JP3546210B2 - Method for recovering acetic acid from wastewater containing acetic acid - Google Patents

Method for recovering acetic acid from wastewater containing acetic acid Download PDF

Info

Publication number
JP3546210B2
JP3546210B2 JP28735395A JP28735395A JP3546210B2 JP 3546210 B2 JP3546210 B2 JP 3546210B2 JP 28735395 A JP28735395 A JP 28735395A JP 28735395 A JP28735395 A JP 28735395A JP 3546210 B2 JP3546210 B2 JP 3546210B2
Authority
JP
Japan
Prior art keywords
acetic acid
recovering
wastewater
extractant
extraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28735395A
Other languages
Japanese (ja)
Other versions
JPH09122663A (en
Inventor
実 中島
雅彦 前崎
英雄 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Fibers Ltd
Original Assignee
Teijin Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Ltd filed Critical Teijin Fibers Ltd
Priority to JP28735395A priority Critical patent/JP3546210B2/en
Publication of JPH09122663A publication Critical patent/JPH09122663A/en
Application granted granted Critical
Publication of JP3546210B2 publication Critical patent/JP3546210B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は酢酸含有排水から酢酸を回収する方法に関する。更に詳しくは、本発明は酢酸含有排水を貴金属族触媒存在下で加熱分解処理することにより、酢酸以外のCOD成分を選択的に分解し、残存する酢酸を効率良く回収する方法に関するものである。
【0002】
【従来技術とその解決すべき課題】
一般に酢酸含有排水の処理方法には活性汚泥法、直接燃焼法が広く知られている。しかし、これらの方法はいずれも他のCOD成分と共に酢酸も処分されてしまう方法であり、有効資源のリサイクルの観点からすれば、決して好ましい方法ではない。また、余剰汚泥あるいは炭酸ガスと言った地球環境に悪影響を及ぼす物質を発生するため、地球環境保全上も好ましくない。
【0003】
最近、実用化が進められている処理方法として湿式触媒酸化法がある。これは排水中の有機物、無機物を酸化剤の存在下に触媒的に完全酸化して分解する方法である。酢酸含有排水についても検討がなされており、これまでに特開平3−224692号、特開平7−232182号が提案されているが、これらの方法ではいずれも酢酸は大部分が炭酸ガスに分解されるため、活性汚泥法や直接燃焼法と同様に、酢酸を回収することはできない。また、特開平7−232178号には酸素含有ガス非存在下に、触媒を用いて酢酸含有排水を処理する方法が提案されているが、同様に酢酸を回収することはできない。すなわち、これまでに実用化あるいは提案されている酢酸含有排水の処理法は排水の浄化を目的としたものであり、酢酸回収を目的としたものはほとんどない。
【0004】
酢酸回収を行う例として報告されている一つの例は蒸留回収法である。蒸留回収方法としてはオランダ国特許第73−16510号、ドイツ連邦特許第3408239 号、ソビエト連邦特許第1268564 号、特開平6−65139 号が提案されているが、酢酸濃度が数%以下の低濃度の場合、蒸留操作のみで効率的に排水から酢酸を回収するのは困難である。
【0005】
また、エステル化による回収方法としてハンガリー国特許第40969 号、特開昭59−29633号が提案されている。しかし、これらの方法はエステル化と加水分解の2工程の反応を必要とし、それに伴ってアルコールの除去、水の除去などの分離操作も必要となるため、プロセス全体が長くなって設備コストが増大する。
【0006】
その他の方法として有機溶剤による抽出法がある。酢酸抽出方法として、ホスファンオキシド(特開昭63−44539号)、アミン及び燐酸エステル(特開昭55−154935 号)、燐酸エステル(特開昭57−56002号)などの有機溶媒を抽剤とする方法が提案されている。しかし、酢酸含有排水には一般に酢酸以外に含有される不純物が多く、これらの中から酢酸のみを選択的に抽出するのは困難である。そのため、酢酸抽出後に抽剤層から酢酸を精製する操作が必要となる。
【0007】
また、蒸留回収、エステル化回収の場合においても同様に、排水が酢酸以外の不純物を含む場合には、酢酸の精製操作が必要となり、このことが酢酸含有排水からの酢酸回収を更に困難なものとしている。従って、例えばテレフタル酸ジメチル製造プロセスの場合、排水中には酢酸以外にギ酸、ホルムアルデヒド、メタノール等が含まれており、しかも酢酸濃度も1%〜4%と低いため、従来技術では効率的な酢酸回収は困難で、活性汚泥法、直接燃焼法等により分解処理されているのが実状である。
【0008】
【課題を解決するための手段】
そこで、本発明者らは酢酸含有排水を処理する方法について鋭意検討を重ねた結果、酢酸含有排水を貴金属触媒存在下で加熱分解処理すると、酢酸以外の有機物をほとんど含まない酢酸含有排水が容易に得られ、酢酸回収の前処理として極めて有効であることを見い出し、本発明に至ったものである。
【0009】
本発明は主に化学工場、製紙工場の酸化反応プロセスから排出される排水に適用できる。具体的にはアクリル酸、メタクリル酸を始めとする脂肪族カルボン酸、テレフタル酸、イソフタル酸を始めとする芳香族カルボン酸、これらカルボン酸のエステル製造プロセス等から排出される排水に対して適用できる。排水組成で規定すると、まず酢酸を含有し、それ以外にアルデヒド類、ギ酸、アルコール類のうちの少なくとも1種類を含有する排水となる。アルデヒド類は例えば、ホルムアルデヒド及びアセトアルデヒドが挙げられ、アルコール類はメタノール、エタノールが挙げられる。成分濃度は特に限定されるものではないが、酢酸濃度は排水に対しては1%以上、全有機物に対しては30%以上が望ましい。
【0010】
触媒は通常、金属担持型のものが用いられ、具体的にはルテニウム、パラジウム、ロジウム、及び白金よりなる群から選ばれる少なくとも1種の金属を無機酸化物あるいは活性炭に担持した固体触媒が用いられる。貴金属の担持量は触媒重量全体に対して1〜5重量%が望ましい。
【0011】
使用可能な担体は反応雰囲気によって選択する必要がある。酸素含有ガス存在下で加熱分解処理を行う場合は、耐酸化性のある担体を使用しなければならない。したがって、一般的にはチタニア、ジルコニアが使用され、活性炭の使用はかなり制限される。一方、酸素含有ガスが存在しない場合は活性炭も使用できる。また、酢酸含有排水は一般に酸性を示すため、耐酸性のない担体、例えばアルミナの使用は控えた方がよい。
【0012】
触媒の形状としてはペレット状、球状、ハニカム状、リング状などいずれの形態も使用できる。
【0013】
反応温度は、120〜240℃の範囲内とすることが必要であり、120℃未満の低温ではギ酸、アルデヒド類、アルコール類の分解は不十分となり、処理水中に未分解の成分が残留し、高純度酢酸の効率的な回収が困難となる。また、240℃を越える高温では酢酸の分解反応が促進されて酢酸回収率が低下する。
【0014】
反応圧力は15〜36kg cm Gの範囲とすることが必要である。
【0015】
酸素含有ガスは空気、純酸素、酸素富化空気のいずれを用いても問題はない。
【0016】
本発明は回分式、流通式のいずれにおいても実施することができる。
【0017】
本発明は酸素含有ガス存在下、不存在下のいずれの条件でも行うことが出来る。
【0018】
ギ酸、アルデヒド類、アルコール類は触媒存在下において加熱することにより、酸化、非酸化、いずれの反応でも分解されるが、後者の場合はコンプレッサーが不要となり設備コストを削減することが可能である。また酸素含有ガスを排水中に溶解させる必要がないため、前者に比べると反応圧力を低く設定できる。しかし、酸化反応に比べると分解速度が全体的に遅く、より高い反応温度を必要とする。テレフタル酸ジメチル製造プロセスの場合、排水中のメタノールは蒸留分離が容易であり、リサイクル使用も可能なので、通常メタノールを大部分除去した後の排水が処理工程に供される。但し、酸素不存在下で加熱分解を行う場合には、メタノールの分解速度が遅く、しかもホルムアルデヒドからのメタノールの生成も期待できるため、分解処理後にメタノールを蒸留回収する方が好ましい。
【0019】
酢酸含有排水中の不純物を上記方法により加熱分解処理したのち、続いて酢酸回収が行われる。回収操作には抽出及び/又は蒸留が適用できる。抽出、蒸留をそれぞれ単独で行っても構わないし、2つの操作を組み合わせて行ってもよく、酢酸濃度に合わせて回収操作を選択するとよい。
【0020】
抽出操作では、抽剤、抽出装置の選択を行う必要がある。酢酸抽出を行う抽剤は酢酸に対して分配係数が大きな溶剤が使用される。具体的にはメチルエチルケトン、ジエチルケトン、メチルプロピルケトン、メチルイソプロピルケトン、メチルイソブチルケトン及びメチルブチルケトンなどのケトン類、ブタノール、イソブタノール、tert−アミルアルコール及び3−ペンタノールなどのアルコール類、ギ酸ブチル、ギ酸イソプロピル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸sec −ブチル、酢酸tert−ブチル、酢酸ビニル、プロピオン酸メチル、プロピオン酸エチル及びブタン酸メチルなどのエステル類などが例示される。上記溶剤は少なくとも1種類以上が使用される。
【0021】
酢酸抽出後、酢酸と溶剤との分離を効率よく行うためには、酢酸と溶剤の沸点差が少なくとも20℃の溶剤を使用するのが好ましい。
【0022】
抽出塔としては、通常用いられる形式、例えば、ミキサーセトラ型抽出塔、多孔板型、充填塔型、バッフル塔型、振動多孔板型、撹拌混合型、脈動充填型などが使用できる。
【0023】
抽剤層は蒸留によって後処理するのが有利である。酢酸と抽剤との沸点差が十分あれば、通常の蒸留操作で容易に高純度酢酸を回収できる。
【0024】
一方、排水中の酢酸濃度が充分高濃度の場合は、蒸留も効率的な方法である。
【0025】
次に図面を参照して、本発明の実施様態を説明する。
図1は本発明における排水処理を行う装置の概略の例である。
【0026】
まず、テレフタル酸ジメチル等の製造プラントからライン1により送液された排水は、排水供給ポンプ2により熱交換器3に送られて予熱されたのち、反応器4に供給される。ライン5から供給される酸素含有ガスはコンプレッサー6で昇圧されたのち、排水と合流して反応器4へ供給される。
【0027】
反応器4で処理された排水はライン7より取り出され、熱交換器3で冷却されたのち、気液分離器8で気液分離された後、ライン9を経て抽出塔11に導かれる。一方、抽剤は溶剤供給ポンプ12によりライン14を経て抽出塔11に導かれる。抽出塔内部で両者が向流接触して、酢酸は抽剤層に抽出される。
【0028】
抽出塔11上部から抜き出された抽出後の抽剤層は、熱交換器10に送られて予熱されたのち、抽剤層供給ポンプ15によりライン16を経て脱水塔17に送られる。また、抽出塔11下部から抜き出された水相は水層供給ポンプ18によりライン19を経て溶剤回収塔20に送られる。
【0029】
抽出後の抽剤層は脱水塔17にて酢酸成分と水を含む抽剤成分に蒸留分離される。酢酸成分は塔底より抜き出され、酢酸成分供給ポンプ21によりライン22を経て酢酸塔23に送られる。ここで酢酸は塔底から抜き出されて回収酢酸タンク25へ回収される。一方、抽剤成分は塔頂から抜き出され、熱交換器26で冷却されたのち、液液分離器13から抜き出された抽剤成分と共に抽出塔11に送られる。
【0030】
酢酸抽出塔11で抽出後の水層は抽剤回収塔20で水を含む抽剤成分と処理水に分離される。処理水は抽剤回収塔塔底から抜き出され、ポンプ27によってパージされる。
【0031】
抽剤回収塔上部、抽剤分離塔上部から抜き出される水を含む抽剤成分はそれぞれ熱交換器28、29で冷却されたのち、合わせて液液分離器13に導かれて回収抽剤と水成分に分離される。水成分は抽剤回収塔20へ送られ、処理水とともにパージされる。また、回収抽剤はライン14を経て酢酸抽出塔11へ循環されて再利用される。
【0032】
【実施例】
次に実施例を掲げて本発明を具体的に説明する。
【0033】
[実施例1]
撹拌機を備えた内容積500mLのチタン・ライニング製オートクレーブに、外径約1mmφのチタニア球上に2重量%のルテニウム(Ru)を担持させた触媒、及びギ酸、ホルムアルデヒド、酢酸を含有するTOC47,840ppmの排水100gを仕込み、150℃に昇温した。この時、オートクレーブ内圧は3kg/cmGとなった。続いて、オートクレーブ内圧が15kg/cmGに到達するまで、空気を導入し、撹拌速度1000rpmで撹拌しながら150℃で1時間、反応を行った。反応終了後、反応液を室温まで冷却したのち、処理水を取り出し、ガスクロマトグラフィー、等速電気泳動法により排水中の各成分を定量分析した。結果は表1に記載した通りであった。
【0034】
[実施例2]
2重量%ロジウム−チタニア触媒を用いた以外は実験例1と同じ方法で工業排水の湿式分解テストを行った。結果は表1に記載した通りであった。
【0035】
【表1】

Figure 0003546210
【0036】
[実施例3]
3B×1.1mSUS316L製の管型流通式反応器に、外径約3mmφのチタニア球上に2重量%のルテニウム(Ru)を担持させた触媒5kgを充填し、190℃まで昇温されたギ酸、ホルムアルデヒド、酢酸、メタノールを含有するTOC47,840ppmの排水を重量空間速度(以後WHSVと略称する):2hr−1で反応器に導入した。反応条件は温度:178℃、圧力:25kg/cmGとし、4Nリットル/minの空気を反応器に導入した。処理水は連続的に取り出し、ガスクロマトグラフィー、等速電気泳動法により排水中の各成分について定量分析を行った。結果は表2に記載した通りであった。
【0037】
[実施例4〜5]
反応温度を149、158℃、WHSVを1hr−1に変えた以外は、実施例3と同じ方法で湿式分解テストを行った。結果は表2に記載した通りであった。
【0038】
【表2】
Figure 0003546210
【0039】
[実施例6]
空気を導入しなかった以外は実験例3とほぼ同じ方法で湿式分解テストを行った。結果は表3に記載した通りであった。
【0040】
【表3】
Figure 0003546210
【0041】
[実施例7]
抽出装置はプレートスタック長10フィートの住友重機製カールカラムを用いて、実施例3で作られた処理水からの酢酸回収を行った。抽剤は酢酸エチルを用い、酢酸含有排水に対して抽剤比1.5相当の量を使用した。ストロークは25mm一定となるようにカラム内の多孔板を上下運動させることにより、溶剤と処理水を通過速度30m/m・Hで向流接触させて抽出を行った。抽剤層はカラム上部、水層はカラム下部から取り出し、ガスクロマトグラフィーにより抽剤相及び水層中の各成分を定量分析して分配組成を求めた。抽出による酢酸回収率は97%であった。結果は表4に示した通りであった。
【0042】
【表4】
Figure 0003546210
【0043】
【発明の効果】
以上述べた本発明の方法によれば、酢酸含有排水を貴金属担持触媒で加熱処理することによって、酢酸以外の有機物をほとんど含まない酢酸含有排水が容易に得られ、酢酸含有排水からの酢酸回収が容易に行えるところとなった。
【図面の簡単な説明】
【図1】第1図は本発明を実施するためのプロセス例の概略図である。
【符号の説明】
1、5、7、9、14、16、19、22は配管、
2、12、15、18、21、24、27、30、31はポンプ、
3、10、26、28、29は熱交換器、
4は反応器、
6はコンプレッサー、
8、13は分離器、
11は抽出塔、
17は脱水塔、
20は抽剤回収塔、
23は酢酸塔および
25は回収酢酸タンクである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for recovering acetic acid from acetic acid-containing wastewater. More specifically, the present invention relates to a method for selectively decomposing COD components other than acetic acid by subjecting acetic acid-containing waste water to thermal decomposition treatment in the presence of a noble metal group catalyst, and efficiently recovering remaining acetic acid.
[0002]
[Prior art and problems to be solved]
Generally, an activated sludge method and a direct combustion method are widely known as treatment methods for acetic acid-containing wastewater. However, all of these methods dispose acetic acid together with other COD components, which is not a preferable method from the viewpoint of recycling effective resources. In addition, since surplus sludge or carbon dioxide gas is generated, which is a substance that adversely affects the global environment, it is not preferable in terms of global environment conservation.
[0003]
Recently, there is a wet catalytic oxidation method as a treatment method which is being put to practical use. This is a method in which organic and inorganic substances in wastewater are catalytically completely oxidized and decomposed in the presence of an oxidizing agent. Studies have been made on acetic acid-containing wastewater, and Japanese Patent Application Laid-Open Nos. 3-224692 and 7-232182 have been proposed. However, in these methods, acetic acid is mostly decomposed into carbon dioxide gas. Therefore, acetic acid cannot be recovered as in the case of the activated sludge method or the direct combustion method. Japanese Patent Application Laid-Open No. Hei 7-232178 proposes a method for treating acetic acid-containing wastewater using a catalyst in the absence of an oxygen-containing gas. However, acetic acid cannot be recovered. That is, the methods of treating or discharging acetic acid-containing wastewater that have been put to practical use or proposed so far are for the purpose of purifying the wastewater, and there are few methods for recovering acetic acid.
[0004]
One example reported as performing acetic acid recovery is the distillation recovery method. As a distillation recovery method, Dutch Patent No. 73-16510, German Patent No. 3408239, Soviet Patent No. 1268564, and Japanese Patent Application Laid-Open No. 6-65139 have been proposed. In this case, it is difficult to efficiently recover acetic acid from the wastewater only by the distillation operation.
[0005]
Further, Hungarian Patent No. 40969 and JP-A-59-29633 have been proposed as recovery methods by esterification. However, these methods require a two-step reaction of esterification and hydrolysis, which also requires a separation operation such as removal of alcohol and water, thereby lengthening the entire process and increasing equipment costs. I do.
[0006]
Another method is an extraction method using an organic solvent. As an acetic acid extraction method, an organic solvent such as phosphane oxide (JP-A-63-44539), amine and phosphate ester (JP-A-55-154935), and phosphate ester (JP-A-57-56002) are used as an extractant. Has been proposed. However, acetic acid-containing wastewater generally contains many impurities other than acetic acid, and it is difficult to selectively extract only acetic acid from these impurities. Therefore, an operation of purifying acetic acid from the extractant layer after acetic acid extraction is required.
[0007]
Similarly, in the case of distillation recovery and esterification recovery, when the wastewater contains impurities other than acetic acid, a purification operation of acetic acid is required, which makes it more difficult to recover acetic acid from the acetic acid-containing wastewater. And Therefore, for example, in the case of a dimethyl terephthalate production process, wastewater contains formic acid, formaldehyde, methanol, and the like in addition to acetic acid, and the acetic acid concentration is as low as 1% to 4%. Recovery is difficult, and the fact is that it is decomposed by the activated sludge method, the direct combustion method, or the like.
[0008]
[Means for Solving the Problems]
Therefore, the present inventors have conducted intensive studies on a method for treating acetic acid-containing wastewater, and as a result, when the acetic acid-containing wastewater is thermally decomposed in the presence of a noble metal catalyst, acetic acid-containing wastewater containing almost no organic matter other than acetic acid can be easily produced. The present invention has been found to be extremely effective as a pretreatment for acetic acid recovery, leading to the present invention.
[0009]
INDUSTRIAL APPLICABILITY The present invention is mainly applicable to wastewater discharged from an oxidation reaction process in a chemical mill or a paper mill. Specifically, it can be applied to an aliphatic carboxylic acid such as acrylic acid and methacrylic acid, an aromatic carboxylic acid such as terephthalic acid and isophthalic acid, and a wastewater discharged from an ester production process of these carboxylic acids. . According to the composition of the wastewater, the wastewater first contains acetic acid and at least one of aldehydes, formic acid, and alcohols. Aldehydes include, for example, formaldehyde and acetaldehyde, and alcohols include methanol and ethanol. The component concentration is not particularly limited, but the acetic acid concentration is desirably 1% or more for wastewater and 30% or more for all organic substances.
[0010]
As the catalyst, a metal-supporting catalyst is usually used. Specifically, a solid catalyst in which at least one metal selected from the group consisting of ruthenium, palladium, rhodium, and platinum is supported on an inorganic oxide or activated carbon is used. . The loading amount of the noble metal is desirably 1 to 5% by weight based on the entire catalyst weight.
[0011]
It is necessary to select a usable carrier depending on the reaction atmosphere. When performing the thermal decomposition treatment in the presence of an oxygen-containing gas, an oxidation-resistant carrier must be used. Therefore, generally, titania and zirconia are used, and the use of activated carbon is considerably limited. On the other hand, when no oxygen-containing gas is present, activated carbon can also be used. Since acetic acid-containing wastewater generally shows acidity, it is better to refrain from using a carrier having no acid resistance, for example, alumina.
[0012]
As the shape of the catalyst, any form such as a pellet, a sphere, a honeycomb, and a ring can be used.
[0013]
The reaction temperature is required to be in the range of 120 to 240 ° C. At a low temperature of less than 120 ° C , formic acid, aldehydes, and alcohols are insufficiently decomposed, and undecomposed components remain in the treated water, Efficient recovery of high-purity acetic acid becomes difficult. At a high temperature exceeding 240 ° C., the decomposition reaction of acetic acid is accelerated, and the acetic acid recovery rate decreases.
[0014]
The reaction pressure needs to be in the range of 15 to 36 kg / cm 2 G.
[0015]
It does not matter whether the oxygen-containing gas is air, pure oxygen, or oxygen-enriched air.
[0016]
The present invention can be carried out in any of a batch type and a flow type.
[0017]
The present invention can be carried out under any conditions in the presence or absence of an oxygen-containing gas.
[0018]
Formic acid, aldehydes, and alcohols are decomposed by heating in the presence of a catalyst, regardless of whether they are oxidized or non-oxidized. However, in the latter case, a compressor is not required, and equipment costs can be reduced. Further, since it is not necessary to dissolve the oxygen-containing gas in the wastewater, the reaction pressure can be set lower than the former. However, the decomposition rate is generally slower than the oxidation reaction, and requires a higher reaction temperature. In the case of the dimethyl terephthalate production process, methanol in the wastewater can be easily separated by distillation and can be recycled, so that the wastewater from which most of the methanol has been removed is usually subjected to a treatment step. However, when heat decomposition is carried out in the absence of oxygen, the decomposition rate of methanol is slow, and the production of methanol from formaldehyde can be expected. Therefore, it is preferable to recover methanol by distillation after the decomposition treatment.
[0019]
After subjecting the impurities in the acetic acid-containing wastewater to thermal decomposition treatment by the above method, acetic acid is subsequently recovered. Extraction and / or distillation can be applied to the recovery operation. Extraction and distillation may be performed independently, or two operations may be combined, and a recovery operation may be selected according to the acetic acid concentration.
[0020]
In the extraction operation, it is necessary to select an extractant and an extraction device. As an extractant for acetic acid extraction, a solvent having a large distribution coefficient with respect to acetic acid is used. Specifically, ketones such as methyl ethyl ketone, diethyl ketone, methyl propyl ketone, methyl isopropyl ketone, methyl isobutyl ketone and methyl butyl ketone, alcohols such as butanol, isobutanol, tert-amyl alcohol and 3-pentanol, butyl formate And esters such as isopropyl formate, methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, sec-butyl acetate, tert-butyl acetate, vinyl acetate, methyl propionate, ethyl propionate and methyl butanoate. Is done. At least one kind of the solvent is used.
[0021]
In order to efficiently separate acetic acid and the solvent after the acetic acid extraction, it is preferable to use a solvent having a boiling point difference of at least 20 ° C. between the acetic acid and the solvent.
[0022]
As the extraction column, a commonly used type, for example, a mixer-settler type extraction column, a perforated plate type, a packed tower type, a baffle tower type, a vibrating perforated plate type, a stirring and mixing type, a pulsating packed type, and the like can be used.
[0023]
The extractant layer is advantageously worked up by distillation. If there is a sufficient difference in boiling point between acetic acid and the extractant, high-purity acetic acid can be easily recovered by a normal distillation operation.
[0024]
On the other hand, if the concentration of acetic acid in the wastewater is sufficiently high, distillation is also an efficient method.
[0025]
Next, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic example of an apparatus for performing wastewater treatment according to the present invention.
[0026]
First, wastewater sent from a manufacturing plant such as dimethyl terephthalate through a line 1 is sent to a heat exchanger 3 by a wastewater supply pump 2 and preheated, and then supplied to a reactor 4. After the oxygen-containing gas supplied from the line 5 is pressurized by the compressor 6, it is combined with the wastewater and supplied to the reactor 4.
[0027]
The wastewater treated in the reactor 4 is taken out from the line 7, cooled in the heat exchanger 3, gas-liquid separated in the gas-liquid separator 8, and then led to the extraction column 11 through the line 9. On the other hand, the extractant is guided to the extraction column 11 via the line 14 by the solvent supply pump 12. The two are brought into countercurrent contact inside the extraction tower, and acetic acid is extracted into the extractant layer.
[0028]
The extracted extractant layer extracted from the upper part of the extraction tower 11 is sent to the heat exchanger 10 and preheated, and then sent to the dehydration tower 17 via the line 16 by the extractant layer supply pump 15. The aqueous phase extracted from the lower part of the extraction column 11 is sent to a solvent recovery column 20 via a line 19 by an aqueous layer supply pump 18.
[0029]
The extractant layer after extraction is distilled and separated in the dehydration tower 17 into an extractant component containing an acetic acid component and water. The acetic acid component is withdrawn from the bottom of the tower and sent to the acetic acid tower 23 via the line 22 by the acetic acid component supply pump 21. Here, the acetic acid is withdrawn from the bottom of the tower and collected in the collected acetic acid tank 25. On the other hand, the extractant component is extracted from the top of the tower, cooled in the heat exchanger 26, and then sent to the extraction column 11 together with the extractant component extracted from the liquid-liquid separator 13.
[0030]
The aqueous layer extracted in the acetic acid extraction column 11 is separated in the extractant recovery column 20 into an extractant component containing water and treated water. The treated water is withdrawn from the bottom of the extractant recovery tower and purged by the pump 27.
[0031]
The extractant components including water extracted from the upper part of the extractant recovery tower and the upper part of the extractant separation tower are cooled by the heat exchangers 28 and 29, respectively, and then collectively led to the liquid-liquid separator 13 to be collected and extracted. Separated into water components. The water component is sent to the extractant collection tower 20, and is purged together with the treated water. Further, the recovered extractant is circulated to the acetic acid extraction column 11 via the line 14 and reused.
[0032]
【Example】
Next, the present invention will be described specifically with reference to examples.
[0033]
[Example 1]
TOC47 containing a catalyst in which 2% by weight of ruthenium (Ru) was supported on titania spheres having an outer diameter of about 1 mm in an autoclave made of titanium lining having an inner volume of 500 mL and equipped with a stirrer, and TOC47 containing formic acid, formaldehyde, and acetic acid. 100 g of 840 ppm wastewater was charged and heated to 150 ° C. At this time, the internal pressure of the autoclave was 3 kg / cm 2 G. Subsequently, the reaction was carried out at 150 ° C. for 1 hour while introducing air and stirring at a stirring speed of 1000 rpm until the internal pressure of the autoclave reached 15 kg / cm 2 G. After the reaction was completed, the reaction solution was cooled to room temperature, the treated water was taken out, and each component in the waste water was quantitatively analyzed by gas chromatography and isotachophoresis. The results were as described in Table 1.
[0034]
[Example 2]
A wet cracking test of industrial wastewater was performed in the same manner as in Experimental Example 1 except that a 2% by weight rhodium-titania catalyst was used. The results were as described in Table 1.
[0035]
[Table 1]
Figure 0003546210
[0036]
[Example 3]
A 3B × 1.1 m SUS316L tubular flow reactor was charged with 5 kg of a catalyst having 2 wt% ruthenium (Ru) supported on titania spheres having an outer diameter of about 3 mmφ, and the temperature was raised to 190 ° C. 47,840 ppm of TOC containing water, formaldehyde, acetic acid and methanol were introduced into the reactor at a weight hourly space velocity (hereinafter abbreviated as WHSV): 2 hr -1 . The reaction conditions were as follows: temperature: 178 ° C., pressure: 25 kg / cm 2 G, and 4 N l / min of air were introduced into the reactor. The treated water was continuously taken out, and each component in the wastewater was quantitatively analyzed by gas chromatography and isotachophoresis. The results were as described in Table 2.
[0037]
[Examples 4 and 5]
A wet decomposition test was performed in the same manner as in Example 3, except that the reaction temperature was changed to 149 and 158 ° C and the WHSV was changed to 1 hr -1 . The results were as described in Table 2.
[0038]
[Table 2]
Figure 0003546210
[0039]
[Example 6]
A wet decomposition test was performed in substantially the same manner as in Experimental Example 3 except that no air was introduced. The results were as described in Table 3.
[0040]
[Table 3]
Figure 0003546210
[0041]
[Example 7]
As an extraction device, a curl column manufactured by Sumitomo Heavy Industries, Ltd. having a plate stack length of 10 feet was used to collect acetic acid from the treated water prepared in Example 3. Ethyl acetate was used as an extractant, and an amount corresponding to an extractant ratio of 1.5 relative to acetic acid-containing wastewater was used. By moving the perforated plate in the column up and down so that the stroke is constant at 25 mm, the solvent and the treated water were brought into countercurrent contact at a passage speed of 30 m 3 / m 2 · H to perform extraction. The extractant layer was taken out from the upper part of the column, and the aqueous layer was taken out from the lower part of the column. The components in the extractant phase and the aqueous layer were quantitatively analyzed by gas chromatography to determine the distribution composition. Acetic acid recovery by extraction was 97%. The results were as shown in Table 4.
[0042]
[Table 4]
Figure 0003546210
[0043]
【The invention's effect】
According to the method of the present invention described above, acetic acid-containing wastewater containing almost no organic matter other than acetic acid can be easily obtained by heat-treating acetic acid-containing wastewater with a noble metal-supported catalyst. It became easy to do.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of an example process for practicing the present invention.
[Explanation of symbols]
1, 5, 7, 9, 14, 16, 19, and 22 are piping,
2, 12, 15, 18, 21, 24, 27, 30, 31 are pumps,
3, 10, 26, 28 and 29 are heat exchangers,
4 is a reactor,
6 is a compressor,
8, 13 are separators,
11 is an extraction tower,
17 is a dehydration tower,
20 is an extractant recovery tower,
23 is an acetic acid tower and 25 is a recovered acetic acid tank.

Claims (4)

貴金属触媒を用い、酸素含有ガス存在下または不存在下に、15〜36kg/cm Gの圧力下、120〜240℃で酢酸含有排水の加熱分解処理をした後、残存する酢酸を回収することからなる酢酸含有排水からの酢酸回収方法。 Recovering acetic acid remaining after subjecting acetic acid-containing waste water to thermal decomposition treatment at 120 to 240 ° C. under a pressure of 15 to 36 kg / cm 2 G in the presence or absence of an oxygen-containing gas using a noble metal catalyst. For recovering acetic acid from waste water containing acetic acid, comprising: 触媒がルテニウム、パラジウム、ロジウム及び白金からなる群から選ばれる少なくとも1種の金属を無機酸化物または活性炭に担持した固体触媒である請求項1に記載の酢酸含有排水からの酢酸回収方法。The method for recovering acetic acid from acetic acid-containing wastewater according to claim 1, wherein the catalyst is a solid catalyst in which at least one metal selected from the group consisting of ruthenium, palladium, rhodium and platinum is supported on an inorganic oxide or activated carbon. 酢酸含有排水が芳香族カルボン酸、脂肪族カルボン酸またはそれらのエステル製造プロセスのいずれかから発生する排水である請求項1に記載の酢酸含有排水からの酢酸回収方法。The method for recovering acetic acid from acetic acid-containing wastewater according to claim 1, wherein the acetic acid-containing wastewater is wastewater generated from any of a process for producing an aromatic carboxylic acid, an aliphatic carboxylic acid, or an ester thereof. 残存酢酸の回収操作が抽出および/または蒸留である請求項1に記載の酢酸含有排水からの酢酸回収方法。The method for recovering acetic acid from acetic acid-containing wastewater according to claim 1, wherein the operation of recovering residual acetic acid is extraction and / or distillation.
JP28735395A 1995-11-06 1995-11-06 Method for recovering acetic acid from wastewater containing acetic acid Expired - Fee Related JP3546210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28735395A JP3546210B2 (en) 1995-11-06 1995-11-06 Method for recovering acetic acid from wastewater containing acetic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28735395A JP3546210B2 (en) 1995-11-06 1995-11-06 Method for recovering acetic acid from wastewater containing acetic acid

Publications (2)

Publication Number Publication Date
JPH09122663A JPH09122663A (en) 1997-05-13
JP3546210B2 true JP3546210B2 (en) 2004-07-21

Family

ID=17716276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28735395A Expired - Fee Related JP3546210B2 (en) 1995-11-06 1995-11-06 Method for recovering acetic acid from wastewater containing acetic acid

Country Status (1)

Country Link
JP (1) JP3546210B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4643801B2 (en) * 2000-07-05 2011-03-02 三菱瓦斯化学株式会社 Dispersion medium replacement method and high purity terephthalic acid production method
KR100433826B1 (en) * 2001-08-29 2004-05-31 한모기술주식회사 Solvent recovery facility by the combination of extraction and distillation
KR100943705B1 (en) * 2008-01-24 2010-02-23 주식회사엔아이티 The method and system for collecting acetic/nitric acid from waste acids
CN104944556A (en) * 2015-05-28 2015-09-30 中冶焦耐工程技术有限公司 Hydrolysis reactor
KR20220125361A (en) * 2020-02-26 2022-09-14 미쯔비시 케미컬 주식회사 A method for separating a crystal containing water, a method for producing methacrylic acid, and a method for producing a methacrylic acid ester

Also Published As

Publication number Publication date
JPH09122663A (en) 1997-05-13

Similar Documents

Publication Publication Date Title
JP5584225B2 (en) Methanol carbonylation with improved aldehyde removal rate
KR101327679B1 (en) Process and apparatus for manufacturing pure forms of aromatic carboxylic acids
JPS60132926A (en) Treatment of aqueous acetic acid
JP7136258B2 (en) Method and apparatus for producing organic carboxylic acid aqueous solution
JP2000351749A (en) Production of (meth)acrylic acid
KR100414249B1 (en) Process for purifying acetic acid
JP2001505199A (en) Method for producing acetic acid
JP3546210B2 (en) Method for recovering acetic acid from wastewater containing acetic acid
JPH0684326B2 (en) Recovery method of methacrolein
CN1325464C (en) Method for preparing and purifying propyl acetate
JP2003026633A (en) Method for producing methacrylic ester
JP4104232B2 (en) Acetic acid recovery from acetic acid containing wastewater
TW574146B (en) Process for cleaning up wastewaters from an aldolization reaction which is followed by hydrogenation
JP4001861B2 (en) Method for removing formic acid from aqueous solution
JPH1110173A (en) Method for recovering acetic acid from waste water containing acetic acid
SU1088662A3 (en) Process for preparing dimethyltherephthalate
KR950001398B1 (en) Waste water treatment in acryl acid plant
JP2624571B2 (en) Method for treating methacrylic acid production plant wastewater
JP6092221B2 (en) Method for producing methacrylic acid and methacrylic acid ester
JP4960005B2 (en) Process for producing α, β-unsaturated carboxylic acid
JP3832868B2 (en) Acrylic acid purification method
JPS5899434A (en) Purification of methacrylic acid
CN109456165A (en) Pure plant mother liquor solvent extraction system and method
JPH10113680A (en) Treatment of waste water containing organic matter by wet catalytic oxidation
JPS6245218B2 (en)

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees