JP3544154B2 - Method for producing hexaammineiridium nitrate solution - Google Patents

Method for producing hexaammineiridium nitrate solution Download PDF

Info

Publication number
JP3544154B2
JP3544154B2 JP28901899A JP28901899A JP3544154B2 JP 3544154 B2 JP3544154 B2 JP 3544154B2 JP 28901899 A JP28901899 A JP 28901899A JP 28901899 A JP28901899 A JP 28901899A JP 3544154 B2 JP3544154 B2 JP 3544154B2
Authority
JP
Japan
Prior art keywords
solution
exchange resin
anion exchange
hexaammineiridium
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28901899A
Other languages
Japanese (ja)
Other versions
JP2001106535A (en
Inventor
知史 市石
綾子 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP28901899A priority Critical patent/JP3544154B2/en
Publication of JP2001106535A publication Critical patent/JP2001106535A/en
Application granted granted Critical
Publication of JP3544154B2 publication Critical patent/JP3544154B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ヘキサアンミンイリジウム硝酸塩(以下「HAIrTN」という。)溶液の製造方法に関するものである。
【0002】
【従来の技術】
従来、HAIrTN溶液を製造するには煩雑な操作方法をとらざるを得なかった。例えば、まず塩化イリジウム酸カリウムの結晶を水で溶解し、これに塩化アンモニウムと炭酸アンモニウムを加えて湯浴上で加熱還流して反応させ、得られた黄褐色沈殿を濾過し、3NHClで抽出して不純物を除去した後、熱水で溶解し、濾過し、濾液を濃縮後濃塩酸を加えて [IrCl(NH]Clの沈殿を得る。該沈殿を、アンモニア水に入れ、封管中で 140℃48時間加熱後、濾過し、濾液を蒸発乾固する。さらに湯浴上で1時間加熱して、アクアペンタアンミン塩を分解する。これを充分量の希塩酸に溶解し、等容積の30%硝酸を加えて [Ir(NH](NOの白色結晶を得る。最後に15%硝酸とエタノールエーテルで洗浄し、乾燥後水に溶かす、という煩雑な方法が行われている。しかも、上記の方法では、操作面での煩雑さの他に、NHClやHClといった不純物が混入するという問題点もあった。
【0003】
【発明が解決しようとする課題】
本発明は、上記従来法の欠点を解決するためになされたものであり、簡略な操作で、不純物の少ないHAIrTN溶液を製造する方法を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明は、塩化イリジウム(III)酸溶液に過剰のアンモニア水を加え、加圧下で加熱して反応させてヘキサアンミンイリジウム(III)クロライド溶液を合成し、該合成した溶液を加熱して弱アルカリ性としてから陰イオン交換樹脂と接触させた後、硝酸を加えることを特徴とするHAIrTN溶液の製造方法である。
前記陰イオン交換樹脂は前もってOHイオン型に処理したものを用い、接触させる陰イオン交換樹脂量は理論交換量の2倍以上とするのが望ましい。
【0005】
【発明の実施の形態】
以下、発明を詳細に説明する。
【0006】
中間体としての、ヘキサアンミンイリジウム(III)クロライド溶液を合成するには、塩化イリジウム(III)酸溶液に過剰のアンモニア水を加え、加圧反応させることのできる容器中、例えばオートクレーブ中で1.5〜5kg/cmの圧力下で100〜150℃に加熱して1昼夜以上その状態を保持して反応させれば良い。
【0007】
次いで、過剰に加えたアンモニアを除去するために90〜98℃の温度で加熱し、ヘキサアンミンイリジウム(III)クロライド溶液のpHが7.5〜9.0になったところで加熱を止め、室温まで冷却することでヘキサアンミンイリジウム(III)クロライド溶液を合成できる。pHを7.5〜9.0の弱アルカリ性にしておくのは以下の操作として陰イオン交換樹脂との接触の際に安定した陰イオン交換を完結させるためである。
【0008】
本発明において使用する陰イオン交換樹脂としては強塩基陰イオン交換樹脂が好ましく、例えば三菱化成工業製ダイヤイオンSA10A、またはダイヤイオンSA12Aを使用できる。
合成したヘキサアンミンイリジウム(III)クロライド溶液と接触させる前に、陰イオン交換樹脂をOHイオン型にしておく方法は、例えば1lの陰イオン交換樹脂をカラムに充填しておき、5%前後の水酸化ナトリウム溶液3lを空間速度SV=2で通液し、次いで純水を同じくSV=2で通液して流出液のpHが7になるまで純水を通液することが必要である。純水を通液してpH=7まで行うことにより、ナトリウムイオンの除去が可能となるからである。
【0009】
OHイオン型にした陰イオン交換樹脂にヘキサアンミンイリジウム(III)クロライド溶液を接触させる方法は、例えばビーカ内で混合して攪拌して接触させてもよいが、前記OHイオン型にする操作と同様、カラムに充填した陰イオン交換樹脂層にヘキサアンミンイリジウム(III)クロライド溶液を通液させる方法が簡便であり分離等の手間も省けるもので、連続操作を行う上から、より好ましいものである。
また、通液する速度は空間速度SV=0.1hr−1〜0.5hr−1とすればよく、より好ましくはSV=0.2hr−1である。
【0010】
なお、陰イオン交換樹脂の量を陰イオン交換理論量の2倍以上とするのは、陰イオン交換平衡との関係によるもので、該イリジウム化合物の塩素イオンとOHイオンとの交換を完全に行わせるために欠くことのできないポイントである。
よって、陰イオン交換樹脂に通液するヘキサアンミンイリジウム(III)クロライド溶液の濃度は特に限定されるものではないが、薄い液では濃縮操作が必要になり、濃厚液では通液の際に結晶が発生する可能性があり、好ましくは40g/l〜100g/lに調製したものがよい。
【0011】
こうして得られた溶液に硝酸を加え、pHを7以下に調整することにより、HAIrTN溶液が製造される。
【0012】
以上の方法により、不純物の混入が極めて少ないHAIrTN溶液を製造することができるものである。
【0013】
【実施例】
以下、本発明に係わる実施例を記載するが、該実施例は本発明を限定するものではない。
【0014】
【実施例1】
塩化イリジウム酸溶液(Irとして20g含有する)120mlにアンモニア水(28%)400mlを加え、オートクレーブ中で圧力を1.5〜5kg/cm、加熱温度130℃、攪拌を500rpmとして24時間反応させた。
次いで、反応後の溶液を冷却して濾過し、濾過液をビーカに入れ湯浴で95℃に加熱して濾過液のpHが8.7となったところで加熱を止め、室温まで冷却した。
次いで、冷却した濾過液を前もってOHイオン型にした強塩基陰イオン交換樹脂(三菱化成工業製:ダイヤイオンSA10A)4lを直径50mmのガラス製カラムに充填した層に、空間速度SV=0.2hr−1で通液した。
通液した後、陰イオン交換樹脂層に純水をSV=0.2hr−1で通液し押出洗浄してヘキサアンミンIr水酸化物溶液を2.5l得た。この溶液を95℃に加熱して、余分なアンモニアを蒸発させて濃縮した後、60%硝酸19mlを加え、pH7に調整し、Ir濃度で20g/l であるHAIrTN溶液を800mlを得た。 該HAIrTN溶液の2mlを分取し、1/10N塩酸で電位差滴定したところ滴定に要した塩酸量からイリジウム1molに対してOHイオンがほぼ3molとなりHAIrTNであることが確認された。
なお、該溶液中の塩素イオン濃度は100mg/l以下であった。
【0015】
【実施例2】
塩化イリジウム酸溶液(Irとして20g含有する)120mlにアンモニア水(28%)400mlを加え、オートクレーブ中で圧力を1.5〜5kg/cm、加熱温度130℃、攪拌を500rpmとして48時間反応させた。
次いで、反応後の溶液を冷却して濾過し、濾過液をビーカに入れ湯浴で95℃に加熱して濾過液のpHが8.0となったところで加熱を止め、室温まで冷却した。
次いで、冷却した濾過液を前以ってOHイオン型にした強塩基陰イオン交換樹脂(三菱化成工業製:ダイヤイオンSA10A)4lを直径50mmのガラス製カラムに充填した層に、空間速度SV=0.2hr−1で通液した。
通液した後、陰イオン交換樹脂層に純水をSV=0.2hr−1で通液し押出洗浄してヘキサアンミンIr水酸化物溶液を2.5l得た。この溶液を95℃に加熱して、余分なアンモニアを蒸発させて濃縮した後、60%硝酸25mlを加え、pH7に調整しIr濃度で20g/l のHAIrTN溶液1000mlを得た。
該HAIrTN溶液の2mlを分取し、1/10N塩酸で電位差滴定したところ滴定に要した塩酸量からイリジウム1molに対してOHイオンがほぼ3molとなりHAIrTNであることが確認された。
なお、該溶液中の塩素イオン濃度は100mg/l以下であった。
【0016】
【従来例】
塩化イリジウム酸カリウム(Irとして20g含有する)の結晶88gを水1180mlに溶解し、これに塩化アンモニウム587gと炭酸アンモニウム880gを加えて90℃の湯浴上で加熱還流して反応させた。得られた黄褐色沈殿を濾過し、3NHClで抽出して不純物の[IrCl(NH]Clを除去した後、熱水で溶解し、濾過し、濾液を濃縮後濃塩酸733mlを加えて [IrCl(NH]Clの沈殿を得た。該沈殿を、アンモニア水に入れ、封管中で 140℃48時間加熱後、濾過し、濾液を蒸発乾固した。さらに湯浴上で1時間加熱して、アクアペンタアンミン塩を分解した。これを充分量の希塩酸に溶解し、等容積の30%硝酸を加えて [Ir(NH] (NOの白色結晶を得た。最後に15%硝酸とエタノールエーテルで洗浄し、乾燥後水に溶かすことにより、HAIrTN溶液を得た。
【0017】
【発明の効果】
以上の説明で明らかなように、従来法では一旦 [IrCl(NH]Clの沈殿を得てから濾過するという固液分離の工程が入っていたため、操作が煩雑であり、かつ不純物の混入も起こり易かった。これに対して、本発明の方法によれば、目的物が全工程を通して液体状態で扱えるため、操作の自動化が行い易く、しかも溶液中の塩素イオンを極めて少なくでき、溶液中の不純物の少ない安定したものが製造できるという優れた特徴を有するものである。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a hexaammineiridium nitrate (hereinafter, referred to as “HAIrTN”) solution.
[0002]
[Prior art]
Conventionally, a complicated operation method had to be taken to produce a HAIrTN solution. For example, first, potassium chloride iridate crystals are dissolved in water, ammonium chloride and ammonium carbonate are added thereto, and the mixture is heated and refluxed on a hot water bath to react. The resulting tan precipitate is filtered and extracted with 3N HCl. After removing impurities, the residue is dissolved in hot water, filtered, and the filtrate is concentrated and concentrated hydrochloric acid is added to obtain a precipitate of [IrCl (NH 3 ) 5 ] Cl 2 . The precipitate is placed in aqueous ammonia, heated in a sealed tube at 140 ° C. for 48 hours, filtered, and the filtrate is evaporated to dryness. Further, it is heated on a hot water bath for one hour to decompose the aquapentaammine salt. This is dissolved in a sufficient amount of diluted hydrochloric acid, and an equal volume of 30% nitric acid is added to obtain white crystals of [Ir (NH 3 ) 6 ] (NO 3 ) 3 . Finally, a complicated method of washing with 15% nitric acid and ethanol ether, drying and dissolving in water has been performed. Moreover, in the above method, there is a problem that impurities such as NH 4 Cl and HCl are mixed, in addition to complicated operation.
[0003]
[Problems to be solved by the invention]
The present invention has been made to solve the above-mentioned drawbacks of the conventional method, and an object of the present invention is to provide a method for producing a HAIrTN solution containing few impurities by a simple operation.
[0004]
[Means for Solving the Problems]
According to the present invention, an aqueous solution of ammonia is added to an iridium chloride (III) chloride solution, and the mixture is heated and reacted under pressure to synthesize a hexaammine iridium (III) chloride solution. A method for producing a HAIrTN solution, wherein nitric acid is added after contacting with an anion exchange resin.
It is desirable that the anion exchange resin be treated in advance as an OH ion type, and the amount of the anion exchange resin to be contacted be at least twice the theoretical exchange amount.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
[0006]
In order to synthesize a hexaammine iridium (III) chloride solution as an intermediate, an excess of aqueous ammonia is added to a solution of iridium (III) chloride and an aqueous ammonia is added. The reaction may be carried out by heating to 100 to 150 ° C. under a pressure of 5 to 5 kg / cm 2 and maintaining the state for one day or more.
[0007]
Then, the mixture was heated at a temperature of 90 to 98 ° C. in order to remove excessively added ammonia. When the pH of the hexaammineiridium (III) chloride solution reached 7.5 to 9.0, the heating was stopped, and the mixture was cooled to room temperature. By cooling, a hexaammine iridium (III) chloride solution can be synthesized. The reason for keeping the pH weakly alkaline at 7.5 to 9.0 is to complete stable anion exchange at the time of contact with an anion exchange resin as the following operation.
[0008]
As the anion exchange resin used in the present invention, a strong base anion exchange resin is preferable. For example, Diaion SA10A or Diaion SA12A manufactured by Mitsubishi Kasei Kogyo can be used.
Before contacting the synthesized hexaammine iridium (III) chloride solution with the OH ion type anion exchange resin, for example, a column is filled with 1 liter of anion exchange resin, and about 5% of water is added. It is necessary to pass 3 l of sodium oxide solution at a space velocity of SV = 2, and then pass pure water also at SV = 2 to pass pure water until the pH of the effluent becomes 7. This is because sodium ions can be removed by passing pure water through to pH = 7.
[0009]
The method of contacting the hexaammine iridium (III) chloride solution with the OH ion type anion exchange resin may be, for example, mixing in a beaker and contacting with stirring, but is the same as the above-mentioned operation of converting to the OH ion type. The method of passing a hexaammine iridium (III) chloride solution through an anion exchange resin layer packed in a column is simple and can save labor such as separation, and is more preferable in terms of performing a continuous operation.
Also, the rate of liquid passing space velocity SV = 0.1hr -1 ~0.5hr -1 Tosureba well, and more preferably from SV = 0.2 hr -1.
[0010]
The reason that the amount of the anion exchange resin is twice or more the theoretical amount of the anion exchange is due to the relationship with the anion exchange equilibrium, and the exchange of chloride ions and OH ions of the iridium compound is completely performed. It is an indispensable point to make it.
Therefore, the concentration of the hexaammine iridium (III) chloride solution passed through the anion exchange resin is not particularly limited, but a thin solution requires a concentration operation, and a concentrated solution requires crystals to pass through. It may be generated, and preferably prepared at 40 g / l to 100 g / l.
[0011]
By adding nitric acid to the solution thus obtained and adjusting the pH to 7 or less, a HAIrTN solution is produced.
[0012]
By the above method, it is possible to produce a HAIrTN solution with very little impurities.
[0013]
【Example】
Hereinafter, examples according to the present invention will be described, but the examples do not limit the present invention.
[0014]
Embodiment 1
400 ml of aqueous ammonia (28%) was added to 120 ml of a chlorinated iridium acid solution (containing 20 g as Ir), and the mixture was reacted in an autoclave at a pressure of 1.5 to 5 kg / cm 2 , a heating temperature of 130 ° C, and stirring at 500 rpm for 24 hours. Was.
Next, the solution after the reaction was cooled and filtered, and the filtrate was placed in a beaker and heated to 95 ° C. in a hot water bath. When the pH of the filtrate reached 8.7, the heating was stopped and the mixture was cooled to room temperature.
Then, a layer filled with a glass column having a diameter of 50 mm filled with 4 l of a strong base anion exchange resin (Diaion SA10A, manufactured by Mitsubishi Kasei Kogyo Co., Ltd.) in which the cooled filtrate was previously converted to an OH ion type was charged with a space velocity SV = 0.2 hr. The solution was passed at -1 .
After the liquid was passed, pure water was passed through the anion exchange resin layer at SV = 0.2 hr −1 and extruded and washed to obtain 2.5 l of a hexaammine Ir hydroxide solution. The solution was heated to 95 ° C., concentrated by evaporating excess ammonia, and then adjusted to pH 7 by adding 19 ml of 60% nitric acid to obtain 800 ml of a HAIrTN solution having an Ir concentration of 20 g / l. 2 ml of the HAIrTN solution was sampled and subjected to potentiometric titration with 1 / 10N hydrochloric acid. From the amount of hydrochloric acid required for the titration, OH ions were almost 3 mol per 1 mol of iridium, and it was confirmed that the HAIrTN was HAIrTN.
Note that the chloride ion concentration in the solution was 100 mg / l or less.
[0015]
Embodiment 2
400 ml of aqueous ammonia (28%) is added to 120 ml of a iridic chloride solution (containing 20 g as Ir), and the reaction is carried out in an autoclave at a pressure of 1.5 to 5 kg / cm 2 , a heating temperature of 130 ° C. and stirring at 500 rpm for 48 hours. Was.
Next, the solution after the reaction was cooled and filtered, and the filtrate was placed in a beaker and heated to 95 ° C. in a hot water bath. When the pH of the filtrate reached 8.0, the heating was stopped and the solution was cooled to room temperature.
Next, a layer filled with a glass column having a diameter of 50 mm was filled with 4 l of a strong base anion exchange resin (manufactured by Mitsubishi Kasei Kogyo Co., Ltd .: Diaion SA10A) in which the cooled filtrate was previously converted to an OH ion form. The solution was passed at 0.2 hr -1 .
After the liquid was passed, pure water was passed through the anion exchange resin layer at SV = 0.2 hr −1 and extruded and washed to obtain 2.5 l of a hexaammine Ir hydroxide solution. The solution was heated to 95 ° C. and concentrated by evaporating excess ammonia. The solution was adjusted to pH 7 by adding 25 ml of 60% nitric acid to obtain 1000 ml of an HIRrTN solution having an Ir concentration of 20 g / l.
2 ml of the HAIrTN solution was sampled and subjected to potentiometric titration with 1 / 10N hydrochloric acid. From the amount of hydrochloric acid required for the titration, OH ions were almost 3 mol per 1 mol of iridium, and it was confirmed that the HAIrTN was HAIrTN.
Note that the chloride ion concentration in the solution was 100 mg / l or less.
[0016]
[Conventional example]
88 g of potassium chloride iridate crystals (containing 20 g as Ir) were dissolved in 1180 ml of water, to which 587 g of ammonium chloride and 880 g of ammonium carbonate were added, and the mixture was heated and refluxed on a 90 ° C. water bath to cause a reaction. The resulting tan precipitate was filtered and extracted with 3N HCl to remove impurities [IrCl 2 (NH 3 ) 4 ] Cl, dissolved in hot water, filtered, concentrated, and concentrated, and 733 ml of concentrated hydrochloric acid was added. Thus, a precipitate of [IrCl (NH 3 ) 5 ] Cl 2 was obtained. The precipitate was placed in aqueous ammonia, heated in a sealed tube at 140 ° C. for 48 hours, filtered, and the filtrate was evaporated to dryness. Further, the mixture was heated on a hot water bath for 1 hour to decompose the aquapentaammine salt. This was dissolved in a sufficient amount of diluted hydrochloric acid, and an equal volume of 30% nitric acid was added to obtain white crystals of [Ir (NH 3 ) 6 ] (NO 3 ) 3 . Finally, it was washed with 15% nitric acid and ethanol ether, dried and dissolved in water to obtain a HAIrTN solution.
[0017]
【The invention's effect】
As is clear from the above description, the conventional method includes a solid-liquid separation step of once obtaining a precipitate of [IrCl (NH 3 ) 5 ] Cl 2 and then filtering the precipitate, so that the operation is complicated and impurities Was easy to occur. On the other hand, according to the method of the present invention, the target substance can be handled in a liquid state throughout the entire process, so that the operation can be easily automated, and furthermore, the chlorine ions in the solution can be extremely reduced, and the solution has a small amount of impurities. It has an excellent feature that it can be manufactured.

Claims (2)

塩化イリジウム(III)酸溶液に過剰のアンモニア水を加え、加圧下で加熱して反応させてヘキサアンミンイリジウム(III)クロライド溶液を合成し、該溶液を加熱して弱アルカリ性とした後、陰イオン交換樹脂と接触させてから硝酸を添加することを特徴とするヘキサアンミンイリジウム硝酸塩溶液の製造方法。An excess of aqueous ammonia is added to the iridium (III) chloride solution, and the mixture is heated and reacted under pressure to synthesize a hexaammine iridium (III) chloride solution. After heating the solution to make it weakly alkaline, an anion A method for producing a hexaammineiridium nitrate solution, which comprises adding nitric acid after contacting with an exchange resin. 前記陰イオン交換樹脂は前もってOHイオン型に処理したものであり、接触させる陰イオン交換樹脂量は理論交換量の2倍以上である請求項1記載のヘキサアンミンイリジウム硝酸塩溶液の製造方法。The method for producing a hexaammineiridium nitrate solution according to claim 1, wherein the anion exchange resin has been previously treated to an OH ion type, and the amount of the anion exchange resin to be contacted is twice or more the theoretical exchange amount.
JP28901899A 1999-10-12 1999-10-12 Method for producing hexaammineiridium nitrate solution Expired - Fee Related JP3544154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28901899A JP3544154B2 (en) 1999-10-12 1999-10-12 Method for producing hexaammineiridium nitrate solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28901899A JP3544154B2 (en) 1999-10-12 1999-10-12 Method for producing hexaammineiridium nitrate solution

Publications (2)

Publication Number Publication Date
JP2001106535A JP2001106535A (en) 2001-04-17
JP3544154B2 true JP3544154B2 (en) 2004-07-21

Family

ID=17737774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28901899A Expired - Fee Related JP3544154B2 (en) 1999-10-12 1999-10-12 Method for producing hexaammineiridium nitrate solution

Country Status (1)

Country Link
JP (1) JP3544154B2 (en)

Also Published As

Publication number Publication date
JP2001106535A (en) 2001-04-17

Similar Documents

Publication Publication Date Title
Gahan et al. Encapsulated metal ions: synthesis, structure, and spectra of nitrogen-sulfur ligand atom cages containing cobalt (III) and cobalt (II)
CN109897070B (en) Preparation method of tetraamminepalladium acetate (II)
US4065475A (en) Process for preparing CIS-epoxysuccinic acid salts of high purity
SU1447273A3 (en) Method of producing manganese sulfate solution
JP3544154B2 (en) Method for producing hexaammineiridium nitrate solution
JPH08333312A (en) Purification of valine
CN108550641B (en) Preparation method of lead iodide and perovskite solar cell using lead iodide as raw material
JP3394981B2 (en) Method for producing free hydroxylamine aqueous solution
JP3545658B2 (en) Method for producing iridium nitrate solution
HU195469B (en) Process for production of l-malic acid
JP2805692B2 (en) Method for producing tetraammine palladium dihydroxide
JP2983074B2 (en) Method for producing hexaamminerhodium trihydroxide
JP2983075B2 (en) Method for producing hexaammineiridium trihydroxide
JP3011747B2 (en) Method for producing hexaammineplatinum (IV) tetrahydroxide
JP3287562B2 (en) Method for producing tetraammineplatinum complexes
JP3496319B2 (en) Separation and recovery of platinum group elements
JP2993983B2 (en) Separation method of barium from water-soluble strontium salt
JP3938222B2 (en) Process for producing diiodomethyl-p-tolylsulfone
RU2208586C2 (en) Rhodium nitrate solution preparation method
JP3273851B2 (en) Method for producing ruthenium nitrate solution
JPH04261189A (en) Production of tin trifluoromethanesulfonate
JP2774328B2 (en) Method for producing ruthenium nitrate solution
JP2852547B2 (en) Method for producing cyanuric diaurate
JPH0662668B2 (en) Glutathione purification method
JPH0940603A (en) Purification of optically active organic polybasic acid

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040331

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees