JP3546140B2 - Rotating regenerative heat exchanger - Google Patents

Rotating regenerative heat exchanger Download PDF

Info

Publication number
JP3546140B2
JP3546140B2 JP18028098A JP18028098A JP3546140B2 JP 3546140 B2 JP3546140 B2 JP 3546140B2 JP 18028098 A JP18028098 A JP 18028098A JP 18028098 A JP18028098 A JP 18028098A JP 3546140 B2 JP3546140 B2 JP 3546140B2
Authority
JP
Japan
Prior art keywords
heat exchanger
regenerative heat
cage
fan
solid sliding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18028098A
Other languages
Japanese (ja)
Other versions
JP2000018862A (en
Inventor
牧人 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP18028098A priority Critical patent/JP3546140B2/en
Publication of JP2000018862A publication Critical patent/JP2000018862A/en
Application granted granted Critical
Publication of JP3546140B2 publication Critical patent/JP3546140B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D19/00Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium
    • F28D19/04Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium using rigid bodies, e.g. mounted on a movable carrier
    • F28D19/047Sealing means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Tires In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は回転再生式熱交換器、特に、そのシール機構に改良を加えた回転再生式熱交換器に関する。
【0002】
【従来の技術】
回転再生式熱交換器は、火力発電所のボイラ自身の廃ガスが保有する熱で空気を予熱するため等に用いられる熱交換器である。ボイラ廃ガスによって空気を予熱するための従来の回転再生式熱交換器で、空気予熱器ともいわれるものの一例を図4に示してある。
【0003】
図4に示すように、この回転再生式熱交換器は、符号1で示すエレメントと称する蓄熱体をその内部に有するロータ2が一定の速度でその軸まわりを回転しており、空気及び廃ガスは図4に矢印で示すように互いに逆方向にエレメント1の中を通過し、この過程で、エレメント1を媒体として空気と廃ガスとの間の熱交換が行なわれる。
【0004】
回転再生式熱交換器は、固定構造物の中で回転するロータ2を有するが、その構造上、ロータ2とそれをとりまく固定構造物との間には間隙が生じる。この間隙によって圧力の高い空気が、圧力の低い廃ガス側へと漏洩し熱交換の効率を低下させる。
【0005】
このため、回転再生式熱交換器の各部にはシールを取付けて前記した漏洩が最小限となるようにしているが、回転再生式熱交換器の高温側の半径方向のラジアルシール3と扇形板4との間の間隙7(以下、間隙7と言う)は、回転再生式熱交換器の温度によって変化が大きい。すなわち、熱間時(ボイラ運転時)、回転再生式熱交換器は図5のように熱変形によりわん曲し、冷間時(常温時)よりも間隙7が大きくなる。
【0006】
そのため、従来の回転再生式熱交換器では、図6に示すように、扇形板4に間隙センサ5を設置し、ロータ2の外周部のロータタイヤ6との間の間隙7を検出し、その外周部の間隙7が目標設定値になるように扇形板を追従させるようにした自動ラジアルシール装置と呼ばれる構成が考えられた。
【0007】
また、熱交換器の円周シール8に固体摺動材を用いて、円周シールリークの低減を狙う機構があるが、前記した自動ラジアルシール装置を設けた熱交換器に設置する事は、構造上問題点があり、不可能とされてきた。その理由は次のとおりである。
【0008】
自動ラジアルシール装置では、ロータ2の変形に対応して扇形板4を追従させるため、扇形板4には絶対変位が生じる。一方、円周シール8の固体摺動材9もロータ2の変形に対して相対的に変位するが、それを保持する保持器10は、ケーシング11に取付けられているため変位=0である。
【0009】
円周シール8を自動ラジアルシール装置と同時に設置させるためには、固体摺動材を保持する保持器を扇形板4に取付けなければならず、保持器にも変位が生じてしまい、保持器には取付位置によって変位するものと、しないものが生じてしまうこととなる。
【0010】
【発明が解決しようとする課題】
本発明は、回転再生式熱交換器において、扇形板とロータタイヤとの間隙を目標設定値に保つ自動ラジアルシール装置と、固体摺動材を用いた円周シールとを併せ設置可能に構成しガスリーク低減効果の高い回転再生式熱交換器を提供することを課題としている。
【0011】
【課題を解決するための手段】
本発明は前記課題を解決するため、ロータタイヤと扇形板の間隙をセンサで検出し同間隙が設定値になるよう前記扇形板の追従を自動制御する自動ラジアルシール装置を有する回転再生式熱交換器における円周シールを、前記扇形板の端面位置で分割された固体摺動材とその保持器で構成し、前記扇形板部分の前記保持器と固体摺動材は前記扇形板に、その他の部分の前記保持器と固体摺動材はケーシングに、それぞれ取付け、前記固体摺動材と前記ロータタイヤの摺動面との間でガスシールするようにした構成とする。
【0012】
前記したように、本発明の回転再生式熱交換器では円周シールが扇形板の端面位置で分割されていて、円周シールを構成する固体摺動材とその保持器が扇形板部分は扇形板に取付けられていて、ケーシングに取付けられているその他の部分とが別構造になっているので各々が相対的に変位しても円周シールの機能を行うことができる。従って、本発明の回転再生式熱交換器においては、自動ラジアルシール装置と円周シールとを併設することができる。
【0013】
【発明の実施の形態】
以下、本発明による回転再生式熱交換器を図1〜図3に示した実施形態に基づいて具体的に説明する。図1は、本発明の実施の一形態による回転再生式熱交換器における円周シール部の冷間時(左側)及び熱間時(右側)の状態を示している。
【0014】
図1及び図2において、円周シールを構成する固体摺動材と、その保持器は扇形板4の端面位置で分割され、扇形板4の部分にある保持器10−2と固体摺動材9−2及び、扇形板4部分以外にある保持器10−1と固体摺動材9−1に分離されて互いに独立して変位可能にされている。
【0015】
そして、固体摺動材9−2が取付けられる保持器10−2は扇形板4に取付けられ、扇形板4と共に変位可能に構成されている。一方、固体摺動材9−1が取付けられている保持器10−1はケーシング11に取付けられている。
【0016】
扇形板4は、ラジアルシールとの間の間隙を自動制御される自動ラジアルシール装置によってロータ2の変形に自動追従されるため、扇形板4のロータ外周側は絶対的に変位されるが、保持器10−2も一緒に変位可能である。一方、変位しないケーシング11に取付けられている固体摺動材9−1の保持器10−1は変位しない。
【0017】
以上に説明したように、図1及び図2に示した回転再生式熱交換器の円周シールによれば、扇形板の端面位置で分割された固体摺動材及びその保持器により、ロータ変形時も対応することができる。すなわち、図1(a)の左半分に示すように冷間時に保持器10−1と10−2は同じレベルにあるが、図1(a)の右半分に示すように熱間時にはロータ2が下がり、それに応動して扇形板4の外周部も下げられる。
【0018】
以上の構成によって、扇形板4のところにある保持器10−2と固体摺動材9−2も降下される。一方、扇形板4以外のところでケーシング11に取付けられた保持器10−1及びこれに保持された固体摺動材9−1はそのままの位置にとどまっている。
【0019】
以上のように、ロータ2の熱変形に追従した扇形板4に固定している保持器10−2は常にロータタイヤ6(ロータ2最外周の固体摺動材との摺動面)との相対変位はゼロであるため、ロータタイヤ6と摺動する固体摺動材9−2及び保持器10−2の形状は最小のもので対応できる。
【0020】
一方、扇形板部分以外の保持器10−1はロータタイヤ6に対して、相対的に変位するため、固体摺動材9−1及び保持器10−1の形状はその変位に対応する必要がある。しかし、各々独立した取付方法、形状のため以上の変位に対応できる。
【0021】
更に、自動ラジアルシール装置に、扇形板4がロータ2の変形に追従しない何らかの異常が発生し、安全上扇形板4を引き抜く(ロータとの相対変位を大きくする)システムが設けられている場合には、図3の左半分に示す如く、ロータ2と扇形板4との相対変位が大きくなる。
【0022】
同様に扇形板4部分の保持器10−2とロータタイヤ6との相対変位も大きくなるため、それら変位に追従するための固体摺動材及び保持器の形状が要求されるが、扇形板4位置とその他の位置で保持器と固体摺動材が分割されて各々独立した状態で取付けられているため、その変位に対して十分に対応できる。
【0023】
以上の通り、本実施形態の回転再生式熱交換器においては自動ラジアルシール装置を設置している回転再生式熱交換器において、円周シール8に固体摺動材9を用いる事ができ、熱交換流体間の漏洩量を効果的に抑える事ができる。
【0024】
【発明の効果】
以上説明したように、本発明の回転再生式熱交換器は、ロータタイヤと扇形板の間隙をセンサで検出し同間隙が設定値になるよう前記扇形板の追従を自動制御する自動ラジアルシール装置を有する回転再生式熱交換器において、前記扇形板の端面位置で分割された固体摺動材とその保持器で構成され、前記扇形板部分の前記保持器と固体摺動材は前記扇形板に、その他の部分の前記保持器と固体摺動材はケーシングに、それぞれ取付け、前記固体摺動材と前記ロータタイヤの摺動面との間でガスシールするように構成した円周シールを有する。
【0025】
本発明のこの回転再生式熱交換器においては前記したように扇形板位置とそれ以外の位置で円周シールを構成する保持器と固体摺動材が分離されていて互いに独立に変位可能であるからロータの熱変形に対応して自動ラジアルシール装置によって扇形板を変位させても円周シールは固体摺動材とロータタイヤの摺動面との間でガスシール作用を持続できる。こうして本発明によれば熱変形等の動きにも対応できるシール装置を設けた回転再生式熱交換器を提供できる。
【図面の簡単な説明】
【図1】本発明の実施の一形態による回転再生式熱交換器における円周シール部の冷間時および熱間時の状態を示す図面で、(a)は(b)のA−A線に沿う断面図、(b)は平面図。
【図2】図1(b)のII−II線に沿い、紙面に垂直な断面図。
【図3】本発明の実施の一形態による回転再生式熱交換器において、自動ラジアルシール装置に異常が発生した場合の円周シール部の状態を示す断面図。
【図4】回転再生式熱交換器の構造を一部破断して示す斜視図。
【図5】回転再生式熱交換器における間隙発生の状態をやや誇張して示す冷間時及び熱間時の説明図。
【図6】回転再生式熱交換器における自動ラジアルシール装置の状態を示す説明図。
【符号の説明】
1 エレメント
2 ロータ
3 ラジアルシール
4 扇形板
5 間隙センサ
6 ロータタイヤ
7 間隙
8 円周シール
9−1 固体摺動材
9−2 固体摺動材
10−1 保持器
10−2 保持器
11 ケーシング
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rotary regenerative heat exchanger, and more particularly to a rotary regenerative heat exchanger in which the sealing mechanism is improved.
[0002]
[Prior art]
A rotary regenerative heat exchanger is a heat exchanger that is used to preheat air with the heat of the waste gas of the boiler itself of a thermal power plant. FIG. 4 shows an example of a conventional rotary regenerative heat exchanger for preheating air with boiler waste gas, which is also called an air preheater.
[0003]
As shown in FIG. 4, in this rotary regenerative heat exchanger, a rotor 2 having therein a heat storage body called an element denoted by reference numeral 1 rotates around its axis at a constant speed, and air and waste gas 4 passes through the element 1 in opposite directions as indicated by arrows in FIG. 4, and in this process, heat exchange is performed between air and waste gas using the element 1 as a medium.
[0004]
The rotary regenerative heat exchanger has a rotor 2 that rotates in a fixed structure, but due to the structure, a gap is formed between the rotor 2 and the fixed structure surrounding it. Due to this gap, high-pressure air leaks to the low-pressure waste gas side and reduces the efficiency of heat exchange.
[0005]
For this reason, a seal is attached to each part of the rotary regenerative heat exchanger so as to minimize the above-described leakage. However, the radial radial seal 3 and the sector plate on the high temperature side of the rotary regenerative heat exchanger are provided. The gap 7 between them (hereinafter referred to as the gap 7) varies greatly depending on the temperature of the rotary regenerative heat exchanger. That is, during hot (boiler operation), the rotary regenerative heat exchanger bends due to thermal deformation as shown in FIG. 5, and the gap 7 becomes larger than during cold (normal temperature).
[0006]
Therefore, in the conventional rotary regenerative heat exchanger, as shown in FIG. 6, a gap sensor 5 is installed on the fan-shaped plate 4 to detect a gap 7 between the outer peripheral portion of the rotor 2 and the rotor tire 6. A configuration called an automatic radial seal device in which the fan-shaped plate is caused to follow so that the outer peripheral gap 7 becomes a target set value has been considered.
[0007]
Also, there is a mechanism that aims to reduce the circumferential seal leak by using a solid sliding material for the circumferential seal 8 of the heat exchanger, but installing it in the heat exchanger provided with the automatic radial seal device described above, There are structural problems and it has been considered impossible. The reason is as follows.
[0008]
In the automatic radial seal device, the sector plate 4 is caused to follow in response to the deformation of the rotor 2, so that absolute displacement occurs in the sector plate 4. On the other hand, the solid sliding member 9 of the circumferential seal 8 is also relatively displaced with respect to the deformation of the rotor 2. However, since the cage 10 that holds the solid sliding member 9 is attached to the casing 11, the displacement = 0.
[0009]
In order to install the circumferential seal 8 at the same time as the automatic radial seal device, a cage for holding the solid sliding material has to be attached to the fan-shaped plate 4, and the cage is also displaced, Depending on the mounting position, some will be displaced and some will not.
[0010]
[Problems to be solved by the invention]
The present invention provides a rotary regenerative heat exchanger that can be installed together with an automatic radial seal device that maintains a gap between a sector plate and a rotor tire at a target set value, and a circumferential seal that uses a solid sliding material. It is an object to provide a rotary regenerative heat exchanger having a high gas leak reduction effect.
[0011]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides a rotary regenerative heat exchange system having an automatic radial seal device that detects the gap between the rotor tire and the fan plate with a sensor and automatically controls the follow-up of the fan plate so that the gap becomes a set value. The circumferential seal in the vessel is composed of a solid sliding member divided at the end face position of the sector plate and its cage, and the cage and solid sliding member of the sector plate portion are in the sector plate, The cage and the solid sliding member are attached to a casing, and gas sealing is performed between the solid sliding member and the sliding surface of the rotor tire .
[0012]
As described above, in the rotary regenerative heat exchanger according to the present invention, the circumferential seal is divided at the end face position of the fan-shaped plate, and the solid sliding material constituting the circumferential seal and its retainer are fan- shaped. Since it is attached to the plate and has a different structure from the other parts attached to the casing, the function of the circumferential seal can be performed even if each part is displaced relatively. Therefore, in the rotary regenerative heat exchanger of the present invention, an automatic radial seal device and a circumferential seal can be provided side by side.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a rotary regenerative heat exchanger according to the present invention will be specifically described based on the embodiment shown in FIGS. FIG. 1 shows a state of a circumferential seal portion in a cold state (left side) and a hot state (right side) in a rotary regenerative heat exchanger according to an embodiment of the present invention.
[0014]
1 and 2, the solid sliding member constituting the circumferential seal and its cage are divided at the end face position of the sector plate 4, and the cage 10-2 and the solid sliding member in the sector plate 4 portion. 9-2 and the cage 10-1 other than the fan plate 4 and the solid sliding member 9-1 are separated and displaceable independently of each other.
[0015]
And the holder | retainer 10-2 to which the solid sliding material 9-2 is attached is attached to the sector plate 4, and is comprised so that a displacement with the sector plate 4 is possible. On the other hand, the cage 10-1 to which the solid sliding material 9-1 is attached is attached to the casing 11.
[0016]
The fan-shaped plate 4 is automatically followed by deformation of the rotor 2 by an automatic radial seal device in which the gap between the fan-shaped plate 4 and the radial seal is automatically controlled. The device 10-2 can also be displaced together. On the other hand, the cage 10-1 of the solid sliding material 9-1 attached to the casing 11 that is not displaced is not displaced.
[0017]
As described above, according to the circumferential seal of the rotary regenerative heat exchanger shown in FIGS. 1 and 2, the rotor is deformed by the solid sliding material divided at the end face position of the sector plate and its retainer. It can respond to time. That is, the cages 10-1 and 10-2 are at the same level when cold as shown in the left half of FIG. 1A, but the rotor 2 is hot when hot as shown in the right half of FIG. In response to this, the outer peripheral portion of the sector plate 4 is also lowered.
[0018]
With the above configuration, the cage 10-2 and the solid sliding material 9-2 at the sector plate 4 are also lowered. On the other hand, the cage 10-1 attached to the casing 11 other than the sector plate 4 and the solid sliding material 9-1 held by the cage 10-1 remain in their positions.
[0019]
As described above, the cage 10-2 fixed to the sector plate 4 following the thermal deformation of the rotor 2 is always relative to the rotor tire 6 (sliding surface with the solid sliding material on the outermost periphery of the rotor 2). Since the displacement is zero, the shapes of the solid sliding material 9-2 and the cage 10-2 that slide with the rotor tire 6 can be handled with the minimum shape.
[0020]
On the other hand, since the cage 10-1 other than the fan-shaped plate portion is displaced relative to the rotor tire 6, the shapes of the solid sliding material 9-1 and the cage 10-1 need to correspond to the displacement. is there. However, each of the independent mounting methods and shapes can cope with the above displacements.
[0021]
Further, when the automatic radial seal device is provided with a system in which the fan-shaped plate 4 does not follow the deformation of the rotor 2 and the fan-shaped plate 4 is pulled out for safety (increasing relative displacement with the rotor). As shown in the left half of FIG. 3, the relative displacement between the rotor 2 and the fan-shaped plate 4 increases.
[0022]
Similarly, since the relative displacement between the cage 10-2 in the sector plate 4 and the rotor tire 6 also increases, the shape of the solid sliding material and cage to follow these displacements is required. Since the cage and the solid sliding material are divided and attached independently at the position and other positions, it can sufficiently cope with the displacement.
[0023]
As described above, in the rotary regenerative heat exchanger of the present embodiment, the solid sliding material 9 can be used for the circumferential seal 8 in the rotary regenerative heat exchanger in which the automatic radial seal device is installed. The amount of leakage between exchange fluids can be effectively suppressed.
[0024]
【The invention's effect】
As described above, the rotary regenerative heat exchanger of the present invention detects the gap between the rotor tire and the fan plate with a sensor and automatically controls the follow-up of the fan plate so that the gap becomes a set value. A regenerative heat exchanger comprising: a solid sliding material divided at an end face position of the sector plate and a cage thereof; and the cage and solid sliding material of the sector plate portion are formed on the sector plate. The other parts of the cage and the solid sliding member are attached to the casing, respectively , and have a circumferential seal configured to gas-seal between the solid sliding member and the sliding surface of the rotor tire. .
[0025]
In the rotary regenerative heat exchanger of the present invention, as described above, the cage constituting the circumferential seal and the solid sliding material are separated at the sector plate position and other positions, and can be displaced independently of each other. Therefore, the circumferential seal can maintain the gas sealing action between the solid sliding member and the sliding surface of the rotor tire even if the fan-shaped plate is displaced by the automatic radial sealing device corresponding to the thermal deformation of the rotor . Thus, according to the present invention, it is possible to provide a rotary regenerative heat exchanger provided with a sealing device that can cope with movement such as thermal deformation.
[Brief description of the drawings]
FIG. 1 is a drawing showing states of a circumferential seal portion in a cold and hot state in a rotary regenerative heat exchanger according to an embodiment of the present invention, wherein (a) is a line AA in (b). Sectional drawing in alignment with (b), a top view.
FIG. 2 is a cross-sectional view taken along line II-II in FIG.
FIG. 3 is a cross-sectional view showing a state of a circumferential seal portion when an abnormality occurs in the automatic radial seal device in the rotary regenerative heat exchanger according to the embodiment of the present invention.
FIG. 4 is a perspective view showing a partially reconstructed structure of a rotary regenerative heat exchanger.
FIGS. 5A and 5B are explanatory diagrams showing a state of occurrence of a gap in the rotary regenerative heat exchanger slightly exaggerated and during a cold time and a hot time. FIGS.
FIG. 6 is an explanatory view showing a state of an automatic radial seal device in a rotary regenerative heat exchanger.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Element 2 Rotor 3 Radial seal 4 Fan-shaped board 5 Gap sensor 6 Rotor tire 7 Gap 8 Circumferential seal 9-1 Solid sliding material 9-2 Solid sliding material 10-1 Cage 10-2 Cage 11 Casing

Claims (1)

ロータタイヤと扇形板の間隙をセンサで検出し同間隙が設定値になるよう前記扇形板の追従を自動制御する自動ラジアルシール装置を有する回転再生式熱交換器において、前記扇形板の端面位置で分割された固体摺動材とその保持器で構成され、前記扇形板部分の前記保持器と固体摺動材は前記扇形板に、その他の部分の前記保持器と固体摺動材はケーシングに、それぞれ取付け、前記固体摺動材と前記ロータタイヤの摺動面との間でガスシールするように構成した円周シールを有することを特徴とする回転再生式熱交換器。In a rotary regenerative heat exchanger having an automatic radial seal device that automatically controls the follow-up of the fan-shaped plate so that the gap between the rotor tire and the fan-shaped plate is detected by a sensor and the gap becomes a set value, at the end face position of the fan-shaped plate It is composed of a divided solid sliding material and its cage, the cage and solid sliding material of the fan-shaped plate part are the fan-shaped plate, and the cage and solid sliding material of other parts are the casing, A rotary regenerative heat exchanger, characterized in that it has a circumferential seal that is mounted and gas-sealed between the solid sliding member and the sliding surface of the rotor tire .
JP18028098A 1998-06-26 1998-06-26 Rotating regenerative heat exchanger Expired - Fee Related JP3546140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18028098A JP3546140B2 (en) 1998-06-26 1998-06-26 Rotating regenerative heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18028098A JP3546140B2 (en) 1998-06-26 1998-06-26 Rotating regenerative heat exchanger

Publications (2)

Publication Number Publication Date
JP2000018862A JP2000018862A (en) 2000-01-18
JP3546140B2 true JP3546140B2 (en) 2004-07-21

Family

ID=16080469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18028098A Expired - Fee Related JP3546140B2 (en) 1998-06-26 1998-06-26 Rotating regenerative heat exchanger

Country Status (1)

Country Link
JP (1) JP3546140B2 (en)

Also Published As

Publication number Publication date
JP2000018862A (en) 2000-01-18

Similar Documents

Publication Publication Date Title
EP1018613B1 (en) A seal
US4673026A (en) Sealing arrangement for air preheater
US4791980A (en) Sealing arrangement for air preheater
US5881799A (en) Perimeter sealing element for regenerative heat exchanger
US5363903A (en) Perimeter seal for air heater
WO1997049941A9 (en) Perimeter sealing element for regenerative heat exchanger
JPH0712477A (en) Heat accumulating heat exchanger and its operation
JP3546140B2 (en) Rotating regenerative heat exchanger
US2766970A (en) High pressure circumferential seal
US8806750B2 (en) Forced oscillation seals for air to gas leaks reduction in regenerative air preheaters
US6155209A (en) Air preheater sector plate design with centered sealing arrangements
US5038849A (en) Sealing of air heaters by deforming sector plates
US5063993A (en) Air heater with automatic sealing
US4298055A (en) Actuated sector plate
JPH1183362A (en) Rotary regenerative heat exchanger
CA1104554A (en) Static seal
US3273904A (en) Regenerator seal with diaphragm support
JP3310906B2 (en) Seal structure between gas turbine disks
CN109489063A (en) Rotary regenerative air preheater encapsulating method, self-compensation sealed part and air preheater
WO2002081997A1 (en) Axial seal plate for air preheaters
JPS5941422Y2 (en) Rotary regenerative heat exchanger seal mechanism
US4154449A (en) Seal device for rotary heat-exchanger
US20030197333A1 (en) Air preheater sector plate bypass seal
JPS62166292A (en) Rotary type air preheater
JP2003021481A (en) Radial sealing mechanism for rotary regenerative heat exchanger

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040412

LAPS Cancellation because of no payment of annual fees