JP3545485B2 - Transmission line accident point location device - Google Patents

Transmission line accident point location device Download PDF

Info

Publication number
JP3545485B2
JP3545485B2 JP06472995A JP6472995A JP3545485B2 JP 3545485 B2 JP3545485 B2 JP 3545485B2 JP 06472995 A JP06472995 A JP 06472995A JP 6472995 A JP6472995 A JP 6472995A JP 3545485 B2 JP3545485 B2 JP 3545485B2
Authority
JP
Japan
Prior art keywords
line
positive
terminal
phase
phase voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06472995A
Other languages
Japanese (ja)
Other versions
JPH08233895A (en
Inventor
保広 黒沢
充 山浦
Original Assignee
ティーエム・ティーアンドディー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ティーエム・ティーアンドディー株式会社 filed Critical ティーエム・ティーアンドディー株式会社
Priority to JP06472995A priority Critical patent/JP3545485B2/en
Publication of JPH08233895A publication Critical patent/JPH08233895A/en
Application granted granted Critical
Publication of JP3545485B2 publication Critical patent/JP3545485B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、対向端子の3相電圧を正相電圧に変換して、各相電流と共に伝送して、正相電気量で事故点を標定する送電線事故点標定装置に関する。
【0002】
【従来の技術】
従来、送電線の事故点標定方式としては、サージ受信方式,パルスレーダ方式があり、特に近年ではインピーダンス測定方式が適用されてきている。前者は高価な送電線への信号結合装置を要するのに対し、後者は電圧変成器,電流変成器によって得られる電圧,電流をディジタルデータに変換してインピーダンスを求め、事故点迄の距離を測定するものである。この方式として、1端子の電圧,電流で判定する方式(特公昭58−29471号)と2端子の電圧,電流を使う方式(「送電線の事故点標定器」 法貴、木谷著、昭和32年オーム社)がある。
【0003】
一般に、ディジタル電流差動リレーでは得られる各端子の電流データのベクトル和電流が事故電流成分そのものであることを利用して、下式に基づいて一端判定形のインピーダンス測定方式を実現する方式がある。図10はその原理を示す系統図である。図10において(1) 式,(2) 式が成立することは周知であり、Rが実抵抗成分である場合は、(3) 式が成立する。
【数1】

Figure 0003545485
但し、1は送電線、2Aは電圧変成器、3Aは電流変成器、VはA端子の対地電圧、Vは事故点の対地電圧、Fは事故点、IはA端子からの事故電流、Iは事故電流、xはA端子から事故点までの距離である。
【0004】
本式のIは事故点電流そのもので、各端子電流I,Iのベクトル和電流として算出される。しかし本式はあくまでも事故点抵抗が実抵抗として扱った場合に成立するもので、これがリアクタンス成分を有するとIとVとは同位相とはならず、(3) 式が成立しないため、そのまま測距誤差となってしまう。このような状況を解決するには対向端子の電圧を使えば事故点の残り電圧に影響されない。原理は(5) 式,(6) 式の通りである。図11に原理を説明する系統図を示す。
【数2】
Figure 0003545485
【0005】
【発明が解決しようとする課題】
しかし電流差動リレーの構成を適用する場合、(6) 式の標定計算を行なうには対向端子の全相電流及び電圧が必要で、電流は電流差動リレーの電流を流用すればよいが、電圧の伝送速度が制限されると全相の電圧を所定の速度で伝送できない。例えば電気学会論文誌B(113巻2号、平成5年)に記載の典型的な各端子対向形PCM電流差動リレーの伝送速度は54kbpsである。
【0006】
実際の伝送例は文献(東芝レビュー41巻11号“送電線用ディジタル電流差動継電装置”、’86年11月)に記載されているが、図12にその一部を示す。本図では電流データ3相分を3相*12ビット/(1/720Hz=1.388ms)で伝送し、電圧データとしては4ビット/(1/720Hz=1.388ms)が割り当てられている。
【0007】
更に事故相が何れかで標定電気量を変える必要がある。例えば2線短絡・地絡事故の場合は当該相間電圧,電流を使う必要があり、1線地絡事故の場合は地絡相の電気量が使われるのが一般的である。そのためには事故相を選別する機能が必要となるので、全相の電気量を対向端子に送出する必要がある。
【0008】
本発明は上記事情に鑑みてなされたものであり、伝送速度上の制約があっても対向端子の電圧データの伝送量を必要最小限に抑えて、事故点の残り電圧に影響されず、かつ、事故相を選別する機能を要せずに測距できる多端子のデータを使用した送電線事故点標定装置を提供することを目的としている。
【0009】
【課題を解決するための手段】
本発明の請求項1に係る送電線事故点標定装置は、2回線送電線を有する電力系統の各端子から電気量を抽出し、事故発生時の送電線の事故点を標定する送電線事故点標定装置において、下記8つの手段を備えた。
【0010】
(1)2回線送電線の一方の端子Aの各々の回線の3相電圧VA1L,VA2Lの差分の正相電圧ΔVA1を得る第1の手段。
【0011】
(2)他方の端子Bの各々の回線3相電圧VB1L,VB2Lの差分の正相電圧ΔB1を得る第2の手段。
【0012】
(3)端子Bの各々の回線の3相電流IB1L,IB2Lと前記第2の手段で得られる正相電圧ΔVB1を夫々端子Aに伝送する第3の手段。
【0013】
(4)第3の手段で伝送された端子Bの各々の回線の3相電流と予め設定された当該送電線の端子Aと端子B間の各々の回線の当該回線の送電線線路長インピーダンスZS1L,ZS2L及び隣回線との間の相互線路長インピーダンスZm1L,Zm2Lとの積の差分の3相電圧値{(ZS1L・IB1L+Zm1L・IB2L)−(ZS2L・IB2L+Zm2L・IB1L)・L}を得る第4の手段。
【0014】
(5)第4の手段で得られた3相の電圧値から正相電圧{(ZS1L・IB1L+Zm1L・IB2L)−(ZS2L・IB2L+Zm2L・IB1L)・Lを得る第5の手段。
【0015】
(6)端子Aと端子Bの各々の回線の電流のベクトル和Id1L,Id2Lを各3相分算出し、その3相分の電流と予め設定された前記送電線線路の当該回線の単位長当りの送電線線路インピーダンスzS1L,zS2L及び隣回線との間の単位長当りの相互インピーダンスzm1L,zm2Lとの積の差分の3相電圧値{(zS1L・Id1L+zm1L・Id2L)−(zS2L・Id2L+zm2L・Id1L)}を得る第6の手段。
【0016】
(7)第6の手段で得られる3相の電圧値から正相電圧{(zS1L・Id1L+zm1L・Id2L)−(zS2L・Id2L+zm2L・Id1L)}を得る第7の手段。
【0017】
(8)第1の手段で得られる正相電圧から第3の手段で伝送された正相電圧を減じ更に第5の手段で得られる正相電圧を加算した値から[ΔVA1−ΔVB1+L・{(ZS1L・IB1L+Zm1L・IB2L)−(ZS2L・IB2L+Zm2L・IB1L)}]を求め、更にこれを第7の手段で得られた正相電圧で除して事故点までの距離を算出する第8の手段。
【0018】
本発明の請求項2に係る送電線事故点標定装置は、請求項1において、第2の手段では、端子Bの2回線各々の3相電圧VB1L,VB2Lを検出しこれらを正相変換して正相電圧VB1L1,VB2L1を得、各回線の3相電流IB1L,IB2Lと共にA端子に伝送し、これを受信したA端子では第8の手段にて、3相電圧の差分のΔVB1に代えて(VB1L1−VB1L2)として標定値を算出するようにした。
【0019】
本発明の請求項3に係る送電線事故点標定装置は、請求項1又は請求項2において、第3の手段において、端子BのA端への伝送速度は3相電流に対して正相電圧を遅らせるようにした。
【0020】
本発明の請求項4に係る送電線事故点標定装置は、請求項1において、第8の手段において、片回線停止時、停止回線の正相電圧及び正相電流を零にすることにより、標定値を算出するようにした。
【0021】
本発明の請求項5に係る送電線事故点標定装置は、2回線送電線を有する電力系統の各端子から電気量を抽出し、事故発生時の送電線の事故点を標定する送電線事故点標定装置において、下記9つの手段を備えた。
【0022】
(1)2回線送電線の各々の回線の電気量を同一時刻に抽出するために各々の回線を同期制御して制御信号を出力する第9の手段。
【0023】
(2)各回線毎に第9の手段から同期制御信号に基づいて、一方の端子Aの一方の回線の3相電圧VA()Lの正相電圧VA()L1を得る第1の手段。
【0024】
(3)他方の端子Bの一方の回線の3相電圧VB()Lの正相電圧VB()L1を得る第2の手段。
【0025】
(4)端子Bの一方の回線の3相電流IB()Lと第2の手段で得られる正相電圧VBL1を端子Aに伝送する第3の手段。
【0026】
(5)端子Bの各々の回線の3相電流と予め設定された当該送電線の端子Aと端子B間の各々の回線の当該回線の送電線線路長インピーダンスZS()L及び隣回線との間の相互線路長インピーダンスZm()Lとの積演算で得られる3相電圧値(ZS()L・IB()L+Zm()L・IB()′L)・Lを得る第4の手段。
【0027】
(6)第4の手段で得られた3相の電圧値から正相電圧{(ZS()L・IB()L+Zm()L・IB()′L}を得る第5の手段。
【0028】
(7)端子Aと端子Bの各々の回線の電流ベルト和Id()L,Id()′Lを各3相分加算したり、その3相分の電流と予め設定された前記送電線線路の当該回線の単位長当りの送電線線路インピーダンスzS1L及び単位長当りの隣回線との間の相互インピーダンスzm()Lとの積演算で得られる3相電圧値(zS()L・Id()L+zm()L・Id()′Lを得る第6の手段。
【0029】
(8)第6の手段で得られる3相の電圧値から正相電圧(zS()L・Id()L+zm()L・Id()′Lを得る第7の手段。
【0030】
(9)第1の手段で得られる正相電圧から第3の手段で伝送された正相電圧を減じ更に第5の手段で得られる正相電圧を加算した値から[VA()L1−VB()L1+L・(ZS()L・IB()L+Zm()L・IB()′L)・L]を求め、更にこれを第7の手段で得られた正相電圧で除して事故点までの距離を算出する第8の手段。
【0031】
【作用】
本発明の請求項1,2,3,4,5に係る送電線事故点標定装置は、標定方式の作用は各請求項に共通であるため、その詳細は実施例の項で述べるが、その基本的な考え方は全端子の電圧,電流を使って事故点迄の距離を測定しようとするもので、その電圧,電流量として正相変換した電気量を使用しようというものである。正相電気量を使用することにより、事故相選別機能を必要とせずに、かつ、相手端子に正相変換した電気量を送出することにより、3相分の電気量を送る必要がなく、伝送容量に制約がある場合にも正確に標定可能となる。
【0032】
そして、各請求項では各端子の正相電気量を使って、事故点を挟む各端子の正相電圧から各々の線路降下電圧の正相分を差し引いた事故点の正相電圧が等しいことを用いて、事故点迄の距離を正確に算出している。なかんずく請求項1では平行2回線送電線を対象とし、各々の端子電圧の回線間差電圧が略零である性質を利用し、回線の正相電気量の差分量を使って、各端子電圧の大きさによって生じる誤差を軽減して、事故点迄の距離を正確に算出している。
【0033】
又、請求項2は相手端子の正相電圧を回線毎に送出し、受けた端子で回線間の差分をとるように構成したものである。又、請求項3は電流と電圧の伝送速度を変えて、伝送容量の制約があっても標定計算できる伝送方法を示し、請求項4は請求項1の平行2回線送電線の何れか一方の回線が休止している場合には休止している回線の電気量を強制的に零にして、単一回線の標定方式に切り替える方式を示している。更に、請求項5は回線間の正相電気量を使用せずに回線毎の正相電気量で標定する方式を示している。
【0034】
【実施例】
以下図面を参照して実施例を説明する。
図1は本発明に係る送電線事故点標定装置を説明する一実施例のハードウェアを示す構成図である。先ずA端子のみを説明する。図において、1Aは対象となる平行2回線送電線、2A,2Bは変流器、3A,3Bは変成器、4Aは変流器2Aの電流出力と電圧変成器3Aの電圧出力とを入力して各々適当なレベルに変換する入力変換回路、5AはA端子の電流・電圧をサンプリングするサンプリング保持回路、6Aは5Aの電流・電圧出力をアナログ・ディジタル変換する回路、7AはA端子(自端子)の伝送制御回路でA端子とB端子のサンプリング同期制御処理を行ない、サンプリング保持回路(S/H)5Aの同時サンプリング制御信号を生成する。
【0035】
8AはA端子の電流,電圧データを相手B端子に送信し、B端子からの電流,電圧データを受信制御する伝送インターフェース、9Aは事故前後のデータ(自端子,相手端子のデータ)を収集する記憶回路、10A は前記電流データを用いて電流差動リレーの動作判定及び図2に示す本発明の対象である事故点標定演算を実施する演算回路(CPU)、11A はその標定結果を表示する表示回路であり、相手端子も同様に構成されシンボルを夫々Bとしている。
【0036】
図2は演算回路10Aで行なう標定演算の内容を示す図である。10Aでは各端子の電流データ(A端子電流:IA()L,B端子電流:IB()L)のベクトル和をとり、差動電流を算出して下式に基づく差動リレーの動作判定を行なうのと並行に、差動リレーに適用する電流データを使用して事故点標定計算を行なう(詳細は後述する)。但し、以下の説明では差動リレーの構成を説明することは本発明の骨子から外れるので割愛する。
【数3】
Figure 0003545485
【0037】
前述したように事故相選別を要さず、伝送容量の制約からどんな事故であっても測距できる対称分電気量としては正相電気量がある。正相電気量は対称座標法の対称分(正相,逆送,零相)の1つで、どんな事故ケースでも必ず存在するので、事故相を検出せずに所望の機能を達成できる。
【0038】
しかし、正相に対して零相は地絡事故のみ(短絡では発生しない)、逆送は不平衡事故のみ(3相短絡事故では発生せず)発生するので、事故相を検出せずに事故点を標定するには不適である。だが正相電圧を使うと、言うまでもなく正相電圧は下式(事故点抵抗は零)に示すように事故点電圧が零にならない(電気学会編:安藤文郎他著「保護継電工学」第3章)ので、一端判定方式による標定計算量としては不適である。
【数4】
Figure 0003545485
【0039】
図3は各々の事故についての対称分回路である。図から分かるように事故点Fでの電圧(VF1)は前記したように事故点抵抗の有無に拘らず必ず残る。この対策として、事故点の正相電圧に影響を受けない方式として対向端子の電気量を使う方式がある。
【0040】
広く運用されている平行2回線送電線の端子Aと端子B間に事故が発生した場合、両端子の正相電圧VA( )1 ,VB( )1 と正相電流IA( )L1,IB( )L1と事故点正相電圧VF( )1 の関係は次式の通りである(( ) =1,2:回線名を示す)。本原理の次式を説明する系統図を図4に示す。
【0041】
【数5】
Figure 0003545485
【0042】
ここにz()1L,z()2Lは#1,#2回線の単位長インピーダンスであり、対称であればz()1L=z()2Lであることは言うまでもない。(7)式から(8)式のように測距できる。
【数6】
Figure 0003545485
【0043】
ここに添え字1で示す各相電気量から正相電気量に変換する演算子は(9) 式で示され、インピーダンス行列(zS1L ,zm1L ,zS2L ,zm2L )と各相電圧,電流の関係は(10)式で表される。
【数7】
Figure 0003545485
【0044】
更にzS1L ,zm1L ,zS2L ,zm2L は夫々(11)式のマトリックスを表わしている。
【数8】
Figure 0003545485
【0045】
上記をふまえて、図2に示す演算回路10Aの演算処理内容を説明する。平行2回線送電線の端子A,B間で事故が発生した場合、端子Aから事故点までの距離Xを、正相電圧と正相電流で示すと(8)式の通りであり、以下に再度示す。
【数9】
Figure 0003545485
【0046】
図2は請求項1に係る送電線事故点標定装置の一実施例の構成図である。したがって本実施例では前記(8) 式を演算するようにした具体例として示す。図2において、第1の手段1では2回線送電線の一方の端子Aの回線の3相電圧VA1L ,VA2L の差分の正相電圧ΔVA1を得る。なお、「P」は正相変換行列である(以下同じ)。
【0047】
一点鎖線で囲った部分は他方の端子(B端)で、ここにおいて第2の手段2では他方の端子Bの各回線の3相電圧VB1L ,VB2L の差分の正相電圧ΔVB1を得て正相変換する。
【0048】
B端(相手端)にある伝送制御手段3では、端子Bの各回線の3相電流IB1L ,IB2L と前記第2の手段で得られる正相電圧ΔVB1を夫々端子Aに伝送する。
【0049】
第4の手段4では、第3の手段で伝送された端子Bの各回線の3相電流と予め設定された当該送電線の端子Aと端子B間の各回線の当該回線の送電線線路長インピーダンスzS1L ,ZS2L 及び隣回線の相互線路長インピーダンスZm1L ,Zm2L との積の差分の3相電圧値{(ZS1L ・IB1L +Zm1L ・IB2L )−(ZS2L ・IB2L +Zm2L ・IB1L )}を得る。
【0050】
第5の手段では、前記第4の手段で得られた3相の電圧値から正相電圧{(ZS1L・IB1L+Zm1L・IB2L)−(ZS2L・IB2L+Zm2L・IB1L)}を得る。
【0051】
第6の手段6では、端子Aと端子Bの各回線の電流のベクトル和Id1L ,Id2L を各3相分算出し、その3相分の電流と予め設定された前記送電線線路の当該回線の単位長当たりの送電線線路インピーダンスzS1L ,zS2L 及び単位長当たりの隣回線との相互インピーダンスzm1L ,zm2L との積の差分の3相電圧値{(zS1L ,Id1L +zm1L ・Id2L )−(zS2L ・Id2L +zm2L ・Id1L )}を得る。
【0052】
第7の手段では、前記第6の手段で得られる3相の電圧値から正相電圧{(zS1L・Id1L+zm1L・Id2L)−(zS2L・Id2L+zm2L・Id1L)}を得る。
【0053】
第8の手段8では、前記第1の手段で得られる正相電圧から第3の手段で伝送された正相電圧を減じ、更に第5の手段で得られる正相電圧を加算した値から[ΔVA1−ΔVB1+L・{(ZS1L・IB1L+Zm1L・IB2L)−(ZS2L・IB2L+Zm2L・IB1L)}]を第7の手段で得られた正相電圧で除して事故点までの距離を算出する。
【0054】
ここに図2の第2の手段2で作成される他方の端子の回線間差分電圧ΔVB1(=(VB1−VB2)を一方の端子に送信するのは第3の手段3によって行なわれる。当然このデータはA端子のデータと同期がとれており、同一時刻に抽出される。この同期をとる手法については前記した電気学会論文誌B(113巻2号、平成5年)に詳述されている技術であり、ここでの説明は割愛する。
【0055】
本実施例によれば平行2回線送電線において夫々の端子電圧の回線間差電圧が略零である性質を利用し、回線の正相電気量の差分量をつかって、各端子電圧の大きさによって生じる誤差を軽減して故障点までの距離を正確に算出できる。
【0056】
図5は本発明の請求項2に係る送電線事故点標定装置の一実施例の構成図である。図5において、図2と同一部分及び同一機能部分については同一符号を付して説明を省略する。本実施例では2回線送電線の電圧を各々正相変換して送信し、受信した端子(A端子)で差分をとって同一式で標定計算するものである。
【0057】
即ち、第2の手段2−1 において、2回線送電線の電圧VB1L ,VB2L を個々に検出すると共に、それらを正相変換することにより、VB1L1=[P]VB1L ,VB2L1=[P]VB2L を得、IB1L ,IB2L と共に個別にA端子へ送信するものである。
【0058】
なお、これを受信したA端子では(8) 式を演算することは前記実施例の場合と同様である。ただし第8の手段ではVB1L1とVB1L2との差分をとるようにしている。本実施例によれば図の実施例と同様の効果が得られる。
【0059】
図6は本発明の請求項3に係る送電線事故点標定装置の一実施例の構成図であり、本実施例では3相電流と正相電圧の伝送速度を制御するものである。この種の装置において、3相電流の伝送速度を遅らせることは差動リレーの動作責務に直接影響を与えるために許容されない。
【0060】
即ち、系統の安定度を確保するため事故検出・事故除去を高速に行ない、かつ、高速に各相再閉路を行なうためには事故相を確実に判別する必要がある。そして、図6(a) は両者を同じ伝送速度で送る場合、図6(b) は3相の電流データに対して正相電圧を1/3の速度にして(分割して)送信する例を示している。
【0061】
伝送フォーマットの具体例の詳細は文献(東芝レビュー41巻11号“送電線用ディジタル電流差動継電装置”、’86年11月)に説明されている通りで、前述の図5に示す。同図の高速on−off4ビットのところに12ビット長/1リードの正相電圧データを3フレーム毎4ビット長に分割して割り付けて伝送することができる。本実施例によれば送電容量に制約があったとしても、電圧量を電流量に比して遅れて伝送することにより、充分対応可能である。
【0062】
図7は本発明の請求項4に係る送電線事故点標定装置の一実施例を説明する系統構成図であり、2回線送電線の片回線停止時の状態を示す。これを#2回線停止の例で示すと、IA2L=0,IB2L=0,IA2L+IB2L=0であるため、標定値xは(12)式となる。
【数10】
Figure 0003545485
なお、図8が本実施例の第8の手段8の処理内容を示す構成図である。
【0063】
(12)式の各端子の電圧は線路電圧であり、停止回線側には運用側の電流による誘導電圧分が生じることになる。即ち、その影響は相互インピーダンスzm2L により生じる。回線が停止しているか否かについては送電線に入っている遮断器の開閉状態を見て判断することができることは言うまでもない。本実施例によれば片回線が休止している場合であっても、休止している回線の電気量を強制的に零にすることにより標定できる。
【0064】
図9は本発明の請求項5に係る送電線事故点標定装置の一実施例の構成図である。図9において、図1と同一部分及び同一機能部分については同一符号を付す。本実施例では回線毎に同一時刻のデータ(隣回線の電流)を抽出するために、回線間のサンプリングを同期させるものである。
【0065】
そして本実施では回線単位に収集した両端子の3相電流と正相電圧を使って、自端子(A端子)で(13)式に基づいて標定計算するものである。これは#1回線側の事故を標定するもので、#2回線側の事故は(14)式に基づいて標定することは言うまでもない。
【数11】
Figure 0003545485
【0066】
上記内容を基に図9に示す実施例を説明する。図9において、新たに付加された第9の手段9では各回線の電気量を同一時刻に抽出するために回線間を同期制御して制御信号を出力する。
【0067】
第2の手段1では、第9の手段からの同期制御信号に基づいて、各回線毎に、一方の端子Aの一方の回線の3相電圧VA( )L の正相電圧VA( )L1を得る。
【0068】
第2の手段2では、他方の端子Bの一方の回線の3相電圧VB( )L の正相電圧VB( )L1を得る。
【0069】
第3の手段3では、端子Bの一方の回線の3相電流IB( )L と第2の手段で得られる正相電圧VB( )L1を端子Aに伝送する。
【0070】
第4の手段4では、端子Bの各回線の3相電流と予め設定された当該送電線の端子Aと端子B間の各々の回線の当該回線の送電線線路長インピーダンスZS()L及び隣回線との間の相互線路長インピーダンスZm()Lとの積演算で得られる3相電圧値(ZS()L・IB()L+Zm()L・IB()′L)を得る。
【0071】
第5の手段5では、前記第4の手段で得られた3相の電圧値から正相電圧(ZS()L・IB()L+Zm()L・IB()′Lを得る。
【0072】
第6の手段6では、端子Aと端子Bの各々の回線の電流のベクトル和Id( )L ,Id( ) を各3相分算出し、その3相分の電流と予め設定された前記送電線線路の当該回線の単位長当たりの送電線線路インピーダンスzS1L 及び単位長当たりの隣回線との相互インピーダンスzm( )L との積演算で得られる3相電圧値(zS( )L ・Id( )L +zm( )L ・Id( ) )を得る。
【0073】
第7の手段7では、前記第6の手段で得られる3相の電圧値から正相電圧(zS()L・Id()L+zm()L・Id()′Lを得る。
【0074】
第8の手段8では、第1の手段で得られる正相電圧から第3の手段で伝送された正相電圧を減じ、更に第5の手段で得られる正相電圧を加算した値[VA()L1−VB()L1+(ZS()L・IB()L+Zm()L・IB()′L]を求め、更にこれを第7の手段で得られた正相電圧で除して事故点までの距離を算出する。
【0075】
本実施例では回線毎に同一時刻のデータ(隣回線の電流)を抽出するために回線間のサンプリングを同期制御する必要がる。同期をとる手法は種々あるが、これらは本発明の骨子ではないため割愛する。
【0076】
なお、この方式でも片回線停止時の処置や3相電流と正相電圧の伝送速度の制御方法については各々前記実施例同様に成り立つ。本実施例によれば回線間の正相電気量を使用せずに回線毎の正相電気量で標定できる。
【0077】
【発明の効果】
以上説明したように、本発明によれば送電線を挟む端子の電気量を集めて事故点を標定する方式において、各端子の電気量から所定の量を作成し、それを正相変換して標定するようにしたので、事故相を選別せずに必要最小限の電気量で精度よく事故点を標定することができる。
【図面の簡単な説明】
【図1】本発明の実施例のハード構成図を説明する図。
【図2】本発明の請求項1に係る送電線事故点標定装置の一実施例の処理内容を示すブロック図。
【図3】各事故種別毎の対称分回路。
【図4】2回線送電線と事故点との関係を示す図。
【図5】本発明の請求項2に係る送電線事故点標定装置の一実施例の構成図。
【図6】本発明の請求項3に係る送電線事故点標定装置の一実施例の構成図。
【図7】本発明の請求項4に係る送電線事故点標定装置の一実施例の構成図。
【図8】図7の場合の第8の手段の処理内容図。
【図9】本発明の請求項5に係る送電線事故点標定装置の一実施例の構成図。
【図10】従来の一端判定形のインピーダンス測定方式を示す図。
【図11】従来の対向端子の電圧を使った事故点標定方式を示す図。
【図12】従来の伝送方式を説明する図。
【符号の説明】
1A 送電線
2A,2B 変流器
3A,3B 変成器
4A 入力変換回路
5A S/H
6A A/D
7A 伝送制御回路
8A 伝送インターフェース
9A RAM
10A CPU
11A 表示回路
1 第1の手段
2 第2の手段
3 第3の手段
4 第4の手段
5 第5の手段
6 第6の手段
7 第7の手段
8 第8の手段
9 第9の手段[0001]
[Industrial applications]
The present invention relates to a transmission line fault point locating device that converts a three-phase voltage of an opposite terminal into a positive-phase voltage, transmits the voltage together with each phase current, and locates a fault point with a positive-phase quantity of electricity.
[0002]
[Prior art]
Conventionally, there are a surge receiving method and a pulse radar method as fault point locating methods for transmission lines, and in particular, an impedance measuring method has recently been applied in recent years. The former requires an expensive signal coupling device to the transmission line, while the latter converts the voltage and current obtained by the voltage transformer and current transformer into digital data to obtain impedance and measures the distance to the fault point. To do. This method is based on the method of determining the voltage and current of one terminal (Japanese Patent Publication No. 58-29471) and the method of using the voltage and current of two terminals ("Transmission line fault locator") by Hoki, Kitani, Showa 32 Year Ohmsha).
[0003]
In general, in digital current differential relays, there is a method for realizing an impedance measurement method of a one-end determination type based on the following equation, utilizing that the vector sum current of current data of each terminal obtained is the fault current component itself. . FIG. 10 is a system diagram showing the principle. It is well known that equations (1) and (2) hold in FIG.FIs a real resistance component, the expression (3) is established.
(Equation 1)
Figure 0003545485
However, 1 is a transmission line, 2A is a voltage transformer, 3A is a current transformer, VAIs the ground voltage of the A terminal, VFIs the ground voltage at the fault point, F is the fault point, IAIs the fault current from the A terminal, IFIs the fault current, and x is the distance from the A terminal to the fault point.
[0004]
I of this formulaFIs the fault point current itself, and each terminal current IA, IBIs calculated as the vector sum current of However, this equation is satisfied only when the accident point resistance is treated as a real resistance, and if this has a reactance component, IFAnd VFDoes not have the same phase, and the formula (3) is not satisfied, so that the distance measurement error is directly generated. To solve such a situation, if the voltage of the opposite terminal is used, it is not affected by the remaining voltage at the fault point. The principle is as shown in equations (5) and (6). FIG. 11 is a system diagram illustrating the principle.
(Equation 2)
Figure 0003545485
[0005]
[Problems to be solved by the invention]
However, when the configuration of the current differential relay is applied, the orientation calculation of the equation (6) requires all the phase currents and voltages of the opposite terminals, and the current may be the current of the current differential relay. If the voltage transmission speed is limited, it is not possible to transmit all the phase voltages at a predetermined speed. For example, the transmission speed of a typical PCM current differential relay with opposed terminals described in IEEJ Transactions on Journal B (Vol. 113, No. 2, 1993) is 54 kbps.
[0006]
An actual transmission example is described in the literature (Toshiba Review Vol. 41, No. 11, "Digital Current Differential Relay for Transmission Lines", November 1986). FIG. In this figure, three phases of current data are transmitted at three phases * 12 bits / (1/720 Hz = 1.388 ms), and 4 bits / (1/720 Hz = 1.388 ms) are allocated as voltage data.
[0007]
Further, it is necessary to change the standardized electricity quantity in any of the accident phases. For example, in the case of a two-wire short-circuit and ground fault, it is necessary to use the inter-phase voltage and current. For that purpose, a function for selecting the accident phase is required, so that it is necessary to transmit the electric quantity of all phases to the opposite terminal.
[0008]
The present invention has been made in view of the above circumstances, and even if there is a restriction on the transmission speed, the transmission amount of voltage data at the opposite terminal is minimized, and the voltage is not affected by the remaining voltage at the fault point, and It is another object of the present invention to provide a transmission line fault point locating device using multi-terminal data that can measure a distance without a function of selecting a fault phase.
[0009]
[Means for Solving the Problems]
A transmission line fault point locating device according to claim 1 of the present invention extracts a quantity of electricity from each terminal of a power system having two circuit transmission lines and locates a fault point of the transmission line when an accident occurs. The orientation device was provided with the following eight means.
[0010]
(1) Three-phase voltage V of each line of one terminal A of the two-line transmission lineA1L, VA2LPositive-phase voltage ΔV of the differenceA1The first means to obtain
[0011]
(2) Three-phase voltage V of each line of the other terminal BB1L, VB2LPositive-sequence voltage ΔB1The second means to obtain.
[0012]
(3) Three-phase current I of each line of terminal BB1L, IB2LAnd the positive-phase voltage ΔV obtained by the second means.B1Third means for transmitting to the terminal A respectively.
[0013]
(4) The three-phase current of each line of the terminal B transmitted by the third means and a preset transmission line length impedance Z of each line between the terminals A and B of the transmission line set in advance.S1L, ZS2LAnd the mutual line length impedance Z between adjacent linesm1L, Zm2LAnd the three-phase voltage value {(ZS1L・ IB1L+ Zm1L・ IB2L)-(ZS2L・ IB2L+ Zm2L・ IB1L) ・ L1A fourth means of obtaining}.
[0014]
(5) From the three-phase voltage values obtained by the fourth means, the positive-phase voltage {(ZS1L・ IB1L+ Zm1L・ IB2L)-(ZS2L・ IB2L+ Zm2L・ IB1L) ・ L11A fifth means for obtaining
[0015]
(6) Vector sum I of current of each line of terminal A and terminal Bd1L, Id2LAre calculated for each of the three phases, and the currents for the three phases and the transmission line impedance z per unit length of the line of the transmission line set in advance are calculated.S1L, ZS2LAnd the mutual impedance z per unit length between adjacent linesm1L, Zm2LAnd the three-phase voltage value {(zS1L・ Id1L+ Zm1L・ Id2L)-(ZS2L・ Id2L+ Zm2L・ Id1L)}1A sixth means for obtaining
[0016]
(7) From the three-phase voltage values obtained by the sixth means, the positive-phase voltage {(zS1L・ Id1L+ Zm1L・ Id2L)-(ZS2L・ Id2L+ Zm2L・ Id1L)}1Seventh means for obtaining
[0017]
(8) From the value obtained by subtracting the positive-phase voltage transmitted by the third means from the positive-phase voltage obtained by the first means and further adding the positive-phase voltage obtained by the fifth means, [ΔVA1-ΔVB1+ L {(ZS1L・ IB1L+ Zm1L・ IB2L)-(ZS2L・ IB2L+ Zm2L・ IB1L)}1Eighth means for calculating a distance to an accident point by dividing the same by the positive-sequence voltage obtained by the seventh means.
[0018]
In the transmission line fault point locating device according to claim 2 of the present invention, in the first means, the three-phase voltage V of each of the two lines of the terminal B is used as the second means.B1L, VB2LAre detected, and these are converted to a positive phase to convert the positive phase voltage VB1L1, VB2L1And the three-phase current I of each lineB1L, IB2LIs transmitted to the A terminal together with the A terminal.B1Instead of (VB1L1-VB1L2) To calculate the orientation value.
[0019]
The transmission line fault point locating device according to claim 3 of the present invention is the transmission line fault point locating device according to claim 1 or 2, wherein the transmission speed of the terminal B to the terminal A is a positive-phase voltage with respect to the three-phase current. Was delayed.
[0020]
In the transmission line fault point locating device according to claim 4 of the present invention, in the eighth means, when one line is stopped, the positive-phase voltage and the positive-phase current of the stopped line are set to zero. The value was calculated.
[0021]
A transmission line fault point locating device according to claim 5 of the present invention extracts a quantity of electricity from each terminal of a power system having two circuit transmission lines and locates the fault point of the transmission line when an accident occurs. The orientation apparatus was provided with the following nine means.
[0022]
(1) Ninth means for synchronously controlling each line and outputting a control signal in order to extract the amount of electricity of each line of the two-line transmission line at the same time.
[0023]
(2) For each line, based on the synchronization control signal from the ninth means, the three-phase voltage V of one line of one terminal AA () LPositive-phase voltage VA () L1The first means to obtain
[0024]
(3) Three-phase voltage V of one line of the other terminal BB () LPositive-phase voltage VB () L1The second means to obtain.
[0025]
(4) Three-phase current I of one line of terminal BB () LAnd the positive-phase voltage V obtained by the second meansBL1A third means for transmitting to the terminal A.
[0026]
(5) The three-phase current of each line of the terminal B and a preset transmission line length impedance Z of each line between the terminals A and B of the transmission line set in advance.S () LAnd the mutual line length impedance Z between adjacent linesm () LAnd the three-phase voltage value (ZS () L・ IB () L+ Zm () L・ IB () 'L) ・ L1A fourth means of obtaining
[0027]
(6) From the three-phase voltage values obtained by the fourth means, the positive-phase voltage {(ZS () L・ IB () L+ Zm () L・ IB () 'L)1A fifth means of obtaining}.
[0028]
(7) Current belt sum I of each line of terminal A and terminal Bd () L, Id () 'LFor each of the three phases, and the current for the three phases and the transmission line impedance z per unit length of the line of the transmission line set in advance.S1LAnd the mutual impedance z between adjacent lines per unit lengthm () LAnd the three-phase voltage value (zS () L・ Id () L+ Zm () L・ Id () 'L)1A sixth means for obtaining
[0029]
(8) From the three-phase voltage values obtained by the sixth means, the positive-phase voltage (zS () L・ Id () L+ Zm () L・ Id () 'L)1Seventh means for obtaining
[0030]
(9) The positive phase voltage transmitted by the third means is subtracted from the positive phase voltage obtained by the first means, and the positive phase voltage obtained by the fifth means is added.A () L1-VB () L1+ L ・ (ZS () L・ IB () L+ Zm () L・ IB () 'L) ・ L1Eighth means for calculating a distance to an accident point by dividing the same by the positive-sequence voltage obtained by the seventh means.
[0031]
[Action]
In the transmission line fault point locating device according to claims 1, 2, 3, 4, and 5 of the present invention, the operation of the locating method is common to each claim. The basic idea is to measure the distance to the fault point using the voltages and currents of all terminals, and to use the positive-phase converted electricity quantity as the voltage and current quantity. By using the positive phase electricity quantity, there is no need for the accident phase selection function, and by sending the positive phase transformed electricity quantity to the partner terminal, there is no need to send the three phase electricity quantity, so transmission Even when the capacity is restricted, accurate orientation can be performed.
[0032]
Then, in each claim, the positive-phase voltage at each fault point obtained by subtracting the positive-phase component of each line drop voltage from the positive-phase voltage at each terminal sandwiching the fault point using the positive-phase electric quantity at each terminal is equal. The distance to the accident point is accurately calculated. In particular, claim 1 is directed to a parallel two-line transmission line, utilizing the property that the line-to-line difference voltage of each terminal voltage is substantially zero, and using the difference amount of the positive-phase electricity quantity of each line to determine the voltage of each terminal voltage. The error caused by the size is reduced, and the distance to the accident point is calculated accurately.
[0033]
According to a second aspect of the present invention, the positive-phase voltage of the partner terminal is transmitted for each line, and the difference between the lines is obtained at the received terminal. Further, claim 3 shows a transmission method in which the transmission speed of current and voltage is changed so that orientation calculation can be performed even when the transmission capacity is restricted. Claim 4 shows one of the parallel two-line transmission lines of claim 1. In the case where the line is suspended, the amount of electricity of the suspended line is forcibly reduced to zero, and the system is switched to the single line orientation system. Further, claim 5 shows a method of locating the normal phase electric quantity for each line without using the positive phase electric quantity between the lines.
[0034]
【Example】
Embodiments will be described below with reference to the drawings.
FIG. 1 is a configuration diagram showing hardware of one embodiment for explaining a transmission line fault point locating apparatus according to the present invention. First, only the A terminal will be described. In the figure, 1A is a target parallel two-line transmission line, 2A and 2B are current transformers, 3A and 3B are transformers, and 4A is a current output of the current transformer 2A and a voltage output of the voltage transformer 3A. 5A is a sampling and holding circuit for sampling the current and voltage of the A terminal, 6A is a circuit for converting the 5A current / voltage output from analog to digital, and 7A is the A terminal (own terminal). ) Performs the sampling synchronization control processing of the A terminal and the B terminal in the transmission control circuit to generate a simultaneous sampling control signal for the sampling and holding circuit (S / H) 5A.
[0035]
8A is a transmission interface for transmitting the current and voltage data of the A terminal to the partner B terminal and receiving and controlling the current and voltage data from the B terminal, and 9A is collecting data before and after the accident (data of the own terminal and the partner terminal). The storage circuit 10A is a calculation circuit (CPU) for performing the operation determination of the current differential relay and the fault point locating operation shown in FIG. 2, which is the object of the present invention shown in FIG. This is a display circuit, and a partner terminal is similarly configured, and each symbol is B.
[0036]
FIG. 2 is a diagram showing the contents of the orientation calculation performed by the arithmetic circuit 10A. At 10A, the current data of each terminal (A terminal current: IA () L, B terminal current: IB () L), The differential current is calculated, and the operation of the differential relay is determined based on the following equation. At the same time, the fault point locating calculation is performed using the current data applied to the differential relay ( Details will be described later). However, in the following description, description of the configuration of the differential relay will be omitted since it is outside the gist of the present invention.
(Equation 3)
Figure 0003545485
[0037]
As described above, there is a positive-sequence electric quantity as the symmetrical electric quantity that can be measured for any accident due to the restriction of the transmission capacity without requiring the fault phase selection. The positive phase electric quantity is one of the symmetric components (positive phase, reverse transmission, and zero phase) of the symmetric coordinate method, and always exists in any accident case. Therefore, the desired function can be achieved without detecting the accident phase.
[0038]
However, for the positive phase, the zero phase occurs only with a ground fault (does not occur with a short-circuit), and the reverse feed occurs only with an unbalanced fault (not with a three-phase short-circuit). It is not suitable for locating points. However, when the positive-sequence voltage is used, it goes without saying that the positive-sequence voltage does not become zero as shown in the following equation (the fault point resistance is zero) (IEEJ: Fumio Ando et al., "Protective Relay Engineering" (Chapter 3), it is not suitable as the orientation calculation amount by the one-end determination method.
(Equation 4)
Figure 0003545485
[0039]
FIG. 3 is a symmetrical circuit for each fault. As can be seen from the figure, the voltage (VF1) Always remains regardless of the presence or absence of the accident point resistance as described above. As a countermeasure, there is a method using the electric quantity of the opposite terminal as a method not affected by the positive-phase voltage at the fault point.
[0040]
When an accident occurs between terminals A and B of a widely used parallel two-circuit transmission line, the positive-phase voltage VA () 1, VB () 1And positive-sequence current IA () L1, IB () L1And the fault point positive phase voltage VF () 1Is as follows (() = 1, 2: indicates a line name). FIG. 4 is a system diagram illustrating the following equation of the present principle.
[0041]
(Equation 5)
Figure 0003545485
[0042]
Where z() 1L, Z() 2LIs the unit length impedance of the # 1 and # 2 lines, and if symmetric, z() 1L= Z() 2LNeedless to say, Distance measurement can be performed as in equations (7) to (8).
(Equation 6)
Figure 0003545485
[0043]
The operator for converting each phase electric quantity indicated by the suffix 1 into a positive-phase electric quantity is expressed by Expression (9), and the impedance matrix (zS1L, Zm1L, ZS2L, Zm2L) And the relationship between each phase voltage and current are expressed by equation (10).
(Equation 7)
Figure 0003545485
[0044]
And zS1L, Zm1L, ZS2L, Zm2LRespectively represent the matrices of equation (11).
(Equation 8)
Figure 0003545485
[0045]
Based on the above, the content of the arithmetic processing of the arithmetic circuit 10A shown in FIG. 2 will be described. When an accident occurs between the terminals A and B of the parallel two-circuit transmission line, the distance X from the terminal A to the accident point is expressed by a positive-sequence voltage and a positive-sequence current as shown in Expression (8). I will show you again.
(Equation 9)
Figure 0003545485
[0046]
FIG. 2 is a configuration diagram of one embodiment of the transmission line fault point locating device according to claim 1. Therefore, in the present embodiment, a specific example in which the equation (8) is calculated will be described. In FIG. 2, in the first means 1, the three-phase voltage V of the line at one terminal A of the two-line transmission line is shown.A1L, VA2LPositive-phase voltage ΔV of the differenceA1Get. Note that “P” is a normal phase transformation matrix (the same applies hereinafter).
[0047]
The portion surrounded by the dashed line is the other terminal (end B). In the second means 2, the three-phase voltage V of each line of the other terminal B is used.B1L, VB2LPositive-phase voltage ΔV of the differenceB1And perform normal phase conversion.
[0048]
In the transmission control means 3 at the B end (the other end), the three-phase current IB1L, IB2LAnd the positive-phase voltage ΔV obtained by the second means.B1Are transmitted to the terminal A, respectively.
[0049]
In the fourth means 4, the three-phase current of each line of the terminal B transmitted by the third means and the preset transmission line length of each line between the terminals A and B of the transmission line are set in advance. Impedance zS1L, ZS2LAnd the mutual line length impedance Z of the adjacent linem1L, Zm2LAnd the three-phase voltage value {(ZS1L・ IB1L+ Zm1L・ IB2L)-(ZS2L・ IB2L+ Zm2L・ IB1L) Get}.
[0050]
In the fifth means, the positive-phase voltage {(Z) is obtained from the three-phase voltage values obtained in the fourth means.S1L・ IB1L+ Zm1L・ IB2L)-(ZS2L・ IB2L+ Zm2L・ IB1L)}1Get.
[0051]
In the sixth means 6, the vector sum I of the current of each line of the terminal A and the terminal B is Id1L, Id2LIs calculated for each of the three phases, and the currents for the three phases and the transmission line impedance z per unit length of the line of the transmission line set in advance are calculated.S1L, ZS2LAnd the mutual impedance z with the adjacent line per unit lengthm1L, Zm2LAnd the three-phase voltage value {(zS1L, Id1L+ Zm1L・ Id2L)-(ZS2L・ Id2L+ Zm2L・ Id1L) Get}.
[0052]
In the seventh means, the positive-phase voltage {(z) is obtained from the three-phase voltage values obtained in the sixth means.S1L・ Id1L+ Zm1L・ Id2L)-(ZS2L・ Id2L+ Zm2L・ Id1L)}1Get.
[0053]
In the eighth means 8, the positive-phase voltage transmitted by the third means is subtracted from the positive-phase voltage obtained by the first means, and a value obtained by adding the positive-phase voltage obtained by the fifth means to [ ΔVA1-ΔVB1+ L {(ZS1L・ IB1L+ Zm1L・ IB2L)-(ZS2L・ IB2L+ Zm2L・ IB1L)}1] Is divided by the positive-sequence voltage obtained by the seventh means to calculate the distance to the fault point.
[0054]
Here, the line-to-line differential voltage ΔV of the other terminal created by the second means 2 in FIG.B1(= (VB1-VB2)1) Is transmitted to one terminal by the third means 3. Naturally, this data is synchronized with the data of the terminal A and is extracted at the same time. The technique for achieving this synchronization is a technique that is described in detail in the above-mentioned IEEJ Transactions on Papers B (113, 2, 1993), and a description thereof will be omitted.
[0055]
According to the present embodiment, the magnitude of each terminal voltage is determined by using the difference between the positive-phase electricity amounts of the lines by utilizing the property that the line-to-line difference voltage of each terminal voltage is substantially zero in a parallel two-line transmission line. Therefore, the distance to the failure point can be accurately calculated by reducing the error caused by the error.
[0056]
FIG. 5 is a configuration diagram of one embodiment of the transmission line fault point locating apparatus according to claim 2 of the present invention. In FIG. 5, the same portions and the same functional portions as those in FIG. In this embodiment, the voltages of the two transmission lines are converted to positive phases and transmitted, and the difference is calculated at the received terminal (A terminal) to perform the orientation calculation using the same formula.
[0057]
That is, in the second means 2-1, the voltage V of the two-line transmission line isB1L, VB2LAre detected individually, and they are subjected to normal-phase conversion, so that VB1L1= [P] VB1L, VB2L1= [P] VB2LAnd IB1L, IB2L, And individually transmitted to the A terminal.
[0058]
At the terminal A receiving this, the operation of the equation (8) is performed in the same manner as in the above embodiment. However, in the eighth means, VB1L1And VB1L2And take the difference. According to this embodiment, the same effects as those of the embodiment shown in the figure can be obtained.
[0059]
FIG. 6 is a block diagram of an embodiment of a transmission line fault point locating device according to claim 3 of the present invention. In this embodiment, the transmission speed of a three-phase current and a positive-phase voltage is controlled. In this type of device, slowing down the transmission speed of the three-phase current is not allowed because it directly affects the operational duty of the differential relay.
[0060]
That is, in order to ensure the stability of the system and to perform accident detection and accident elimination at high speed, and to perform high-speed reclosing of each phase, it is necessary to reliably identify the accident phase. FIG. 6A shows an example in which both are transmitted at the same transmission rate, and FIG. 6B shows an example in which the positive-phase voltage is reduced (divided) to three-phase current data and transmitted. Is shown.
[0061]
The details of a specific example of the transmission format are as described in the literature (Toshiba Review Vol. 41, No. 11, "Digital Current Differential Relay for Transmission Lines", November 1986), and are shown in FIG. It is possible to transmit the 12-bit length / 1-read positive-phase voltage data by dividing it into 4-bit lengths for every three frames at the high-speed on-off 4 bits in FIG. According to the present embodiment, even if the power transmission capacity is restricted, it is possible to sufficiently cope with the problem by transmitting the voltage amount later than the current amount.
[0062]
FIG. 7 is a system configuration diagram illustrating an embodiment of a transmission line fault point locating apparatus according to claim 4 of the present invention, and shows a state in which one line of a two-line transmission line is stopped. If this is shown in the example of # 2 line suspension, IA2L= 0, IB2L= 0, IA2L+ IB2LSince = 0, the orientation value x is given by equation (12).
(Equation 10)
Figure 0003545485
FIG. 8 is a configuration diagram showing the processing contents of the eighth means 8 of this embodiment.
[0063]
The voltage at each terminal in the equation (12) is a line voltage, and a voltage induced by the current on the operation side is generated on the stopped line side. That is, the effect is the mutual impedance zm2LCaused by It goes without saying that whether or not the line is stopped can be determined by checking the open / closed state of the circuit breaker in the transmission line. According to the present embodiment, even when one of the lines is inactive, the orientation can be determined by forcibly setting the electric quantity of the inactive line to zero.
[0064]
FIG. 9 is a block diagram of one embodiment of the transmission line fault point locating device according to claim 5 of the present invention. 9, the same reference numerals are given to the same portions and the same function portions as those in FIG. In this embodiment, sampling between lines is synchronized in order to extract data at the same time (current of an adjacent line) for each line.
[0065]
In this embodiment, the orientation calculation is performed at the terminal (A terminal) based on the equation (13) using the three-phase current and the positive-phase voltage of both terminals collected for each line. This locates the accident on the # 1 line side, and it goes without saying that the accident on the # 2 line side is located based on the equation (14).
(Equation 11)
Figure 0003545485
[0066]
An embodiment shown in FIG. 9 will be described based on the above contents. In FIG. 9, a newly added ninth means 9 outputs a control signal by synchronously controlling the lines in order to extract the electric quantity of each line at the same time.
[0067]
In the second means 1, on the basis of the synchronization control signal from the ninth means, for each line, the three-phase voltage V of one line of one terminal A is applied.A () LPositive-phase voltage VA () L1Get.
[0068]
In the second means 2, the three-phase voltage V of one line of the other terminal B isB () LPositive-phase voltage VB () L1Get.
[0069]
In the third means 3, the three-phase current IB () LAnd the positive-phase voltage V obtained by the second meansB () L1To the terminal A.
[0070]
In the fourth means 4, the three-phase current of each line of the terminal B and a preset transmission line length impedance Z of each line between the terminals A and B of the transmission line are preset.S () LAnd the mutual line length impedance Z between adjacent linesm () LAnd the three-phase voltage value (ZS () L・ IB () L+ Zm () L・ IB () 'LGet)
[0071]
The fifth means 5 converts the three-phase voltage values obtained by the fourth means into a positive-phase voltage (ZS () L・ IB () L+ Zm () L・ IB () 'L)1Get.
[0072]
In the sixth means 6, the vector sum I of the current of each line of the terminal A and the terminal Bd () L, Id () LIs calculated for each of the three phases, and the currents for the three phases and the transmission line impedance z per unit length of the line of the transmission line set in advance are calculated.S1LAnd the mutual impedance z with the adjacent line per unit lengthm () LAnd the three-phase voltage value (zS () L・ Id () L+ Zm () L・ Id () LGet)
[0073]
The seventh means 7 converts the three-phase voltage values obtained by the sixth means into positive-phase voltages (zS () L・ Id () L+ Zm () L・ Id () 'L)1Get.
[0074]
The eighth means 8 subtracts the positive-phase voltage transmitted by the third means from the positive-phase voltage obtained by the first means, and further adds a value [V] obtained by adding the positive-phase voltage obtained by the fifth means.A () L1-VB () L1+ (ZS () L・ IB () L+ Zm () L・ IB () 'L)1], And dividing this by the positive-sequence voltage obtained by the seventh means to calculate the distance to the fault point.
[0075]
In this embodiment, it is necessary to perform synchronous control of sampling between lines in order to extract data at the same time (current of an adjacent line) for each line. There are various methods for achieving synchronization, but these are not the gist of the present invention and will not be described.
[0076]
In this method, the measures for stopping one line and the method of controlling the transmission speed of the three-phase current and the positive-sequence voltage are the same as in the above-described embodiment. According to the present embodiment, it is possible to specify the normal phase electric quantity for each line without using the positive phase electric quantity between the lines.
[0077]
【The invention's effect】
As described above, according to the present invention, in the method of locating the fault point by collecting the electric quantity of the terminals sandwiching the transmission line, a predetermined quantity is created from the electric quantity of each terminal, and the phase is converted to the positive phase. Since the orientation is performed, the accident point can be accurately located with the minimum necessary amount of electricity without selecting the accident phase.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a hardware configuration diagram according to an embodiment of the present invention.
FIG. 2 is a block diagram showing processing contents of an embodiment of the transmission line fault point locating apparatus according to claim 1 of the present invention.
FIG. 3 is a symmetrical circuit for each accident type.
FIG. 4 is a diagram showing a relationship between a two-circuit transmission line and an accident point.
FIG. 5 is a configuration diagram of an embodiment of a transmission line fault point locating apparatus according to claim 2 of the present invention.
FIG. 6 is a configuration diagram of an embodiment of a transmission line fault point locating device according to claim 3 of the present invention.
FIG. 7 is a configuration diagram of an embodiment of a transmission line fault point locating apparatus according to claim 4 of the present invention.
FIG. 8 is a processing content diagram of an eighth means in the case of FIG. 7;
FIG. 9 is a configuration diagram of an embodiment of a transmission line accident point locating apparatus according to claim 5 of the present invention.
FIG. 10 is a diagram showing a conventional one-end determination type impedance measurement method.
FIG. 11 is a diagram showing a conventional fault point locating method using the voltage of the opposite terminal.
FIG. 12 is a diagram illustrating a conventional transmission system.
[Explanation of symbols]
1A transmission line
2A, 2B current transformer
3A, 3B transformer
4A input conversion circuit
5A S / H
6A A / D
7A transmission control circuit
8A transmission interface
9A RAM
10A CPU
11A Display circuit
1 First means
2 Second means
3 Third means
4 Fourth means
5 Fifth means
6 Sixth means
7 Seventh means
8 Eighth Means
9 ninth means

Claims (5)

2回線送電線を有する電力系統の各端子から電気量を抽出し、事故発生時の送電線の事故点を標定する送電線事故点標定装置において、下記8つの手段を備えたことを特徴とする送電線事故点標定装置。

(1) 2回線送電線の一方の端子Aの各々の回線の3相電圧VA1L,VA2Lの差分の正相電圧ΔVA1を得る第1の手段。
(2) 他方の端子Bの各々の回線3相電圧VB1L,VB2Lの差分の正相電圧ΔB1を得る第2の手段。
(3) 端子Bの各々の回線の3相電流IB1L,IB2Lと前記第2の手段で得られる正相電圧ΔVB1を夫々端子Aに伝送する第3の手段。
(4) 第3の手段で伝送された端子Bの各々の回線の3相電流と予め設定された当該送電線の端子Aと端子B間の各々の回線の当該回線の送電線線路長インピーダンスZS1L,ZS2L及び隣回線との間の相互線路長インピーダンスZm1L,Zm2Lとの積の差分の3相電圧値{(ZS1L・IB1L+Zm1L・IB2L)−(ZS2L・IB2L+Zm2L・IB1L)}を得る第4の手段。
(5) 第4の手段で得られた3相の電圧値から正相電圧{(ZS1L・IB1L+Zm1L・IB2L)−(ZS2L・IB2L+Zm2L・IB1L)} を得る第5の手段。
(6) 端子Aと端子Bの各々の回線の電流のベクトル和Id1L,Id2Lを各3相分算出し、その3相分の電流と予め設定された前記送電線線路の当該回線の単位長当りの送電線線路インピーダンスzS1L,zS2L及び隣回線との間の単位長当りの相互インピーダンスzm1L,zm2Lとの積の差分の3相電圧値{(zS1L・Id1L+zm1L・Id2L)−(zS2L・Id2L+zm2L・Id1L)}を得る第6の手段。
(7) 第6の手段で得られる3相の電圧値から正相電圧{(zS1L・Id1L+zm1L・Id2L)−(zS2L・Id2L+zm2L・Id1L)} を得る第7の手段。
(8) 第1の手段で得られる正相電圧から第3の手段で伝送された正相電圧を減じ更に第5の手段で得られる正相電圧を加算した値から[ΔVA1−ΔVB1+L・{(ZS1L・IB1L+Zm1L・IB2L)−(ZS2L・IB2L+Zm2L・IB1L)} ]を求め、更にこれを第7の手段で得られた正相電圧で除して事故点までの距離を算出する第8の手段。なお添字1は括弧内を対称座標法による正相変換したことを示す記号。以下同じ。
A transmission line fault point locating apparatus for extracting an amount of electricity from each terminal of a power system having a two-line transmission line and locating a fault point of the transmission line at the time of occurrence of an accident, comprising: Transmission line accident point locator.
Serial (1) 2-line 3-phase voltage V A1L of each line of one terminal A of the transmission line, a first means for obtaining a positive sequence voltage [Delta] V A1 of the difference between V A2L.
(2) the other 3-phase voltages V B1L of each of the line terminal B, second means for obtaining a positive phase voltage delta B1 of the difference of V B2L.
(3) three-phase current of each of the line terminal B I B1L, third means for transmitting a positive phase voltage [Delta] V B1 obtained by the second means and I B2L respectively terminal A.
(4) transmission lines line length of the line of each of the line between the terminals A and B of the 3-phase currents with a preset the transmission line of each line of the transmitted terminal B by the third means impedance Z S1L, cross line length impedance Z M1L, 3-phase voltage value of the difference of the product of the Z M2L between Z S2L and next line {(Z S1L · I B1L + Z m1L · I B2L) - (Z S2L · Fourth means for obtaining I B2L + Z m2L · I B1L )}.
(5) Fourth positive-phase voltage from the voltage values of the obtained three-phase with means - obtain {(Z S1L · I B1L + Z m1L · I B2L) (Z S2L · I B2L + Z m2L · I B1L)} 1 Fifth means.
(6) of each of the lines of current terminals A and B vector sum I d1L, the I d2L calculates the three phases, of the line of pre-set the transmission line path and the current of the three phases The three-phase voltage value of the difference between the product of the transmission line impedance z S1L , z S2L per unit length and the mutual impedance z m1L , z m2L per unit length between the adjacent line and {(z S1L · Id1L + z m1L) · I d2L) - (z S2L · I d2L + z m2L · I d1L) sixth means for obtaining a}.
(7) positive-phase voltage from the voltage value of three phases obtained by the sixth means {(z S1L · I d1L + z m1L · I d2L) - (z S2L · I d2L + z m2L · I d1L)} first get 1 7 means.
(8) [ΔV A1 -ΔV B1 + L from the value obtained by adding the positive-phase voltage obtained by further subtracting the transmitted positive phase voltage from the positive phase voltage obtained by the first means in the third means fifth means · {(Z S1L · I B1L + Z m1L · I B2L) - (Z S2L · I B2L + Z m2L · I B1L)} 1] a determined, divided by the further positive phase voltage obtained this in seventh means Eighth means for calculating the distance to the accident point by using the following method. The suffix 1 is a sign indicating that the parentheses have been subjected to normal phase conversion by the symmetric coordinate method. same as below.
請求項1記載の送電線事故点標定装置において、第2の手段では、端子Bの2回線各々の3相電圧VB1L,VB2Lを検出しこれらを正相変換して正相電圧VB1L1,VB2L1を得、各回線の3相電流IB1L,IB2Lと共にA端子に伝送し、これを受信したA端子では第8の手段にて、3相電圧の差分のΔVB1に代えて(VB1L1−VB1L2)として標定値を算出することを特徴とする送電線事故点標定装置。 2. The transmission line fault point locating device according to claim 1, wherein the second means detects the three-phase voltages V B1L and V B2L of each of the two lines of the terminal B, and converts the three-phase voltages into positive-phase voltages V B1L1 and V B1L1 . give a V B2L1, 3-phase current I B1L for each line, I transmitted to the a terminal with B2L, at eighth means is the a terminal that has received this, instead of the difference [Delta] V B1 of the three-phase voltage (V B1L1 −V B1L2 ), wherein a location value is calculated as a transmission line accident point location apparatus. 請求項1又は請求項2記載の送電線事故点標定装置において、第3の手段による端子BのA端への伝送速度は3相電流に対して正相電圧を遅らせることを特徴とする送電線事故点標定装置。 In power transmission line fault point locating system according to claim 1 or claim 2 wherein the transmission rate of the A end of the terminal B by the third means feed characterized by delaying the positive-phase voltage to three-phase current Electric wire accident point location device. 請求項1記載の送電線事故点標定装置において、第8の手段において,片回線停止時、停止回線の正相電圧及び正相電流を零にすることにより、標定値を算出することを特徴とする送電線事故点標定装置。8. The transmission line fault point locating apparatus according to claim 1, wherein in the eighth means, when one line is stopped, the normal value and the positive current of the stopped line are set to zero to calculate the position value. Transmission line accident point locating equipment. 2回線送電線を有する電力系統の各端子から電気量を抽出し、事故発生時の送電線の事故点を標定する送電線事故点標定装置において、下記9つの手段を備えたことを特徴とする送電線事故点標定装置。

(1)2回線送電線の各々の回線の電気量を同一時刻に抽出するために各々の回線を同期制御して制御信号を出力する第9の手段。
(2)各回線毎に第9の手段から同期制御信号に基づいて、一方の端子Aの一方の回線の3相電圧VA()Lの正相電圧VA()L1を得る第1の手段。
(3)他方の端子Bの一方の回線の3相電圧VB()Lの正相電圧VB()L1を得る第2の手段。
(4)端子Bの一方の回線の3相電流IB()Lと第2の手段で得られる正相電圧V() L1を端子Aに伝送する第3の手段。
(5)端子Bの各回線の3相電流と予め設定された当該送電線の端子Aと端子B間の各々の回線の当該回線の送電線線路長インピーダンスZS()L及び隣回線との間の相互線路長インピーダンスZm()Lとの積演算で得られる3相電圧値(ZS()L・IB()L+Zm()L・IB()′L)を得る第4の手段。
(6)第4の手段で得られた3相の電圧値から正相電圧{(Z () ・IB()L+Zm()L・IB()′L)}を得る第5の手段。
(7)端子Aと端子Bの各々の回線の電流クトル和Id()L,Id()′Lを各3相分算出しその3相分の電流と予め設定された前記送電線線路の当該回線の単位長当りの送電線線路インピーダンスz() 及び単位長当りの隣回線との間の相互インピーダンスzm()Lとの積演算で得られる3相電圧値(zS()L・Id()L+zm()L・Id()′L)を得る第6の手段。
(8)第6の手段で得られる3相の電圧値から正相電圧(zS()L・Id()L+zm()L・Id()′Lを得る第7の手段。
(9)第1の手段で得られる正相電圧から第3の手段で伝送された正相電圧を減じ更に第5の手段で得られる正相電圧を加算した値[VA()L1−VB()L1+(ZS()L・IB()L+Zm()L・IB()′L]を求め、更にこれを第7の手段で得られた正相電圧で除して事故点までの距離を算出する第8の手段。なお添字1は括弧内を対称座標法による正相変換したことを示す記号。( ):当該回線,( )′は他方の回線。以下同じ
A transmission line fault point locating device for extracting an amount of electricity from each terminal of a power system having a two-line transmission line and locating a fault point of the transmission line at the time of occurrence of an accident, comprising: Transmission line accident point locator.
(1) A ninth means for synchronously controlling each line and outputting a control signal in order to extract the electric quantity of each line of the two-line transmission line at the same time.
(2) A first method for obtaining a positive-phase voltage VA () L1 of the three-phase voltage VA () L of one line of one terminal A based on a synchronization control signal from ninth means for each line. Means.
(3) Second means for obtaining the positive-phase voltage VB () L1 of the three-phase voltage VB () L of one line of the other terminal B.
(4) Third means for transmitting the three-phase current IB () L of one line of the terminal B and the positive-phase voltage V B () L1 obtained by the second means to the terminal A.
(5) The three-phase current of each line of the terminal B and a predetermined length of the transmission line length impedance ZS () L of each line between the terminal A and the terminal B of the transmission line and the adjacent line. A three-phase voltage value (ZS () L ) IB () L + Zm () L・ IB () 'L ) obtained by a product operation with the mutual line length impedance Zm () L between 4 means.
(6) Fourth positive-phase voltage from the voltage values of the obtained three-phase with means {(Z S () L · I B () L + Z m () L · I B () 'L)} to obtain a 1 Fifth means.
(7) terminal A and the vector sum of each line of the current terminal B I d () L, I d () ' to L is calculated each three phases, preset the current of the three phases A three-phase voltage value obtained by a product operation of the transmission line impedance z S () L per unit length of the transmission line and the mutual impedance z m () L between the transmission line and the adjacent line per unit length ( z S () L · I d () L + z m () L · I d () 'L) sixth means for obtaining.
(8) A seventh method for obtaining a positive-phase voltage (zS () L.Id () L + zm () L.Id () 'L ) 1 from the three-phase voltage values obtained by the sixth means. means.
(9) A value obtained by subtracting the positive-phase voltage transmitted by the third means from the positive-phase voltage obtained by the first means, and further adding the positive-phase voltage obtained by the fifth means [ VA () L1− V B () L1 + (Z S () L · I B () L + Z m () L · I B () 'L) 1] the determined positive-phase voltage obtained further this in seventh means Eighth means for calculating the distance to the accident point by dividing by. The suffix 1 is a symbol indicating that the inside of the parentheses has been subjected to normal phase conversion by the symmetric coordinate method. (): The relevant line, () ′ is the other line. The same shall apply hereinafter .
JP06472995A 1995-02-28 1995-02-28 Transmission line accident point location device Expired - Lifetime JP3545485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06472995A JP3545485B2 (en) 1995-02-28 1995-02-28 Transmission line accident point location device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06472995A JP3545485B2 (en) 1995-02-28 1995-02-28 Transmission line accident point location device

Publications (2)

Publication Number Publication Date
JPH08233895A JPH08233895A (en) 1996-09-13
JP3545485B2 true JP3545485B2 (en) 2004-07-21

Family

ID=13266538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06472995A Expired - Lifetime JP3545485B2 (en) 1995-02-28 1995-02-28 Transmission line accident point location device

Country Status (1)

Country Link
JP (1) JP3545485B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000214210A (en) * 1999-01-20 2000-08-04 Toshiba Corp Accident point locater
JP3830699B2 (en) 1999-11-11 2006-10-04 株式会社東芝 Accident location system
US7376534B2 (en) * 2004-05-21 2008-05-20 Bea Systems, Inc. Watches and notifications
US8490064B2 (en) 2004-05-21 2013-07-16 Oracle International Corporation Hierarchical debug
US7379849B2 (en) * 2004-05-21 2008-05-27 Bea Systems, Inc. Diagnostic image
US7359831B2 (en) * 2004-05-21 2008-04-15 Bea Systems, Inc. Diagnostic context
US7295950B2 (en) * 2005-06-23 2007-11-13 International Business Machines Corporation Monitoring multiple channels of data from real time process to detect recent abnormal behavior

Also Published As

Publication number Publication date
JPH08233895A (en) 1996-09-13

Similar Documents

Publication Publication Date Title
CN103852691B (en) The oriented detection of failure in the network of compensation or the earthed system for the neutral point that insulate
EP2290775A1 (en) A method of fault phase selection and fault type determination
EP0241832A1 (en) Method and device for directional detection of a fault on a power transmission line
US6097280A (en) Fault locator that uses positive-phase-sequence electricity
CN110350483A (en) Power converter plant and fault detection method with Earth Fault Detection function
CN107683418B (en) Leakage current detection device
JP3545485B2 (en) Transmission line accident point location device
EP2544014A1 (en) A method of selecting between faulted and healthy circuits in parallel lines using one-end measurements
Phadke et al. A new computer based integrated distance relay for parallel transmission lines
EP0026620A1 (en) Method and apparatus for identifying faults in electric power transmission systems
JP7214854B2 (en) Method and apparatus for controlling at least one circuit breaker in an electrical power system
JPS59226615A (en) Offset compensator
JP4921246B2 (en) Ground fault distance relay
CN101667726A (en) Positive sequence current differential protection method
JPH11344525A (en) Fault point plotting device
EP0020073B1 (en) Common suspension multi-line grounding protective relay
JP5903143B1 (en) Disconnection detection apparatus and method
JP6161527B2 (en) Transmission line protection relay
EP0155367B1 (en) Short-circuit distance relay
EP3639337B1 (en) Method and control system for fault direction detection
JP7134846B2 (en) Transmission line protection relay device
JP3221000B2 (en) Method and apparatus for determining ground fault section of distribution line
JP4564199B2 (en) Accident point locator
JP3436775B2 (en) Discharger electrode wear rate measuring device
JP2003009381A (en) Troue phase selector

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040408

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 10

EXPY Cancellation because of completion of term