出手段からの出力によって検知することができる。制御手段は、加速度検出手段が検出した曲率半径方向外方に作用する超過遠心加速度を、空気供給手段を介して、各台車上で車幅方向に間隔をあけて配置される一対の空気ばね装置を膨張させて車体を曲率半径方向内方に傾斜させることによって、容易に軽減させることができる。さらに直動型のアクチュエータによって、車体を台車に対して車幅方向の両方向に対して移動可能であるので、車体の傾斜によってパンタグラフなどの集電装置が架線から架線と直交する方向に離れることがないように調整することができる。
【0012】
【発明の実施の形態】
図1は、本発明の実施の一形態についてのアクティブ姿勢制御の基本的動作原理を示す。図1(a)は、直線の軌道を走行しているときの通常の車両の状態を示す。図1(b)は、車体を傾斜させた状態を示す。図1(c)は、車体を傾斜させた状態で車体を軌道であるレールと直交する方向に移動させ、パンタグラフの架線からの外れを抑制した状態を示す。空気ばね装置1,2は、台車3の上で車体4を支える。台車3には、車輪5が設けられ、レール6上を走行する。車体4の上部には、集電装置であるパンタグラフ7が設けられ、架線8に接触しながら、車両の走行に必要となる電力を受け入れる。
【0013】
図1(a)では、パンタグラフ7の最大高さH1をたとえば5400mmとし、空気ばね装置1,2の中心のレール面上からの高さH2をたとえば900mmとし、傾斜時に車体の左右方向の移動によって仮想傾斜中心Cとなる位置の高さH3をたとえば2250mmとする。このH3は、JR各社の381系車両の振子中心位置を想定している。空気ばね装置1,2の間隔Wはたとえば1500mmである。
【0014】
図1(b)は、図1(a)の状態で、一方の空気ばね装置2を膨張させ、傾斜角度θが3.5°となるように傾斜させた状態を示す。仮想傾斜中心が他方の空気ばね装置1の中心付近にあり、パンタグラフ7が架線8から離れてしまう。一方の空気ばね装置2と他方の空気ばね装置1との高さの差ΔHは、たとえば100mmとなる。
【0015】
図1(c)は、レール面上H3の高さの仮想傾斜中心Cに関して車体4を傾斜させた状態を示す。このときはパンタグラフ7は架線8から離れない。このために必要な車体4の左右移動の制御量ΔSは約85mmとなる。
【0016】
図2は、図1の車両の簡略化した側面図を(a)で、平面図を(b)でそれぞれ示す。車体4に対して進行方向の前後に台車3が設けられ、各台車3上には一対の空気ばね装置1,2が設けられて車体4を支える。すなわち車体4は、台車3毎に2個、合計4つの空気ばね装置1,2によって支えられる。車体4同士は、連結器9を介して相互に連結される。
【0017】
図3は、図1に示す空気ばね装置1,2の制御のための圧縮空気配管系統を示す。元空気溜10からの圧縮空気は、空気ばね11,12にそれぞれ供給され、空気ばね11,12の膨張量に応じて図1および図2の車体4の傾斜角度が決定される。空気ばね11と元空気溜10との間には、LV装置13および強制排気弁14が接続される。また別の配管系統では、大径の給・排気弁15および小径の給・排気弁16が並列に接続される。LV装置13および強制排気弁14側の配管系統には、遮断弁17が設けられる。給・排気弁15,16側の配管系統には、前後に遮断弁18が設けられ、さらに前後に締切コック19が設けられる。同様に他方の空気ばね12に関し、LV装置23、強制排気弁24、給・排気弁25,26、遮断弁27,28および締切コック29がそれぞれ設けられる。
【0018】
空気ばね11,12には補助空気室31,32がそれぞれ接続される。補助空気室31,32間には、差圧弁33および遮断弁34を直列に介して接続される。元空気溜10からは、空気サーボ弁35を介して直動シリンダ36を駆動するための圧縮空気も供給される。直動シリンダ36の一端は、車体に連結され、他端は台車に連結される。直動シリンダ36のストロークが増大すると、車体を台車に対して走行方向に垂直な一側方に移動させ、直動シリンダ36が収縮すると車体を他方向に移動させる。
【0019】
通常車体を支えている空気ばね11,12の高さは、LV装置13,23で荷重が変動しても一定となるように制御されている。LV装置13,23は、車体側に回転軸の回転角度に応じて空気流量を制御することができる流量制御弁を設け、台車側に一端を固定し、他端を流量制御弁の回転軸に接続したリンク機構を有する。車体が所定の高さにあるときは、流量制御弁の回転軸は中立の角度に設定されており、空気ばね11,12に供給する空気は遮断される。仮に重量バランスの不均一などによって、空気ばね11,12の一方が圧縮されて車体が沈むと、流量制御弁の回転軸が回転して元空気溜10からの圧縮空気が圧縮された空気ばね11,12に供給され、車体を上昇させることができる。車体の上昇につれて、流量制御弁の回転軸は戻るので、車体が所定の高さに到達すると流量制御弁は空気の供給を遮断するようになる。
【0020】
車体が所定の高さ以上に上昇すると、流量制御弁の回転軸は中立位置から変化し、空気ばねの空気を排気して車体を降下させる。車体の傾斜制御のためには給・排気弁15,16;25,26がそれぞれ設けられる。LV装置による車体の高さの制御と、給・排気弁15,16;25,26による車体の傾斜制御とは、遮断弁17,18;27,28および締切コック19,20の操作によって切換えられる。また左右の空気ばね11,12は、補助空気室31,32にそれぞれ連通し、補助空気室31,32間は差圧弁33および遮断弁34を介して連通する。
【0021】
元空気溜10からの圧縮空気は、空気サーボ弁35を介して直動シリンダ36にも供給される。また、前記の空気式直動シリンダ36の代わりに、油圧源装置、油圧サーボ弁および油圧式直動シリンダで行うことも可能である。直動シリンダ36のストローク変化は、ストローク検出器40によって検出される。空気ばね11,12の高さ変化は、エンコーダ41,42によってそれぞれ検出される。
【0022】
図4は、図3の圧縮空気配管系統を用いて、図1および図2に示すようなアクティブ姿勢制御を行うための概略的な電気的構成を示す。前述のサーボ弁35は、サーボアンプ45を介して制御される。制御ONスイッチ49の投入によって動作状態となる制御装置50には、各車体当たり4つの空気ばね装置の高さを検出するためのエンコーダユニット51,52,53,54からの検出出力が入力される。各エンコーダユニット51〜54は、同一の内部構成を有する。図3の直動シリンダ36のストローク検出器40からの検出出力は、シリンダユニット55から入力される。車両が曲線区間に進入するときには、車体の前後で回転(ヨー)が生ずるけれども、これはレートジャイロ56によって検出される。レートジャイロ56が検出する車体の回転角速度ω1を制御装置50は監視しており、予め定めた閾値K1との関係がω1>K1となると車両が曲線区間に進入したと判断する。また、回転角速度と列車速度の検出値を利用して曲線区間の曲率を求めることができるので、この求められた曲率から曲線区間への進入を判断することもできる。また、遠心加速度を検出するための加速度計57と、進行方向の加速度を検出するための加速度計58も設けられる。制御装置50からは、駆動回路61および異常表示ランプ62に対する出力も導出される。エンコーダユニット51内には、エンコーダ41からの出力を制御装置50の入力条件に合わせるための整合回路65が設けられる。レートジャイロ56からの出力を、制御装置50の入力条件に合わせるために、出力整合回路70が挿入される。
【0023】
制御装置50が車体の傾斜制御を行うための傾斜装置71,72,73,74は、それぞれ同一の内部構成を有して駆動回路75,76を含み、大口径の給・排気弁15および小口径の給・排気弁16をそれぞれ駆動する。大口径の給・排気弁15では迅速な制御、小口径の給・排気弁16では細かな制御がそれぞれ可能である。駆動回路61からの出力は、各空気ばね装置81,82,83,84毎に設けられる遮断弁元圧85および遮断弁制御圧86をそれぞれ駆動する。駆動回路61からの出力はまた、遮断弁差圧87,88もそれぞれ駆動する。
【0024】
制御ONスイッチ49がOFFの状態では、図3の遮断弁17,27が導通し、遮断弁18,28が遮断する結果、LV装置13,23による車体の高さ制御が行われる。制御ONスイッチ49がON状態になって、車体傾斜制御中に車両が曲線区間に進入したことが認識されると、差圧弁33を介して連結されている左右の空気ばね11,12間の空気圧回路を遮断弁34が遮断し、同時にLV装置13,23の空気圧回路を遮断弁17,27が遮断し、遮断弁18,28が導通する。なお、保守点検時以外は、締切コック19,29は導通させておく。車体には、遠心加速度を検出する加速度計57が設けられており、車両が曲線部に進入したことが検知されると、制御装置50は加速度計57によって検出される超過遠心加速度を軽減させるために必要な車体傾斜角θを演算し、傾斜角θを得るために必要な空気ばね高さHを演算する。
【0025】
算出された空気ばね高さHを設定値として、その設定値が保持されるように給・排気弁15,16;25,26を制御して、空気ばね11,12に圧縮空気が給排気される。制御装置50は、予め設定した空気ばね高さHと、空気ばね高さHを検出するエンコーダ41,42からの出力とを比較して、空気ばね高さが設定値よりも高い場合は給気信号を、設定値より低い場合は排気信号を給・排気弁15,16;25,26に出力し、車体の傾斜角θを制御する。なお、何らかの原因で車体の傾斜角が制御できなくなり、空気ばねへの空気の供給が継続して予め定めた車体上昇の上限値を越えると、強制排気弁14,24が余剰の空気を排気する。
【0026】
傾斜角θに応じて、パンタグラフの架線に対する相対位置が移動するけれども、その移動量Lpは車体の幾何学的な形状と配置関係とを基に、次の第1式によって容易に算出することができる。
【0027】
Lp = (H1−H2)×Θ×cosθ …(1)
ただし、Θは、θをラジアン角に変換した値である。この移動量Lpを低減するためには、車体側に一端を、また台車側に反対側の一端を固定した直動シリンダ36を用いる。車体4をレール6および架線8と直交する方向に、かつ車体4の傾斜による移動量を減殺する方向に移動させる。遠心力は軌道曲率半径方向外方に作用し、これを緩和するための車体4の傾斜は軌道曲率半径方向内方に向かうので、移動方向は軌道曲率半径方向の外方となる。この移動に必要な直動シリンダ36のストローク量をLstとすると、パンタグラフの架線に対する移動量の許容値をLdとして、次の第2式が求められる。
【0028】
Lst = Lp−Ld …(2)
ただしLst≧0である。したがって、傾斜量が決定されるとパンタグラフ7の架線8に対する位置ずれを減殺するための車体の移動量、すなわち直動シリンダ36のストローク量Lstが決定され、制御装置50から直動シリンダ36に圧縮空気を供給するための空気サーボ弁35に対して励磁電流が出力される。直動シリンダ36には、そのストローク量を検出するストローク検出器40が設けられているので、Lstと検出値とを用いてサーボ制御が行われる。なお直動シリンダ36は、油圧など空気圧以外の流体圧によるアクチュエータや電動式のアクチュエータを用いることもできる。
【0029】
図5は、本発明の他の形態による車体傾斜制御のための部分的な電気的構成を示す。データ処理装置90には、車速検出器91が検出する車両の進行速度が入力される。データ処理装置90では、入力された速度値を積分処理して、車両の移動距離を算出する。メモリ92には、予め車両が走行する路線についての曲線区間の位置や曲線区間のカントの量などのデータが記憶されている。
【0030】
車速検出器91は、一般的には車輪の回転数を計数するためのセンサ、たとえば車軸に設けたパルス発生器によって実現される。メモリ92には、予め基準位置からの距離に対応させて路線の曲線部のデータを記憶しておく。基準位置からの距離Xは次の第3式で表される。
【0031】
X = 2π・r・Σp/n …(3)
ここでπは円周率であり、rは車輪の半径であり、Σpはパルス発生器から発生されたパルスの積算値であり、nは車輪1回転当たりの出力パルス数である。第3式に従って求められる距離Xと、メモリ92に記憶されている基準位置から曲線部までの距離とを比較し、両者が一致するときに車両が曲線区間に進入したと判断することができる。データ処理装置90は、車両が曲線区間に進入したと判断されるときには、メモリ92に記憶されている曲率半径およびカント量から、車体の傾斜角度と、車体の移動量とを算出し、たとえば図4に示される制御装置50にデータとして与える。
【0032】
【発明の効果】
以上のように本発明によれば、鉄道車両が曲線軌道通過時に車体を傾斜させながら、車体上部に設けられる集電装置が架線から外れないように車体を軌道曲率半径方向外方へ移動させるので、車体を充分に傾斜させることができる。これによって、高速度で曲線を通過する際に乗客に作用する超過遠心加速度が軽減され、車両の乗り心地を向上させることができる。
【0033】
また、曲線通過の際の軌道曲率半径方向外方への移動は、仮想傾斜中心が車体の断面形状内で着席乗客の頭の高さ付近となるように行うので、移動量を容易に算出し、車体の傾斜角度を大きく取って、高速度で曲線通過時の乗り心地を向上させることができる。
【0034】
また本発明によれば、鉄道車両が路線の曲線部分に進入したときに、遠心加速度および曲線通過速度のそれぞれの検出結果に従って車体を傾斜させ、遠心加速度を軽減させる。車体の軌道曲率半径方向外方への移動は、空気ばね装置間の高さの変化の検出結果に従って行うので、車体を傾斜させて遠心加速度を軽減した状態でも集電装置が架線から外れないように車体の位置を修正することができる。
【0035】
また本発明によれば、車体の傾斜と傾斜に伴う車体の軌道曲率半径方向外方への移動は、予め記憶されている軌道の曲率およびカントについての情報に従って行うので、車両の通過速度に従って適切な制御が可能となる。
【0036】
さらに本発明によれば、空気ばね装置によって曲線通過時の車体を傾斜させ、直動型のアクチュエータによって車体の位置を曲率半径方向外方へ移動させるので、車両が高速度で曲線を通過しても、乗客に作用する遠心加速度を充分に低減し、しかも車体上部の集電装置が架線から外れないように修正することができる。車体を振子構造にするような必要はないので、軽量かつ安価な装置で超過遠心加速度の軽減を実現することができる。また、車体の傾斜を大きくしても集電装置が架線から外れないので、安全かつ信頼性の高い傾斜制御を実現することができる。
【0037】
また、制御手段は、仮想傾斜中心が着席乗客の頭の高さ付近となるようにアクチュエータによる車体の移動量を算出すればよいので、傾斜角度と車体の移動との制御を容易に行うことができる。
【図面の簡単な説明】
【図1】本発明の実施の一形態についての原理的構成を示す簡略化した正面図である。
【図2】図1の実施の形態に対応する簡略化した側面図および平面図である。
【図3】図1の実施の形態を動作させるための空気圧制御系統図である。
【図4】図1の実施の形態の制御のための概略的な電気的構成を示すブロック図である。
【図5】本発明の実施の他の形態の主要部の電気的構成を示すブロック図である。
【符号の説明】
1,2 空気ばね装置
3 台車
4 車体
5 車輪
6 レール
7 パンタグラフ
8 架線
10 元空気溜
11,12 空気ばね
13,23 LV装置
15,16,25,26 給・排気弁
31,32 補助空気室
33 差圧弁
35 空気サーボ弁
36 直動シリンダ
40 ストローク検出器
41,42 エンコーダ
49 制御ONスイッチ
50 制御装置
56 レートジャイロ
57,58 加速度計
60 サーボアンプ
90 データ処理装置
91 車速検出器
92 メモリ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a vehicle body tilt control for a railway vehicle capable of inclining the vehicle body when the vehicle passes a curved line to reduce excessive centrifugal acceleration acting on passengers when the vehicle passes a curved track portion by tilting the vehicle body of the railway vehicle. Method and apparatus.
[0002]
[Prior art]
A curve called a cant is provided on a curved track portion of a route on which a railway vehicle travels in order to reduce centrifugal force. In order to generate a cant, the outer rail is laid so as to be higher than the inner rail with the radius of curvature. However, the centrifugal force generated in the vehicle body changes according to the speed at which the vehicle passes through a curve. When the passing speeds are equal, a larger centrifugal force acts as the radius of curvature of the curved track decreases. Since various speeds of trains travel on the actual track, the average speed of the route is generally corresponded to the average speed. However, as the vehicle speed increases, the cant amount becomes insufficient, and excessive centrifugal acceleration is applied to the passengers in the vehicle, causing a deterioration in ride comfort.
[0003]
As a method of reducing such an excessive centrifugal acceleration, a so-called pendulum type vehicle body inclination system in which the vehicle body is inclined along an arc-shaped rail guide provided on a bogie may be used. Although the pendulum type vehicle body tilting type vehicle exhibits excellent performance in reducing the excessive centrifugal acceleration, the weight is increased and the cost is increased due to the provision of the arc-shaped rail guide on the bogie. The prior art of the pendulum type vehicle body tilt system is disclosed in, for example, Japanese Patent Application Laid-Open No. 6-270806.
[0004]
Prior art techniques for achieving leaning of the vehicle body by using a spring or the like that supports the vehicle body on a bogie without using a pendulum system are disclosed in, for example, JP-A-6-26331, JP-A-6-278604, JP-A-6-316265, and JP-A-6-316266. And so on. The present applicant has also proposed a method and an apparatus for tilting a vehicle body using an air spring device that supports the vehicle body on a truck in Japanese Patent Application No. 5-248730.
[0005]
[Problems to be solved by the invention]
As the vehicle speed increases, the lean angle of the vehicle body required to reduce the excessive centrifugal acceleration increases. When the inclination angle increases, there is a possibility that the vehicle may deviate from a predetermined vehicle limit in order to enable safe and smooth operation of traveling of the vehicle. This can be dealt with to some extent by narrowing the cross-sectional shape of the vehicle body perpendicular to the traveling direction of the vehicle, for example, so that the width becomes narrower upward. However, a current collecting device such as a pantograph usually installed on the upper part of the vehicle body may be separated from the overhead line with the inclination of the vehicle body. According to one prior art realized as a pendulum type vehicle, the pantograph is made movable on the upper part of the vehicle body, and when the inclination angle becomes large, the pantograph is pulled by a wire to correct the position of the pantograph. However, in a configuration in which a high voltage is applied to the pantograph and the wire is pulled by a wire or the like, there is a problem that the power supply to the overhead wire is cut off and maintenance is required every certain period.
[0006]
SUMMARY OF THE INVENTION An object of the present invention is to provide a method and an apparatus for controlling a vehicle body inclination of a railway vehicle capable of leaning a vehicle body at the time of passing a curve, which can reduce the excessive centrifugal acceleration of a passenger safely and lightweightly and inexpensively.
[0007]
[Means for Solving the Problems]
The present invention provides a pair of air spring devices spaced apart in the vehicle width direction to support a vehicle body on each bogie, and supplies compressed air independently at the time of passing a curved orbit so that the vehicle passes a curved passage that inclines the vehicle body. In a vehicle body inclination control method of a railway vehicle capable of inclining the body sometimes,
The yaw direction angular velocity of the vehicle body is detected by a rate gyro to determine whether or not the vehicle is passing through a curved orbit,
When passing through a curved track, the centrifugal acceleration is detected by an accelerometer, and the inclination angle of the vehicle body inward in the track curvature radius direction required to reduce the excessive centrifugal acceleration applied to the passenger is calculated,
Based on the calculation results, while supplying compressed air to the air spring device to tilt the vehicle body,
A virtual center of rotation, which is a center of rotation in the tilting operation, has a height H3 = 2250 mm on a rail surface near the height of the head of a seated passenger within a cross-sectional shape of the vehicle body perpendicular to the traveling direction, and is a collection provided at the upper part of the vehicle body. A vehicle body tilt control method for a railway vehicle capable of tilting a vehicle body when passing through a curve, characterized in that the vehicle body is moved outward in a track curvature radius direction so that the electric device does not come off the overhead line.
According to the present invention, the inclination angle for reducing the excessive centrifugal acceleration of the passenger when passing through the curved track is calculated, and based on the calculation result, a pair of air springs arranged at intervals in the vehicle width direction of each bogie By supplying compressed air to the apparatus, the vehicle body is tilted inward in the radial direction of the track curvature. The body is moved outward in the radius of curvature of the track so that the current collector installed above the body does not deviate from the overhead line due to the inclination of the body. The centrifugal acceleration can be reduced, and the riding comfort as a railway vehicle that can lean the vehicle body when passing through a curve can be improved. Since the air spring device that supports the vehicle body on the trolley is used, an increase in weight can be avoided, and the riding comfort can be improved at low cost. Since it is not necessary to move the current collector on the vehicle body, the maintenance interval can be extended without interrupting the power supply to the overhead wire.
[0008]
In addition, the outward movement of the vehicle body in the track curvature radius direction is based on the height of the head of the seated passenger in the cross-sectional shape of the vehicle body in which the center of rotation in the tilting operation (hereinafter referred to as “virtual tilt center”) is perpendicular to the traveling direction. Because it is performed near the vehicle, the amount of displacement of the current collecting position on the upper part of the vehicle body due to the inclination of the vehicle body becomes equivalent to the mechanical pendulum type, and in the section of the route where the pendulum type vehicle is already running, the vehicle limit etc. The vehicle can be driven without verifying the restrictions. As a result, the inclination angle of the vehicle body can be increased, and the excessive centrifugal acceleration applied to the passenger when passing through a curved track at a high speed can be sufficiently reduced.
[0009]
In the present invention, the supply of compressed air to the air spring device for leaning the vehicle body is performed according to the detection results of the curve passing speed and the centrifugal acceleration of the vehicle body, respectively.
The outward movement of the vehicle body in the track curvature radius direction is performed according to a detection result of a change in height between the air spring devices.
According to the present invention, when a railroad vehicle enters a curved part of a route, centrifugal acceleration acts, and the inclination angle of the vehicle body for reducing the excessive centrifugal acceleration is calculated based on the curve passing speed of the vehicle body at that time. In order to incline the vehicle body to the calculated inclination angle, air is supplied to the air spring device and expanded. The change in height between the air spring devices corresponds to the inclination angle of the vehicle body, so if the vehicle body is moved outward in the track curvature radius direction according to this, the deviation of the current collector from the overhead line due to the inclination of the vehicle body will be corrected can do.
[0010]
Further, the tilt angle of the vehicle body of the present invention, information on the curvature of the track stored in advance is read corresponding to the passing position on the track, calculated based on the radius of curvature and the passing speed,
Movement of the vehicle body in the radial direction of the track curvature is performed by reading information on the cant of the track stored in advance corresponding to the passing position on the track, and correcting the calculated inclination angle based on the information on the cant. It is characterized by performing.
According to the present invention, the curvature and cant of the trajectory are stored in advance. The inclination angle of the vehicle body is calculated based on the curvature radius and the passing speed by reading the curvature corresponding to the passing position on the track. The inclination of the vehicle body that causes a deviation from the overhead line of the current collector is obtained by removing the inclination angle due to the cant of the track from the calculated inclination angle, and can be easily corrected from the stored information about the cant. .
[0011]
Further, the present invention provides a pair of air spring devices arranged at intervals in the vehicle width direction to support the vehicle body on each bogie,
Air supply means for independently supplying compressed air to the air spring device,
Height detecting means for detecting a change in the height direction of the air spring device;
A direct-acting actuator, one end of which is connected to the bogie and the other end of which is connected to the vehicle body, and the vehicle body is movable on the bogie horizontally and in both directions orthogonal to the track;
Stroke detection means for detecting a stroke when the actuator moves,
A rate gyro for detecting the yaw rotation angular velocity of the vehicle body,
Acceleration detection means for detecting centrifugal acceleration of the vehicle body;
In response to the output from the rate gyro and the acceleration detecting means, the vehicle body is tilted to an angle that reduces the excessive centrifugal acceleration applied to the passenger when the vehicle passes through a curve, so that the air is controlled by feedback from the output from the height detecting means. The compressed air is supplied to the air spring device through the supply means to incline the vehicle body, and the height of the head of the seated passenger is within the cross-sectional shape of the vehicle body in which the virtual inclination center which is the rotation center in the inclination operation is perpendicular to the traveling direction. The height H3 on the rail surface in the vicinity is 2250 mm, and the feedback control is performed by the output from the stroke detecting means by a predetermined moving amount with respect to the inclination angle so that the current collector provided on the upper part of the vehicle body does not deviate from the overhead line. Control means for moving the vehicle body by operating the actuator while moving the vehicle body. A body tilt control device for railway vehicle.
According to the present invention, it is possible to detect that a railway vehicle capable of inclining the vehicle body at the time of passing a curve enters a curved portion of the route by an output from acceleration detecting means for detecting centrifugal acceleration. The control means includes a pair of air spring devices arranged on the respective bogies at intervals in the vehicle width direction on the respective bogies via the air supply means, using the excessive centrifugal acceleration acting outward in the radius of curvature detected by the acceleration detection means. Can be easily reduced by expanding the body to incline the vehicle body inward in the radius of curvature direction. Furthermore, since the vehicle body can be moved in both the vehicle width direction with respect to the bogie by the direct-acting type actuator, a current collector such as a pantograph may separate from the overhead line in a direction perpendicular to the overhead line due to the inclination of the vehicle body. Can be adjusted to not.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows a basic operation principle of active attitude control according to an embodiment of the present invention. FIG. 1A shows a normal vehicle state when traveling on a straight track. FIG. 1B shows a state where the vehicle body is inclined. FIG. 1C shows a state in which the vehicle body is moved in a direction orthogonal to the rail as a track while the vehicle body is tilted, and the pantograph is prevented from coming off the overhead line. The air spring devices 1 and 2 support the vehicle body 4 on the carriage 3. The cart 3 is provided with wheels 5 and runs on rails 6. A pantograph 7, which is a current collector, is provided at an upper portion of the vehicle body 4, and receives electric power required for traveling of the vehicle while contacting the overhead wire 8.
[0013]
In FIG. 1A, the maximum height H1 of the pantograph 7 is, for example, 5400 mm, and the height H2 from the center rail surface of the air spring devices 1, 2 is, for example, 900 mm. The height H3 at the position serving as the virtual tilt center C is, for example, 2250 mm. This H3 is assumed to be the pendulum center position of the 381 series vehicle of each JR company. The distance W between the air spring devices 1 and 2 is, for example, 1500 mm.
[0014]
FIG. 1B shows a state in which one of the air spring devices 2 is expanded and tilted so that the tilt angle θ becomes 3.5 ° in the state of FIG. 1A. The virtual inclination center is located near the center of the other air spring device 1, and the pantograph 7 is separated from the overhead line 8. The height difference ΔH between one air spring device 2 and the other air spring device 1 is, for example, 100 mm.
[0015]
FIG. 1C shows a state in which the vehicle body 4 is inclined with respect to a virtual inclination center C having a height H3 on the rail surface. At this time, the pantograph 7 does not separate from the overhead line 8. The control amount ΔS for the left and right movement of the vehicle body 4 required for this is approximately 85 mm.
[0016]
FIG. 2 shows a simplified side view of the vehicle in FIG. 1 and FIG. 2B shows a plan view thereof. A truck 3 is provided before and after the vehicle body 4 in the traveling direction, and a pair of air spring devices 1 and 2 are provided on each truck 3 to support the vehicle body 4. That is, the vehicle body 4 is supported by two air spring devices 1 and 2 for each truck 3. The vehicle bodies 4 are connected to each other via a connector 9.
[0017]
FIG. 3 shows a compressed air piping system for controlling the air spring devices 1 and 2 shown in FIG. The compressed air from the source air reservoir 10 is supplied to the air springs 11 and 12, respectively, and the inclination angle of the vehicle body 4 in FIGS. 1 and 2 is determined according to the amount of expansion of the air springs 11 and 12. An LV device 13 and a forced exhaust valve 14 are connected between the air spring 11 and the original air reservoir 10. In another piping system, a large-diameter supply / exhaust valve 15 and a small-diameter supply / exhaust valve 16 are connected in parallel. A shutoff valve 17 is provided in the piping system on the LV device 13 and forced exhaust valve 14 side. In the piping system on the side of the supply / exhaust valves 15 and 16, a shutoff valve 18 is provided before and after, and a shutoff cock 19 is further provided before and after. Similarly, for the other air spring 12, an LV device 23, a forced exhaust valve 24, supply / exhaust valves 25 and 26, shutoff valves 27 and 28, and a shutoff cock 29 are provided, respectively.
[0018]
Auxiliary air chambers 31, 32 are connected to the air springs 11, 12, respectively. A differential pressure valve 33 and a shutoff valve 34 are connected in series between the auxiliary air chambers 31 and 32. Compressed air for driving the linear motion cylinder 36 is also supplied from the source air reservoir 10 via the air servo valve 35. One end of the linear motion cylinder 36 is connected to the vehicle body, and the other end is connected to the bogie. When the stroke of the linear motion cylinder 36 increases, the vehicle body is moved to one side perpendicular to the traveling direction with respect to the bogie, and when the linear motion cylinder 36 contracts, the vehicle body is moved in the other direction.
[0019]
Normally, the heights of the air springs 11 and 12 supporting the vehicle body are controlled so as to be constant even if the loads fluctuate in the LV devices 13 and 23. The LV devices 13 and 23 are provided with a flow control valve capable of controlling the air flow according to the rotation angle of the rotating shaft on the vehicle body side, one end is fixed to the bogie side, and the other end is connected to the rotating shaft of the flow control valve. It has a connected link mechanism. When the vehicle body is at a predetermined height, the rotation axis of the flow control valve is set at a neutral angle, and the air supplied to the air springs 11 and 12 is shut off. If one of the air springs 11 and 12 is compressed and the vehicle body sinks due to uneven weight balance or the like, the rotating shaft of the flow control valve rotates and the compressed air from the original air reservoir 10 is compressed. , 12 to raise the vehicle body. As the vehicle body rises, the rotation axis of the flow control valve returns, so that when the vehicle body reaches a predetermined height, the flow control valve shuts off air supply.
[0020]
When the vehicle body rises above a predetermined height, the rotation axis of the flow control valve changes from the neutral position, exhausting the air from the air spring and lowering the vehicle body. Supply / exhaust valves 15, 16; 25, 26 are provided for controlling the inclination of the vehicle body. The control of the height of the vehicle body by the LV device and the inclination control of the vehicle body by the supply / exhaust valves 15, 16; 25, 26 are switched by operating the shutoff valves 17, 18, 27, 28 and the shutoff cocks 19, 20. . The left and right air springs 11 and 12 communicate with auxiliary air chambers 31 and 32, respectively, and the auxiliary air chambers 31 and 32 communicate with each other via a differential pressure valve 33 and a shutoff valve 34.
[0021]
The compressed air from the source air reservoir 10 is also supplied to a direct acting cylinder 36 via an air servo valve 35. Further, instead of the pneumatic direct acting cylinder 36 described above, it is also possible to perform the operation by a hydraulic power source device, a hydraulic servo valve and a hydraulic direct acting cylinder. A change in the stroke of the linear motion cylinder 36 is detected by a stroke detector 40. The change in height of the air springs 11 and 12 is detected by encoders 41 and 42, respectively.
[0022]
FIG. 4 shows a schematic electrical configuration for performing active attitude control as shown in FIGS. 1 and 2 using the compressed air piping system of FIG. The aforementioned servo valve 35 is controlled via a servo amplifier 45. Detected outputs from encoder units 51, 52, 53, and 54 for detecting the heights of four air spring devices for each vehicle body are input to a control device 50 that is activated when the control ON switch 49 is turned on. . Each of the encoder units 51 to 54 has the same internal configuration. The detection output from the stroke detector 40 of the linear cylinder 36 in FIG. 3 is input from the cylinder unit 55. When the vehicle enters a curved section, rotation (yaw) occurs before and after the vehicle body, which is detected by the rate gyro 56. The control device 50 monitors the rotational angular velocity ω1 of the vehicle body detected by the rate gyro 56, and determines that the vehicle has entered a curved section when the relationship with a predetermined threshold value K1 becomes ω1> K1. Further, since the curvature of the curved section can be obtained by using the detected values of the rotational angular velocity and the train speed, it is possible to determine the entry into the curved section from the obtained curvature. An accelerometer 57 for detecting centrifugal acceleration and an accelerometer 58 for detecting acceleration in the traveling direction are also provided. The output to the drive circuit 61 and the abnormality display lamp 62 is also derived from the control device 50. In the encoder unit 51, a matching circuit 65 for matching the output from the encoder 41 to the input condition of the control device 50 is provided. An output matching circuit 70 is inserted to match the output from the rate gyro 56 to the input condition of the control device 50.
[0023]
The inclining devices 71, 72, 73, 74 for which the control device 50 controls the inclining of the vehicle body have the same internal configuration and include drive circuits 75, 76, respectively. Each of the supply / exhaust valves 16 having a diameter is driven. The large-diameter supply / exhaust valve 15 enables quick control, and the small-diameter supply / exhaust valve 16 allows fine control. The output from the drive circuit 61 drives a shutoff valve base pressure 85 and a shutoff valve control pressure 86 provided for each of the air spring devices 81, 82, 83, 84, respectively. The output from the drive circuit 61 also drives the shutoff valve differential pressures 87 and 88, respectively.
[0024]
When the control ON switch 49 is OFF, the shutoff valves 17 and 27 in FIG. 3 are turned on, and the shutoff valves 18 and 28 are shut off. As a result, the vehicle height control by the LV devices 13 and 23 is performed. When the control ON switch 49 is turned ON and it is recognized that the vehicle has entered the curved section during the vehicle body tilt control, the air pressure between the left and right air springs 11 and 12 connected via the differential pressure valve 33 is adjusted. The shutoff valve 34 shuts off the circuit, and at the same time, the shutoff valves 17, 27 shut off the pneumatic circuits of the LV devices 13, 23, and the shutoff valves 18, 28 conduct. The closing cocks 19 and 29 are kept conductive except during maintenance and inspection. The vehicle body is provided with an accelerometer 57 for detecting centrifugal acceleration. When it is detected that the vehicle has entered the curved portion, the control device 50 reduces the excessive centrifugal acceleration detected by the accelerometer 57. Is calculated, and the air spring height H required to obtain the inclination angle θ is calculated.
[0025]
Using the calculated air spring height H as a set value, the supply / exhaust valves 15, 16; 25, 26 are controlled so that the set value is maintained, and compressed air is supplied / exhausted to the air springs 11, 12. You. The controller 50 compares the preset air spring height H with the outputs from the encoders 41 and 42 that detect the air spring height H, and when the air spring height is higher than a set value, the air supply is performed. If the signal is lower than the set value, an exhaust signal is output to the supply / exhaust valves 15, 16; 25, 26 to control the inclination angle θ of the vehicle body. If the inclination angle of the vehicle body cannot be controlled for some reason and the supply of air to the air spring continuously exceeds a predetermined upper limit value of the vehicle body rising, the forced exhaust valves 14 and 24 exhaust excess air. .
[0026]
Although the relative position of the pantograph with respect to the overhead line moves according to the inclination angle θ, the movement amount Lp can be easily calculated by the following first formula based on the geometrical shape and arrangement of the vehicle body. it can.
[0027]
Lp = (H1-H2) × Θ × cos θ (1)
Here, Θ is a value obtained by converting θ into a radian angle. In order to reduce the movement amount Lp, a linear motion cylinder 36 having one end fixed to the vehicle body and one end opposite to the bogie is used. The vehicle body 4 is moved in a direction perpendicular to the rails 6 and the overhead lines 8 and in a direction to reduce the amount of movement due to the inclination of the vehicle body 4. The centrifugal force acts outward in the radial direction of the track curvature, and the inclination of the vehicle body 4 for alleviating this is directed inward in the radial direction of the track curvature, so that the moving direction is outward in the radial direction of the track curvature. Assuming that the stroke amount of the linear motion cylinder 36 necessary for this movement is Lst, the allowable value of the movement amount of the pantograph with respect to the overhead line is Ld, and the following second formula is obtained.
[0028]
Lst = Lp-Ld (2)
However, Lst ≧ 0. Therefore, when the amount of inclination is determined, the amount of movement of the vehicle body for reducing the displacement of the pantograph 7 with respect to the overhead wire 8, that is, the stroke amount Lst of the linear motion cylinder 36 is determined, and the control device 50 compresses the linear motion cylinder 36. An exciting current is output to the air servo valve 35 for supplying air. Since the linear motion cylinder 36 is provided with a stroke detector 40 for detecting the stroke amount, servo control is performed using Lst and the detected value. In addition, as the direct acting cylinder 36, an actuator using fluid pressure other than air pressure such as hydraulic pressure or an electric actuator can be used.
[0029]
FIG. 5 shows a partial electrical configuration for vehicle body tilt control according to another embodiment of the present invention. The traveling speed of the vehicle detected by the vehicle speed detector 91 is input to the data processing device 90. The data processing device 90 calculates the moving distance of the vehicle by integrating the input speed value. The memory 92 previously stores data such as the position of the curved section on the route on which the vehicle travels and the amount of cant in the curved section.
[0030]
Vehicle speed detector 91 is generally realized by a sensor for counting the number of rotations of wheels, for example, a pulse generator provided on an axle. In the memory 92, data of a curved portion of the route is stored in advance in correspondence with the distance from the reference position. The distance X from the reference position is expressed by the following third equation.
[0031]
X = 2π · r · Σp / n (3)
Here, π is the pi, r is the radius of the wheel, Δp is the integrated value of the pulse generated from the pulse generator, and n is the number of output pulses per rotation of the wheel. By comparing the distance X obtained according to the third expression with the distance from the reference position stored in the memory 92 to the curved portion, it can be determined that the vehicle has entered the curved section when the two match. When it is determined that the vehicle has entered the curved section, the data processing device 90 calculates the inclination angle of the vehicle body and the moving amount of the vehicle body from the radius of curvature and the cant amount stored in the memory 92. The data is given to the control device 50 shown in FIG.
[0032]
【The invention's effect】
As described above, according to the present invention, while the railway vehicle inclines the vehicle body when passing through a curved track, the vehicle body is moved outward in the track curvature radius direction so that the current collector provided on the vehicle body does not deviate from the overhead line. Thus, the vehicle body can be sufficiently inclined. Thus, the excessive centrifugal acceleration acting on the passenger when passing through the curve at a high speed is reduced, and the riding comfort of the vehicle can be improved.
[0033]
In addition, since the movement to the outside in the direction of the radius of curvature of the track at the time of passing the curve is performed such that the virtual inclination center is near the height of the head of the seated passenger in the cross-sectional shape of the vehicle body, the movement amount can be easily calculated. By taking a large angle of inclination of the vehicle body, it is possible to improve the riding comfort when passing through a curve at a high speed.
[0034]
Further, according to the present invention, when a railway vehicle enters a curved part of a route, the vehicle body is tilted according to the detection results of the centrifugal acceleration and the curve passing speed to reduce the centrifugal acceleration. Movement of the vehicle body in the radial direction of the track curvature is performed according to the detection result of the change in height between the air spring devices, so that the current collector does not come off the overhead line even when the vehicle body is tilted to reduce centrifugal acceleration. The position of the vehicle body can be corrected.
[0035]
Further, according to the present invention, since the inclination of the vehicle body and the movement of the vehicle body in the radial direction of the track curvature associated with the inclination are performed in accordance with the information on the curvature and cant of the track stored in advance, it is appropriate according to the passing speed of the vehicle. Control becomes possible.
[0036]
Furthermore, according to the present invention, the vehicle body at the time of passing the curve is inclined by the air spring device, and the position of the vehicle body is moved outward in the radius of curvature direction by the direct-acting actuator, so that the vehicle passes the curve at a high speed. In addition, the centrifugal acceleration acting on the passenger can be sufficiently reduced, and the current collector at the upper part of the vehicle body can be corrected so as not to come off from the overhead line. Since it is not necessary to make the vehicle body a pendulum structure, it is possible to reduce excessive centrifugal acceleration with a lightweight and inexpensive device. Further, even if the inclination of the vehicle body is increased, the current collector does not come off from the overhead line, so that safe and highly reliable inclination control can be realized.
[0037]
Further, since the control means may calculate the amount of movement of the vehicle body by the actuator so that the virtual inclination center is near the height of the head of the seated passenger, it is possible to easily control the inclination angle and the movement of the vehicle body. it can.
[Brief description of the drawings]
FIG. 1 is a simplified front view showing a basic configuration according to an embodiment of the present invention.
2 is a simplified side view and plan view corresponding to the embodiment of FIG.
FIG. 3 is a pneumatic control system diagram for operating the embodiment of FIG. 1;
FIG. 4 is a block diagram showing a schematic electrical configuration for control of the embodiment of FIG. 1;
FIG. 5 is a block diagram showing an electrical configuration of a main part according to another embodiment of the present invention.
[Explanation of symbols]
1, 2 Air spring device 3 Bogie 4 Body 5 Wheel 6 Rail 7 Pantograph 8 Overhead wire 10 Primary air reservoir 11, 12 Air spring 13, 23 LV device 15, 16, 25, 26 Supply / exhaust valve 31, 32 Auxiliary air chamber 33 Differential pressure valve 35 Air servo valve 36 Direct acting cylinder 40 Stroke detector 41, 42 Encoder 49 Control ON switch 50 Controller 56 Rate gyro 57, 58 Accelerometer 60 Servo amplifier 90 Data processor 91 Vehicle speed detector 92 Memory

Claims (4)

各台車上で車体を支えるため車幅方向に間隔をあけて配置される一対の空気ばね装置に、曲線軌道通過時にはそれぞれ独立に圧縮空気を供給して、車体を傾斜させる曲線通過時に車体を傾斜可能な鉄道車両の車体傾斜制御方法において、
車体のヨー方向の回転角速度をレートジャイロで検出して曲線軌道通過時か否かを判断し、
曲線軌道通過時に、遠心加速度を加速度計で検出し、乗客にかかる超過遠心加速度を軽減するために必要な軌道曲率半径方向内方への車体の傾斜角度を算出し、
算出結果に基づいて、空気ばね装置に圧縮空気を供給して車体を傾斜させながら、
傾斜動作における回動中心である仮想傾斜中心が進行方向に垂直な車体の断面形状内で着席乗客の頭の高さ付近であるレール面上の高さH3=2250mmとなり、車体上部に設けられる集電装置が架線から外れないように、車体を軌道曲率半径方向外方へ移動させることを特徴とする曲線通過時に車体を傾斜可能な鉄道車両の車体傾斜制御方法。
Compressed air is supplied independently to a pair of air spring devices that are arranged at intervals in the vehicle width direction to support the vehicle body on each bogie, and the vehicle body is tilted at the time of passing a curved line that inclines the vehicle body when passing a curved track In a possible vehicle body inclination control method of a railway vehicle,
The yaw direction angular velocity of the vehicle body is detected by a rate gyro to determine whether or not the vehicle is passing through a curved orbit,
When passing through a curved track, the centrifugal acceleration is detected by an accelerometer, and the inclination angle of the vehicle body inward in the track curvature radius direction required to reduce the excessive centrifugal acceleration applied to the passenger is calculated,
Based on the calculation results, while supplying compressed air to the air spring device to tilt the vehicle body,
A virtual center of rotation, which is a center of rotation in the tilting operation, has a height H3 = 2250 mm on a rail surface near the height of the head of a seated passenger within a cross-sectional shape of the vehicle body perpendicular to the traveling direction, and is a collection provided at the upper part of the vehicle body. A vehicle body tilt control method for a railroad vehicle capable of tilting a vehicle body when passing a curve, wherein the vehicle body is moved outward in a track curvature radius direction so that the electric device does not come off the overhead line.
車体の軌道曲率半径方向外方への移動は、仮想傾斜中心が軌道面上で予め定める高さとなるように行うことを特徴とする請求項1記載の曲線通過時に車体を傾斜可能な鉄道車両の車体傾斜制御方法。2. The railway vehicle according to claim 1, wherein the vehicle body is moved outward in the radius of curvature of the track curvature so that the virtual tilt center has a predetermined height on the track surface. Body tilt control method. 車体の傾斜のための空気ばね装置への圧縮空気の供給は、車体の曲線通過速度および遠心加速度それぞれの検出結果に従って行い、
車体の軌道曲率半径方向外方への移動は、空気ばね装置間の高さの変化の検出結果に従って行うことを特徴とする請求項1または2記載の曲線通過時に車体を傾斜可能な鉄道車両の車体傾斜制御方法。
The supply of compressed air to the air spring device for leaning the vehicle body is performed according to the detection results of the vehicle body's curve passing speed and centrifugal acceleration,
3. The railway vehicle according to claim 1 or 2, wherein the outward movement of the vehicle body in the track curvature radius direction is performed according to a detection result of a change in height between the air spring devices. Body tilt control method.
各台車上で車体を支えるため、車幅方向に間隔をあけて配置される一対の空気ばね装置と、
空気ばね装置にそれぞれ独立に圧縮空気を供給するための空気供給手段と、
空気ばね装置の高さ方向の変化を検出する高さ検出手段と、
一端を台車側に、他端を車体側にそれぞれ連結し、車体を台車上で水平、かつ軌道と直交する両方向に対して移動可能な直動型のアクチュエータと、
アクチュエータの移動時のストロークを検出するストローク検出手段と、
車体のヨー方向の回転角速度を検出するレートジャイロと、
車体の遠心加速度を検出する加速度検出手段と、
レートジャイロおよび加速度検出手段からの出力に応答し、車両の曲線通過時に乗客にかかる超過遠心加速度を軽減するような角度に車体を傾斜させるため、高さ検出手段からの出力によってフィードバック制御しながら空気供給手段を介して空気ばね装置に圧縮空気を供給して車体を傾斜させ、傾斜動作における回動中心である仮想傾斜中心が進行方向に垂直な車体の断面形状内で着席乗客の頭の高さ付近であるレール面上の高さH3=2250mmとなり、車体上部に設けられる集電装置が架線から外れないように、傾斜角に対して予め定める移動量だけ、ストローク検出手段からの出力によってフィードバック制御しながらアクチュエータを作動させて車体を移動させる制御手段とを含むことを特徴とする曲線通過時に車体を傾斜可能な鉄道車両の車体傾斜制御装置。
A pair of air spring devices arranged at intervals in the vehicle width direction to support the vehicle body on each bogie;
Air supply means for independently supplying compressed air to the air spring device,
Height detecting means for detecting a change in the height direction of the air spring device;
A direct-acting actuator, one end of which is connected to the bogie and the other end of which is connected to the vehicle body, and the vehicle body is movable on the bogie horizontally and in both directions orthogonal to the track;
Stroke detection means for detecting a stroke when the actuator moves,
A rate gyro for detecting the yaw rotation angular velocity of the vehicle body,
Acceleration detection means for detecting centrifugal acceleration of the vehicle body;
In response to the output from the rate gyro and the acceleration detecting means, the vehicle body is tilted to an angle that reduces the excessive centrifugal acceleration applied to the passenger when the vehicle passes through a curve, so that the air is controlled by feedback from the output from the height detecting means. The compressed air is supplied to the air spring device through the supply means to incline the vehicle body, and the height of the head of the seated passenger is within the cross-sectional shape of the vehicle body in which the virtual inclination center which is the rotation center in the inclination operation is perpendicular to the traveling direction. The height H3 on the rail surface in the vicinity is 2250 mm, and the feedback control is performed by the output from the stroke detecting means by a predetermined moving amount with respect to the inclination angle so that the current collector provided on the upper part of the vehicle body does not deviate from the overhead line. Control means for moving the vehicle body by operating the actuator while moving the vehicle body. Body tilt control device for a railway vehicle.
JP20121095A 1995-08-07 1995-08-07 Vehicle body tilting method and apparatus for railway vehicle capable of tilting vehicle body when passing through a curve Expired - Lifetime JP3546550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20121095A JP3546550B2 (en) 1995-08-07 1995-08-07 Vehicle body tilting method and apparatus for railway vehicle capable of tilting vehicle body when passing through a curve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20121095A JP3546550B2 (en) 1995-08-07 1995-08-07 Vehicle body tilting method and apparatus for railway vehicle capable of tilting vehicle body when passing through a curve

Publications (2)

Publication Number Publication Date
JPH0948345A JPH0948345A (en) 1997-02-18
JP3546550B2 true JP3546550B2 (en) 2004-07-28

Family

ID=16437183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20121095A Expired - Lifetime JP3546550B2 (en) 1995-08-07 1995-08-07 Vehicle body tilting method and apparatus for railway vehicle capable of tilting vehicle body when passing through a curve

Country Status (1)

Country Link
JP (1) JP3546550B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006192942A (en) * 2005-01-11 2006-07-27 Toshiba Corp Vehicle body inclination system using fluid pressure spring
JP4986510B2 (en) * 2006-06-14 2012-07-25 東海旅客鉄道株式会社 Car body posture return device in railway car body tilt control device
JP5182239B2 (en) * 2009-07-08 2013-04-17 新日鐵住金株式会社 Railway vehicle body tilt control device
KR101221038B1 (en) * 2010-08-30 2013-01-10 김효상 A tilting device of train
KR101221039B1 (en) * 2012-07-31 2013-01-10 김효상 A controll system for tilting train

Also Published As

Publication number Publication date
JPH0948345A (en) 1997-02-18

Similar Documents

Publication Publication Date Title
US9643622B2 (en) Track-guided vehicle, and car body tilt control method therefor
JP4801637B2 (en) Vehicle steering control method and apparatus
JP2002104183A (en) Rolling stock
KR20130045930A (en) System and method for estimating acceleration of vibration component in railcar
JP3440283B2 (en) Vehicle inclination control method and inclination control device
JP4292791B2 (en) Fail-safe method and apparatus for vehicle body tilt control in railway vehicle, railway vehicle
JP3546550B2 (en) Vehicle body tilting method and apparatus for railway vehicle capable of tilting vehicle body when passing through a curve
JP2006327391A (en) Body tilt control system of railroad vehicle
JP4698290B2 (en) Tilt control system for railway vehicles
JP2002316641A (en) Vehicle body inclination control device for rolling stock
JP2004535330A (en) Method and apparatus for actively radially controlling a wheel pair or set of wheels of a vehicle
JP4160741B2 (en) Bogie steered rail vehicle
NO322955B1 (en) Procedure for driving coordination of rail-guided vehicles with individual wheel drive
JP3529366B2 (en) Railcar body tilt control system
JPH10315965A (en) Vibration controller for railroad rolling stock
JPH08205310A (en) Attitude controller for pantagraph appliance
JPH08154303A (en) Attitude controller for pantograph
JP3422341B2 (en) Vehicle body tilt control method for railway vehicles
CN111225846B (en) Running gear with steering actuator, associated rail vehicle and control method
JP2879722B2 (en) Method and apparatus for leaning vehicle body of railway vehicle
JP2939229B1 (en) Vehicle body tilt control method for railway vehicles
JP3176247B2 (en) Independent wheel powered bogie for railway vehicles
JPH10315966A (en) Carbody attitude controller for railroad rolling stock and carbody attitude control method
JP3529539B2 (en) Body tilt control device
KR910008032B1 (en) An angle of inclination control apparatus for railroad train

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040116

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040405

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 10

EXPY Cancellation because of completion of term