JP3545997B2 - Wax-type thermoresponsive control valve for engine refrigerant circuit - Google Patents

Wax-type thermoresponsive control valve for engine refrigerant circuit Download PDF

Info

Publication number
JP3545997B2
JP3545997B2 JP2000193844A JP2000193844A JP3545997B2 JP 3545997 B2 JP3545997 B2 JP 3545997B2 JP 2000193844 A JP2000193844 A JP 2000193844A JP 2000193844 A JP2000193844 A JP 2000193844A JP 3545997 B2 JP3545997 B2 JP 3545997B2
Authority
JP
Japan
Prior art keywords
wax
refrigerant
valve body
thermally responsive
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000193844A
Other languages
Japanese (ja)
Other versions
JP2002004859A (en
Inventor
滋 佐藤
薫 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Bellows Co Ltd
Original Assignee
Fuji Bellows Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Bellows Co Ltd filed Critical Fuji Bellows Co Ltd
Priority to JP2000193844A priority Critical patent/JP3545997B2/en
Publication of JP2002004859A publication Critical patent/JP2002004859A/en
Application granted granted Critical
Publication of JP3545997B2 publication Critical patent/JP3545997B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Temperature-Responsive Valves (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、自動車用エンジンの冷媒(冷却水)をラジエータ回路及びバイパス回路を介して循環させる冷媒循環回路上に設置されるワックス式熱応動制御弁の改良に関する。
【0002】
【従来の技術】
一般に、自動車等には、走行時、エンジンからの高温冷却水をウォータポンプの圧力によりラジエータにて冷却し、この低温冷却水をエンジンのウオータジャケット内に再供給することにより、エンジンを冷却するような冷媒循環回路が設けられているとともに、この冷媒循環回路上には、エンジンへの冷却水の流量及び温度を調整するワックス式熱応動制御弁が設置されている。
【0003】
従来、このようなワックス式熱応動制御弁としては、例えば、本出願人が先に出願し公開された特開平10−19160号公報(先行技術)に開示してなるような構成を有するものが提案されている。この先行技術に記載の発明においては、エンジンへの冷却水管路内に弁本体をシールパッキンを介して設置している。そして、弁本体は、冷却水が通水可能な環状弁座と、この環状弁座の内周部にその外周部が所定の開弁ストローク範囲で摺接して接離自在に開閉動作する筒状弁体とで構成され、環状弁座の内周部が摺接する筒状弁体の外周部側にゴム製環状シールを設けてなるとともに、筒状弁体を環状弁座に対してスプリングの付勢力にて常に下流側方向に付勢させて閉弁状態が維持されるように組み付けられている。
【0004】
また、筒状弁体は、例えば、特公昭61−20697号公報に開示されているように、ワックス式熱応動伸縮素子に連動させることにより、自動的に開弁および閉弁動作が行われるように構成され、熱応動伸縮素子は、筒状ハウジング内に冷媒循環回路に流れる冷却水の温度変化により応動するワックスと、このワックスの膨脹/収縮にて伸縮駆動するプランジャとを有する。
【0005】
すなわち、上記したワックス式熱応動制御弁は、主に、エンジンの出口側のラジエータ回路上に設置され、エンジンからの冷却水が所望の設定温度、例えば、60℃を超えると、その高温冷却水の温度上昇に伴い、熱応動伸縮素子を構成するワックスの膨脹により、プランジャを軸方向に伸長動作させるとともに、このプランジャの伸長動作にて筒状ハウジングを相対的に移動させ、これにより、筒状弁体をスプリングの付勢力に抗して所定の開弁ストローク範囲で環状弁座から離間する方向(開弁方向)に移動させるようになっている。
【0006】
【発明が解決しようとする課題】
ところが、上記した従来構造のワックス式熱応動制御弁にあっては、エンジンからの冷却水の水温上昇速度が速くて、ウォータポンプの圧力が高いと、図5に実線で示すように、筒状弁体の所定の開弁ストローク範囲Lにおいて、初期開弁ストローク範囲L1、例えば、3〜4mmから完全開弁ストローク範囲L2、例えば、8〜10mmに至る範囲で、ラジエータ内及びバイパス回路内に残量する低温な冷却水が、例えば、250〜300L(リットル)/minの過剰な流量Qでエンジンのウオータジャケット内に一気に流入する。これにより、水温のオーバーシュート、ハンチングが発生する。特に、冬季における暖気運転時のように、水温ハンチングの温度幅が大きいと、エンジンの冷却系全体に悪影響を与える。
【0007】
そこで従来、例えば、特開平7−305787号公報等に開示されているように、筒状弁体の外周部側に設けたゴム製環状シールの内周面円周方向に複数の切欠溝を上流側から下流側の冷媒流出方向に向けて形成し、図5に点線で示すように、筒状弁体の初期開弁ストローク範囲L1で少量の冷却水を流出させることにより、エンジンのウオータジャケット内に大量の低温冷却水が一気に流入するのを防止してなる構成を有するものが提案されている。しかしながら、このようなワックス式熱応動制御弁では、筒状弁体が板金等にてプレス成型されているため、筒状弁体の外周部に設けたゴム製環状シールに形成される切欠溝の形状の寸法精度が出しにくく、製品にバラツキが多い。これにより、筒状弁体の初期開弁ストローク範囲L1での冷却水の流量が不安定となるばかりでなく、構造的にも30〜40L(リットル)/minの範囲での流量調整が限度であり、水温ハンチングの発生を確実に防止することが困難である。
【0008】
本発明は、上記した事情に鑑みてなされたもので、筒状弁体の初期開弁ストローク範囲におけるエンジンへの過剰な低温冷却水の供給を防止して、水温ハンチングの発生を確実に防止することができるエンジン冷媒循環回路用ワックス式熱応動制御弁を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記した課題を解決するために、本発明は、エンジン冷媒循環回路上に設置される弁本体からなり、弁本体は、冷媒が通水可能な環状弁座と、環状弁座の内周部にその外周部が所定の開弁ストローク範囲で摺接して接離自在に開閉動作する筒状弁体と、筒状弁体を冷媒の温度に応じて駆動させるワックス式熱応動伸縮素子とを有するとともに、筒状弁体と環状弁座との摺接面間にゴム製環状シールを介在してなるエンジン冷媒循環回路用ワックス式熱応動制御弁において、環状弁座の内周部側にゴム製環状シールを加硫成型にて一体に設け、ゴム製環状シールの内周面には円周方向に所望の間隔を置いて筒状弁体の初期開弁ストローク範囲で少量の冷媒が流出可能な複数の切欠溝を上流側から下流側の冷媒流出方向に向けて形成し、かつ、前記ゴム製環状シールの内周面略中間部に、前記筒状弁体の摺接面に摺接する内向き凸部を円周方向に一体に突出形成し、該内向き凸部を境として、前記各切欠溝の先端部側の一部を冷媒流出方向の下流側に位置するように設け、さらに、前記各切欠溝は縦断面において、上流側の溝深さが深い急傾斜面と、内向き凸部を越してから内周面側に屈折した緩傾斜面を有する切欠溝としたことを特徴とする。
【0010】
ここで、本発明において、切欠溝の形状は、冷媒流出方向に向けて均等幅な矩形状の形態、または、先端部がR面の略逆U字形状の形態、あるいは、冷媒流出方向に向けて先端部が先細の三角形状の形態を有する。前記各切欠溝は、冷媒流出方向(下流側)に向けて横断面積が漸次小さくなる形態とすると、開弁初期において微量の冷媒を下流方向にながすことができる。
【0011】
すなわち、本発明は、上記した構成を採用することにより、環状弁座の内周部側にゴム製環状シールを加硫一体成型にて一体に設けてなるため、切欠溝を金型にてゴム製環状シールの加硫成型と共に成型することが可能になり、切欠溝の形状の寸法精度が向上し、筒状弁体の初期開弁ストローク範囲での冷却水の流量が微小流量でも安定する。前記のように、切欠溝を金型にてゴム製環状シールの加硫成型と共に成型するので、従前のような製品のバラツキを少なくすることが可能になる。
【0012】
【発明の実施の形態】
以下、本発明の参考形態を図1から図4に示す図面を参照しながら詳細に説明する。図1は、本発明の参考形態に係るエンジン冷媒循環回路用ワックス式熱応動制御弁の全体構成を概略的に示し、エンジン冷媒循環回路を形成する管路P内に設置される弁本体1からなる。この弁本体1は上部ケーシング1aと下部ケーシング1bと前記各ケーシングを固定するための環状部材1cとから構成されており、前記環状部材1cの外周部の固定用フランジ3aに管路P内に水密的に組み付けられるシールパッキン2を有するとともに、前記環状部材1cの内周部には、冷却水Wが通水可能な環状弁座3を備えており、前記外周部の固定用フランジ3aにシールパッキン2を固着してなる構成を有する。
【0013】
また、前記環状部材1cは、図3に示すように、鋼板にプレス加工が施されて、円環状の固定用フランジ3aと、そのフランジ3aの内周に上向きに屈折連設された縦筒4と、その縦筒3dの上端に内向きに屈折連設された上部フランジ3eとが構成されている。前記縦筒4に多数の連通孔3fが縦筒4の周囲方向に間隔をおいて設けられ、前記縦筒4の内面および上部フランジ3eの下面に固着されたシール用環状ゴム材本体5bと、縦筒4の外周面と上部フランジ3eおよび固定用フランジ3aの内周部側に固着された補助環状ゴム材5cとは、前記連通孔3f内に充填されたゴム材を介して結合されてゴム製環状シール5が構成されている。
【0014】
前記環状部材1cの内周部3bには、図2に示すように、筒状の起立片からなる縦筒4が円周方向に沿って一体に立上り形成され、この縦筒4には、前記シール用環状ゴム材本体5cの一部を縦筒4と固定用フランジ3aとの接続部の下面3c側に回り込ませてなるゴム製環状弁座3が一体成型により固着されている。
【0015】
前記ゴム製環状シール5の内周面5aには、上流側と下流側との間の冷媒流出方向Yの中間部(図示の場合は略中央部)に縦断面ほぼく字状の内向き凸部(リップ部)6を円周方向に一体に突出形成してなるとともに、複数の切欠溝7が円周方向に所望の間隔(図示の場合は90度の等角度間隔をおいて4つ)を置いて形成され、これら各切欠溝7の先端部7a側は、内向き凸部6を境として、その一部を冷媒流出方向Yの下流側に臨ませている。すなわち、筒状内周面5aに接続し、上流方向から下流方向に向かって漸次内側に突出するように傾斜する上流側傾斜面6aと、これに屈折した状態で接続し上流方向から下流方向に拡径するように傾斜して内周面5aに接続する下流側傾斜面6bとを備えており、前記切欠溝7の先端部は下流側傾斜面6bよりもさらに下流側に越した位置の筒状内周面5aに位置している。また前記各切欠溝7の横断面は下流方向に向かって漸次小さくなるように設けられている。前記内向き凸部6は筒状弁体8における後記の摺接片8bに当接した状態では、0.2mm〜0.4mm程度押し潰された状態で当接される。
【0016】
一方、環状部材1cの内周部3bには、筒状弁体8が配置され、この筒状弁体8の下流側外周部には、フランジ部8aと、このフランジ部8aから鉛直方向に立ち上がる筒状の摺接片8bとが形成されている。そして、筒状弁体8は、下部ケーシング1bと前記筒状弁体8間に圧縮した状態で介在された圧縮コイルばねからなるスプリング9により、常に冷媒流出方向Yの下流側方向に付勢され、そのフランジ部8aを環状部材1cの上流側下面3c側に固着したゴム製環状シール5の一部の環状弁座面を間に介して当接させてなるとともに、その筒状の摺接片8bを環状部材1cの内周部3bに固着したゴム製環状シール5の内周面5a側の前記内向き凸部6に摺接させることにより、環状弁座3に対して閉弁状態が維持されるようになっている。
【0017】
また、筒状弁体8には、ワックス式熱応動伸縮素子10が組み付けられ、この熱応動伸縮素子10は、筒状ハウジング11内に冷媒循環回路に流れる冷却水Wの温度変化により応動するワックス12と、このワックス12の膨脹/収縮にてゴム製底付きスリーブを介して伸縮(進退)駆動するプランジャ13とを有する。すなわち、開弁時には、熱応動伸縮素子10を構成するワックス12の冷却水Wの温度上昇に伴う膨脹により、プランジャ13が軸方向に伸長動作する。そして、このプランジャ13の伸長動作にて筒状ハウジング11が相対的に上流側に移動し、筒状弁体8をスプリング9の付勢力に抗して所定の開弁ストローク範囲Lで環状弁座3から離間する方向(開弁方向)Xに移動させることにより、自動的に開弁動作が行われるようになっている。
【0018】
ところで、上記したような弁本体1に組み付けられる環状部材1cの外周端縁部3a及び内周部3bの縦筒4には、図3に示すように、金型(図示せず)を用いた加硫一体成型により、シールパッキン2及びゴム製環状シール5を一体に成型し固着すると同時に、ゴム製環状シール5に切欠溝7を金型成型している。これにより、ゴム製環状シール5に形成される切欠溝7の形状の寸法精度を向上させることが可能になるとともに、製品のバラツキも少ない。
【0019】
この場合、切欠溝7の形状は、図4(A)に示すような冷媒流出方向Yに向けて等幅な矩形状の形態、図4(B)に示すような下流側先端部7aがR面の略逆U字形状の形態、あるいは、図4(C)に示すような冷媒流出方向Yに向けて下流側先端部7aが先細の三角形状などの任意の形態に変化させて形成するとともに、切欠溝7の深さ及び幅寸法や、数などを調整することにより、冷却水Wの流量Qを容易に調整することが可能になる。しかも、図4(A),(B),(C)の形態にそれぞれ対応させて、図5に1点破線A、2点破線B及び3点破線Cで示すように、筒状弁体8の開弁ストローク範囲Lにおいて、初期開弁ストローク範囲L1から完全開弁ストローク範囲L2に至る範囲での冷却水Wの流量Qが、例えば、3〜10L(リットル)/minの範囲で流出させることが可能になるとともに、図5に実線及び点線で示すような従来のワックス式熱応動制御弁のそれよりも安定して流出させることが可能になる。
【0020】
前記実施形態においては、上流側から下流方向に一様に傾斜する切欠溝7の形態を示したが、本発明を実施する場合、図6に示すように、縦断面において、上流側が深くほぼ垂直に近い急傾斜面7bと、内向き凸部6を越したあたりから内周面側に屈折した緩傾斜面7cを有する切欠溝7としてもよく、このようにすると、切欠溝7の上流側の容積が大きくなるので、下流側に流出する冷媒量を、初期の開弁状態でもさらに安定させることができる。
【0021】
本発明を実施する場合、前記内向き凸部6としては、鈍角倒V字状または台形断面としてもよく、また前記切欠部7を1つまたは2つ以上の偶数または奇数の数だけ等角度または適宜の間隔をおいて設けるようにしてもよい。
【0022】
【発明の効果】
以上説明したように、本発明に係るエンジン冷媒循環回路用ワックス式熱応動制御弁は、環状弁座の内周部側にゴム製環状シールを加硫成型にて一体に設けてなることから、環状弁座へのゴム製環状シールの加硫成型時、切欠溝を金型にて成型することができる。これにより、切欠溝の形状の寸法精度を向上させることができ、従前のような製品のバラツキを少なくすることができる。これにより、筒状弁体の初期開弁ストローク範囲での冷却水の流量を少量でも安定させることができるため、水温ハンチングの発生を確実に防止することができる。また、切欠溝の形状を変化させることにより、冷却水の流量を容易に調整することができる。また、本発明では、切欠溝は縦断面において、上流側の溝深さが深い急傾斜面と、内向き凸部を越してから内周面側に屈折した緩傾斜面を有する切欠溝としたので、切欠溝の上流側の容積が大きくなるので、下流側に流出する冷媒量を、初期の開弁状態でもさらに安定させることができる。
【図面の簡単な説明】
【図1】本発明の参考形態に係るエンジン冷媒循環回路用ワックス式熱応動制御弁の全体構成を概略的に示す説明図である。
【図2】同じく環状弁座と筒状弁体との摺接面間における要部拡大断面図である。
【図3】同じく環状弁座へのシールパッキン及びゴム製環状シールの加硫成型による添着状態を示す要部断面図である。
【図4】図4(A),(B),(C)はゴム製環状シールに形成される切欠溝の形態を示す説明図である。
【図5】同じく筒状弁体の開弁ストローク範囲での冷却水の流量を従来のワックス式熱応動制御弁と比較して示す説明図である。
【図6】切欠溝の変形形態を示す説明断面図である。
【符号の説明】
1 弁本体
1a 上部ケーシング
1b 下部ケーシング
1c 環状部材
2 シールパッキン
3 環状弁座
3a 固定用環状フランジ
3b 内周部
3c 下面
4 縦筒
5 ゴム製環状シール
5a 内周面
5b シール用環状ゴム材本体
5c 補助環状ゴム材
6 内向き凸部
6a 上流側傾斜面
6b 下流側傾斜面
7 切欠溝
7a 先端部
7b 急傾斜面
7c 緩傾斜面
8 筒状弁体
8a フランジ部
8b 摺接片
9 スプリング
10 熱応動伸縮素子
11 筒状ハウジング
12 ワックス
13 プランジャ
L 筒状弁体の開弁ストローク範囲
L1 筒状弁体の初期開弁ストローク範囲
L2 筒状弁体の完全開弁ストローク範囲
P 冷媒循環回路(管路)
Q 冷媒の流量
W 冷媒(冷却水)
X 開弁方向
Y 冷媒流出方向
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to, for example, an improvement in a wax-type thermally responsive control valve installed on a refrigerant circulation circuit that circulates refrigerant (cooling water) of an automobile engine via a radiator circuit and a bypass circuit.
[0002]
[Prior art]
In general, in an automobile or the like, when traveling, high-temperature cooling water from the engine is cooled by a radiator by the pressure of a water pump, and the low-temperature cooling water is resupplied into a water jacket of the engine to cool the engine. A coolant circulation circuit is provided, and a wax-type thermally responsive control valve for adjusting the flow rate and temperature of the cooling water to the engine is provided on the coolant circulation circuit.
[0003]
Conventionally, as such a wax-type thermally responsive control valve, for example, one having a configuration as disclosed in Japanese Patent Application Laid-Open No. H10-19160 (prior art) filed and published by the present applicant has been proposed. Proposed. In the invention described in this prior art, a valve body is installed via a seal packing in a cooling water pipe to an engine. The valve body is provided with an annular valve seat through which cooling water can flow, and a cylindrical valve member whose outer peripheral portion slides on an inner peripheral portion of the annular valve seat within a predetermined valve opening stroke range so as to freely open and close. The annular valve seat is provided with a rubber annular seal on the outer peripheral side of the cylindrical valve body where the inner peripheral portion of the annular valve seat is in sliding contact with the annular valve seat. The valve is always urged in the downstream direction by the force to maintain the valve closed state.
[0004]
Further, as disclosed in, for example, Japanese Patent Publication No. 61-20697, the cylindrical valve element is automatically opened and closed by being linked with a wax-type thermally responsive expansion and contraction element. The thermally responsive expansion / contraction element has a wax responsive to a change in the temperature of the cooling water flowing through the refrigerant circuit in the cylindrical housing, and a plunger driven to expand and contract by expansion / contraction of the wax.
[0005]
That is, the above-mentioned wax type thermoresponsive control valve is mainly installed on the radiator circuit on the engine outlet side, and when the cooling water from the engine exceeds a desired set temperature, for example, 60 ° C., the high-temperature cooling water As the temperature rises, the expansion of the wax constituting the thermally responsive expansion and contraction element causes the plunger to extend in the axial direction, and the extension of the plunger causes the cylindrical housing to relatively move, thereby forming the cylindrical member. The valve body is moved in the direction away from the annular valve seat (valve opening direction) within a predetermined valve opening stroke range against the urging force of the spring.
[0006]
[Problems to be solved by the invention]
However, in the above-described conventional wax-type thermally responsive control valve, when the temperature of the cooling water from the engine rises rapidly and the pressure of the water pump is high, as shown by a solid line in FIG. In a predetermined valve-opening stroke range L of the valve element, an initial valve-opening stroke range L1, for example, from 3 to 4 mm to a complete valve-opening stroke range L2, for example, 8 to 10 mm, remains in the radiator and the bypass circuit. The measured low-temperature cooling water flows into the water jacket of the engine at a stretch at an excessive flow rate Q of, for example, 250 to 300 L (liter) / min. As a result, overshoot and hunting of the water temperature occur. In particular, when the temperature range of the water temperature hunting is large, such as during a warm-up operation in winter, the entire cooling system of the engine is adversely affected.
[0007]
Conventionally, as disclosed in, for example, Japanese Patent Application Laid-Open No. 7-305787, a plurality of notches are formed in the circumferential direction of the inner peripheral surface of a rubber annular seal provided on the outer peripheral side of a cylindrical valve body. The cooling water is formed in the water jacket of the engine by forming a small amount of cooling water in the initial valve opening stroke range L1 of the cylindrical valve body as shown by a dotted line in FIG. There has been proposed a configuration having a configuration in which a large amount of low-temperature cooling water is prevented from flowing at once. However, in such a wax-type thermally responsive control valve, since the cylindrical valve body is press-molded with a sheet metal or the like, a notch groove formed in a rubber annular seal provided on an outer peripheral portion of the cylindrical valve body is formed. It is difficult to obtain dimensional accuracy of the shape, and there are many variations in products. Thereby, not only the flow rate of the cooling water in the initial valve opening stroke range L1 of the cylindrical valve body becomes unstable, but also in terms of structure, the flow rate adjustment in the range of 30 to 40 L (liter) / min is limited. Therefore, it is difficult to reliably prevent the occurrence of water temperature hunting.
[0008]
The present invention has been made in view of the above circumstances, and prevents the supply of excessive low-temperature cooling water to an engine in the initial valve opening stroke range of a cylindrical valve body, thereby reliably preventing the occurrence of water temperature hunting. It is an object of the present invention to provide a wax-type thermoresponsive control valve for an engine refrigerant circuit that can be used.
[0009]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention includes a valve body installed on an engine refrigerant circuit, and the valve body includes an annular valve seat through which refrigerant can flow, and an inner peripheral portion of the annular valve seat. The outer peripheral portion has a tubular valve body that slides and opens and closes freely in a predetermined valve opening stroke range, and a wax-type thermally responsive expansion / contraction element that drives the tubular valve body according to the temperature of the refrigerant. In a wax-type thermally responsive control valve for an engine refrigerant circuit in which a rubber annular seal is interposed between sliding contact surfaces of a cylindrical valve body and an annular valve seat, a rubber annular ring is provided on an inner peripheral side of the annular valve seat. A plurality of seals are integrally provided by vulcanization molding, and a small amount of refrigerant can flow out in the initial valve opening stroke range of the cylindrical valve body at a desired interval in the circumferential direction on the inner peripheral surface of the rubber annular seal. formed toward the refrigerant outflow direction downstream of the notch groove from the upstream side of, and, prior to A substantially inward portion of the inner peripheral surface of the rubber annular seal is integrally formed with an inward convex portion that slides on the sliding surface of the cylindrical valve body in a circumferential direction. A part of the front end side of each notch is provided so as to be located on the downstream side in the refrigerant outflow direction, and further, each of the notches has a steeply inclined surface having a deep upstream groove depth in a vertical cross section, A notched groove having a gentle slope that is bent toward the inner peripheral surface after passing through the convex portion is characterized.
[0010]
Here, in the present invention, the shape of the notch groove is a rectangular shape having a uniform width in the refrigerant outflow direction, or a substantially inverted U-shape in which the tip is an R surface, or in the refrigerant outflow direction. The tip portion has a tapered triangular shape. When each of the cutout grooves has a configuration in which the cross-sectional area gradually decreases in the refrigerant outflow direction (downstream side), a small amount of refrigerant can flow in the downstream direction in the early stage of valve opening.
[0011]
That is, in the present invention, by adopting the above configuration, a rubber annular seal is integrally provided on the inner peripheral side of the annular valve seat by vulcanization integral molding, so that the notch groove is formed by a rubber mold. It becomes possible to mold together with the vulcanization molding of the annular seal, the dimensional accuracy of the shape of the notch groove is improved, and the flow rate of the cooling water in the initial valve opening stroke range of the cylindrical valve body is stabilized even at a minute flow rate. As described above, since the notch groove is formed together with the vulcanization molding of the rubber annular seal by the mold, it is possible to reduce the variation in the product as before.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a reference embodiment of the present invention will be described in detail with reference to the drawings shown in FIGS. FIG. 1 schematically shows an entire configuration of a wax-type thermally responsive control valve for an engine refrigerant circulation circuit according to a reference embodiment of the present invention , from a valve body 1 installed in a pipe P forming an engine refrigerant circulation circuit. Become. The valve body 1 is composed of an upper casing 1a, a lower casing 1b, and an annular member 1c for fixing each of the casings. In addition to the seal gasket 2 which is assembled in a fixed manner, an annular valve seat 3 through which cooling water W can pass is provided on the inner peripheral portion of the annular member 1c, and the seal gasket 3 is provided on the fixing flange 3a of the outer peripheral portion. 2 is fixed.
[0013]
As shown in FIG. 3, the annular member 1c is formed by pressing a steel plate to form an annular fixing flange 3a and a vertical cylinder 4 that is bent and connected upward to the inner periphery of the flange 3a. And an upper flange 3e that is bent and connected inward at the upper end of the vertical cylinder 3d. A plurality of communication holes 3f are provided in the vertical cylinder 4 at intervals in a circumferential direction of the vertical cylinder 4, and a sealing annular rubber material main body 5b fixed to the inner surface of the vertical cylinder 4 and the lower surface of the upper flange 3e; The outer peripheral surface of the vertical cylinder 4 and the auxiliary annular rubber material 5c fixed to the inner peripheral side of the upper flange 3e and the fixing flange 3a are connected via the rubber material filled in the communication hole 3f to form a rubber. An annular seal 5 is formed.
[0014]
As shown in FIG. 2, a vertical cylinder 4 made of a cylindrical standing piece is integrally formed on the inner peripheral portion 3 b of the annular member 1 c along the circumferential direction. A rubber annular valve seat 3 in which a part of a sealing annular rubber material main body 5c is wound around a lower surface 3c side of a connection portion between a vertical cylinder 4 and a fixing flange 3a is fixed by integral molding.
[0015]
An inner peripheral surface 5a of the rubber annular seal 5 has an inward convex portion having a substantially V-shaped vertical cross section at an intermediate portion (substantially the center portion in the illustrated case) in the refrigerant outflow direction Y between the upstream side and the downstream side. Portions (lip portions) 6 are integrally formed so as to protrude in the circumferential direction, and a plurality of notched grooves 7 are arranged at a desired interval in the circumferential direction (four at an equal angular interval of 90 degrees in the illustrated case). The notch groove 7 has a front end portion 7a side partly facing the inwardly protruding portion 6 facing the downstream side in the refrigerant outflow direction Y. That is, an upstream inclined surface 6a connected to the cylindrical inner peripheral surface 5a and inclined so as to gradually project inward from the upstream direction to the downstream direction, and is connected in a bent state to the upstream inclined surface 6a and extends from the upstream direction to the downstream direction. A downstream inclined surface 6b which is inclined so as to expand the diameter and is connected to the inner peripheral surface 5a, and a tip end of the notch groove 7 is located further downstream than the downstream inclined surface 6b. It is located on the inner peripheral surface 5a. Further, the cross section of each of the notch grooves 7 is provided so as to gradually decrease in the downstream direction. When the inwardly protruding portion 6 is in contact with the sliding contact piece 8b of the tubular valve body 8 described later, the inwardly protruding portion 6 is contacted in a state of being crushed by about 0.2 mm to 0.4 mm.
[0016]
On the other hand, a cylindrical valve element 8 is disposed on the inner peripheral part 3b of the annular member 1c, and a flange part 8a is provided on the downstream outer peripheral part of the cylindrical valve element 8 and rises vertically from the flange part 8a. A cylindrical sliding contact piece 8b is formed. The tubular valve body 8 is always urged in the downstream direction in the refrigerant outflow direction Y by a spring 9 composed of a compression coil spring interposed between the lower casing 1b and the tubular valve body 8 in a compressed state. The flange portion 8a is brought into contact with a part of the annular valve seat surface of the rubber annular seal 5 fixed to the upstream lower surface 3c side of the annular member 1c with the cylindrical sliding contact piece therebetween. 8b is brought into sliding contact with the inward convex portion 6 on the inner peripheral surface 5a side of the rubber annular seal 5 fixed to the inner peripheral portion 3b of the annular member 1c, so that the closed state of the annular valve seat 3 is maintained. It is supposed to be.
[0017]
Further, a wax-type thermally responsive expansion and contraction element 10 is assembled to the cylindrical valve body 8, and the thermally responsive expansion and contraction element 10 is a wax responsive to a temperature change of the cooling water W flowing in the refrigerant circulation circuit in the cylindrical housing 11. And a plunger 13 which expands / contracts (retreats) via a rubber bottomed sleeve when the wax 12 expands / contracts. That is, when the valve is opened, the plunger 13 extends in the axial direction due to the expansion of the wax 12 constituting the thermally responsive expansion / contraction element 10 due to the temperature rise of the cooling water W. Then, the cylindrical housing 11 moves relatively upstream by the extension operation of the plunger 13, and the cylindrical valve body 8 moves the annular valve seat 8 within a predetermined valve opening stroke range L against the urging force of the spring 9. By moving in the direction (valve-opening direction) X away from 3, the valve-opening operation is automatically performed.
[0018]
Incidentally, as shown in FIG. 3, a mold (not shown) was used for the vertical cylinder 4 of the outer peripheral edge 3a and the inner peripheral part 3b of the annular member 1c assembled to the valve body 1 as described above. The seal packing 2 and the rubber annular seal 5 are integrally molded and fixed by vulcanization integral molding, and at the same time, the cutout groove 7 is molded in the rubber annular seal 5. This makes it possible to improve the dimensional accuracy of the shape of the cutout groove 7 formed in the rubber annular seal 5 and to reduce the variation in the product.
[0019]
In this case, the shape of the notch groove 7 is a rectangular shape having the same width in the refrigerant outflow direction Y as shown in FIG. 4A, and the downstream end 7a as shown in FIG. The shape of the surface is substantially inverted U-shaped, or the downstream distal end portion 7a is formed by changing to an arbitrary shape such as a tapered triangular shape in the refrigerant outflow direction Y as shown in FIG. The flow rate Q of the cooling water W can be easily adjusted by adjusting the depth, width, number, and the like of the notch grooves 7. In addition, as shown by one-point broken line A, two-point broken line B, and three-point broken line C in FIG. 5, corresponding to the forms of FIGS. In the valve opening stroke range L, the flow rate Q of the cooling water W in the range from the initial valve opening stroke range L1 to the complete valve opening stroke range L2 flows out in a range of, for example, 3 to 10 L (liter) / min. And a more stable outflow than that of a conventional wax-type thermally responsive control valve as shown by a solid line and a dotted line in FIG.
[0020]
In the above-described embodiment, the form of the cutout groove 7 which is uniformly inclined from the upstream side to the downstream side is shown. However, when the present invention is carried out, as shown in FIG. And a notched groove 7 having a gentle inclined surface 7c which is bent toward the inner peripheral side from a point beyond the inwardly protruding portion 6. Since the volume is increased, the amount of refrigerant flowing to the downstream side can be further stabilized even in the initial valve opening state.
[0021]
When implementing the present invention, the inwardly protruding portion 6 may have an obtuse angled V-shape or trapezoidal cross section, and the notch portion 7 may have one or more even or odd numbers of equal angles or odd numbers. They may be provided at appropriate intervals.
[0022]
【The invention's effect】
As described above, the wax-type thermally responsive control valve for an engine refrigerant circulation circuit according to the present invention is provided with a rubber annular seal integrally on the inner peripheral side of the annular valve seat by vulcanization molding. At the time of vulcanization molding of the rubber annular seal to the annular valve seat, the notch groove can be molded by a mold. As a result, the dimensional accuracy of the shape of the notch groove can be improved, and the conventional product variation can be reduced. Accordingly, the flow rate of the cooling water in the initial valve opening stroke range of the cylindrical valve element can be stabilized even with a small amount, and thus the occurrence of water temperature hunting can be reliably prevented. Also, by changing the shape of the notch groove, the flow rate of the cooling water can be easily adjusted. Further, in the present invention, the notch groove is a notch groove having a steeply inclined surface having a deep groove depth on the upstream side and a gentle inclined surface which is bent toward the inner peripheral surface after passing the inward convex portion in the longitudinal section. Therefore, the volume of the upstream side of the notch groove is increased, so that the amount of the refrigerant flowing to the downstream side can be further stabilized even in the initial valve opening state.
[Brief description of the drawings]
FIG. 1 is an explanatory view schematically showing an overall configuration of a wax-type thermally responsive control valve for an engine refrigerant circulation circuit according to a reference embodiment of the present invention.
FIG. 2 is an enlarged sectional view of a main part between sliding surfaces of an annular valve seat and a cylindrical valve body.
FIG. 3 is a cross-sectional view of a principal part showing a state in which a seal packing and a rubber annular seal are attached to an annular valve seat by vulcanization molding.
FIGS. 4A, 4B, and 4C are explanatory views showing forms of cutout grooves formed in a rubber annular seal.
FIG. 5 is an explanatory diagram showing a flow rate of cooling water in a valve opening stroke range of a cylindrical valve body in comparison with a conventional wax-type thermally responsive control valve.
FIG. 6 is an explanatory sectional view showing a modified form of the notch groove.
[Explanation of symbols]
Reference Signs List 1 valve body 1a upper casing 1b lower casing 1c annular member 2 seal packing 3 annular valve seat 3a fixing annular flange 3b inner peripheral portion 3c lower surface 4 vertical cylinder 5 rubber annular seal 5a inner peripheral surface 5b sealing annular rubber material body 5c Auxiliary annular rubber material 6 Inward convex portion 6a Upstream inclined surface 6b Downstream inclined surface 7 Notch groove 7a Tip portion 7b Steep inclined surface 7c Slowly inclined surface 8 Cylindrical valve body 8a Flange portion 8b Sliding contact piece 9 Spring 10 Thermally responsive Telescopic element 11 Cylindrical housing 12 Wax 13 Plunger L Opening stroke range L1 of cylindrical valve body Initial valve opening stroke range L2 of cylindrical valve body Complete valve opening stroke range P of cylindrical valve body P Refrigerant circulation circuit (pipe)
Q Refrigerant flow rate W Refrigerant (cooling water)
X Valve opening direction Y Refrigerant outflow direction

Claims (5)

エンジン冷媒循環回路上に設置される弁本体からなり、該弁本体は、冷媒が通水可能な環状弁座と、該環状弁座の内周部にその外周部が所定の開弁ストローク範囲で摺接して接離自在に開閉動作する筒状弁体と、該筒状弁体を冷媒の温度に応じて駆動させるワックス式熱応動伸縮素子とを有するとともに、前記筒状弁体と環状弁座との摺接面間にゴム製環状シールを介在してなるエンジン冷媒循環回路用ワックス式熱応動制御弁において、
前記環状弁座の内周部側にゴム製環状シールを加硫成型にて一体に設け、該ゴム製環状シールの内周面には円周方向に所望の間隔を置いて前記筒状弁体の初期開弁ストローク範囲で少量の冷媒が流出可能な複数の切欠溝を上流側から下流側の冷媒流出方向に向けて形成し、かつ、前記ゴム製環状シールの内周面略中間部に、前記筒状弁体の摺接面に摺接する内向き凸部を円周方向に一体に突出形成し、該内向き凸部を境として、前記各切欠溝の先端部側の一部を冷媒流出方向の下流側に位置するように設け、さらに、前記各切欠溝は縦断面において、上流側の溝深さが深い急傾斜面と、内向き凸部を越してから内周面側に屈折した緩傾斜面を有する切欠溝としたことを特徴とするエンジン冷媒循環回路用ワックス式熱応動制御弁。
The valve body is provided on an engine refrigerant circuit. The valve body has an annular valve seat through which refrigerant can flow, and an inner peripheral portion of the annular valve seat having an outer peripheral portion within a predetermined valve opening stroke range. A tubular valve body that slides and opens and closes freely so as to be able to open and close, and a wax-type thermally responsive expansion / contraction element that drives the tubular valve body in accordance with the temperature of the refrigerant; In a wax-type thermally responsive control valve for an engine refrigerant circulation circuit having a rubber annular seal interposed between sliding contact surfaces with
A rubber annular seal is integrally provided on the inner peripheral side of the annular valve seat by vulcanization molding, and the cylindrical valve body is provided at a desired circumferential distance on an inner peripheral surface of the rubber annular seal. A plurality of notch grooves from which a small amount of refrigerant can flow out in the initial valve opening stroke range are formed from the upstream side to the refrigerant outflow direction on the downstream side , and at a substantially middle portion of the inner peripheral surface of the rubber annular seal, An inward convex portion that slides on the sliding contact surface of the cylindrical valve body is integrally formed so as to protrude in the circumferential direction, and a part of the front end of each of the notched grooves flows out of the inward convex portion as a refrigerant. The notch groove is further provided in the vertical section, and the groove depth on the upstream side is deep and steeply inclined, and the notch groove is bent toward the inner peripheral surface side after passing through the inward convex portion. A wax-type thermally responsive control valve for an engine refrigerant circuit, wherein the notch groove has a gentle slope .
前記切欠溝は、冷媒流出方向に向けて等幅な矩形状の形態を有することを特徴とする請求項1に記載のエンジン冷媒循環回路用ワックス式熱応動制御弁。The wax-type thermally responsive control valve for an engine refrigerant circuit according to claim 1, wherein the notch groove has a rectangular shape having an equal width in a refrigerant outflow direction. 前記切欠溝は、先端部がR面の略逆U字形状の形態を有することを特徴とする請求項1に記載のエンジン冷媒循環回路用ワックス式熱応動制御弁。The wax-type thermally responsive control valve for an engine refrigerant circuit according to claim 1, wherein the cutout groove has a shape of a substantially inverted U-shape with a front end having an R surface. 前記切欠溝は、冷媒流出方向に向けて先端部が先細の三角形状の形態を有することを特徴とする請求項1に記載のエンジン冷媒循環回路用ワックス式熱応動制御弁。The wax-type thermally responsive control valve for an engine refrigerant circuit according to claim 1, wherein the notch groove has a triangular shape whose tip portion is tapered in a refrigerant outflow direction. 前記切欠溝は、冷媒流出方向に向けて横断面積が漸次小さくなる形態を有することを特徴とする請求項1〜4のいずれかに記載のエンジン冷媒循環回路用ワックス式熱応動制御弁。The wax-type thermally responsive control valve for an engine refrigerant circuit according to any one of claims 1 to 4, wherein the notch groove has a form in which a cross-sectional area gradually decreases in a refrigerant outflow direction.
JP2000193844A 2000-06-28 2000-06-28 Wax-type thermoresponsive control valve for engine refrigerant circuit Expired - Lifetime JP3545997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000193844A JP3545997B2 (en) 2000-06-28 2000-06-28 Wax-type thermoresponsive control valve for engine refrigerant circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000193844A JP3545997B2 (en) 2000-06-28 2000-06-28 Wax-type thermoresponsive control valve for engine refrigerant circuit

Publications (2)

Publication Number Publication Date
JP2002004859A JP2002004859A (en) 2002-01-09
JP3545997B2 true JP3545997B2 (en) 2004-07-21

Family

ID=18692763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000193844A Expired - Lifetime JP3545997B2 (en) 2000-06-28 2000-06-28 Wax-type thermoresponsive control valve for engine refrigerant circuit

Country Status (1)

Country Link
JP (1) JP3545997B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005351123A (en) * 2004-06-09 2005-12-22 Nissan Motor Co Ltd Thermostat and vehicle cooling circuit having thermostat
US20200063882A1 (en) * 2017-04-07 2020-02-27 Nok Corporation Opening and closing valve structure for thermostat device

Also Published As

Publication number Publication date
JP2002004859A (en) 2002-01-09

Similar Documents

Publication Publication Date Title
JP4262346B2 (en) thermostat
US5188337A (en) Control valve with pressure equalization
JP2764110B2 (en) Fail-safe thermostat for vehicle cooling system
US20010002646A1 (en) Multifunction rocker switch
US7175102B2 (en) Thermoelement
CN109699183B (en) Heat exchanger with dual internal valves
US20090026405A1 (en) Leak resistant by-pass valve
KR101286474B1 (en) Thermostat Apparatus
US4288033A (en) Control valve assembly
US4257553A (en) Valve construction and method of making the same
CN103282618B (en) For the thermostat of coolant system
AU636068B2 (en) Thermo-actuator
JP3545997B2 (en) Wax-type thermoresponsive control valve for engine refrigerant circuit
US5961037A (en) Engine coolant thermostat with overtemperature protection
CA2029255C (en) Sealing means for a thermostat
US4426036A (en) Valve construction and method of making the same
US10302208B2 (en) Control valve with external relief bias member
EP1304517B1 (en) Thermostat and mounting structure of the thermostat
JPS6316943Y2 (en)
JPH07305787A (en) Thermostat
US4032067A (en) Thermostat valve
JPH0727250A (en) Thermostat valve for cooling circuit of internal combustion engine
WO2022163068A1 (en) Thermostat device
JPH07332085A (en) Thermostat
US5445318A (en) Thermostatic safety valve for a hydraulic cooling circuit

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040409

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250