JP3544145B2 - Processing equipment - Google Patents

Processing equipment Download PDF

Info

Publication number
JP3544145B2
JP3544145B2 JP11028499A JP11028499A JP3544145B2 JP 3544145 B2 JP3544145 B2 JP 3544145B2 JP 11028499 A JP11028499 A JP 11028499A JP 11028499 A JP11028499 A JP 11028499A JP 3544145 B2 JP3544145 B2 JP 3544145B2
Authority
JP
Japan
Prior art keywords
heating element
exhaust
processing
gas
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11028499A
Other languages
Japanese (ja)
Other versions
JP2000306842A (en
Inventor
勇蔵 幸田
正太郎 岡部
直 芳里
公一朗 森山
裕之 尾崎
幸人 青田
英寿 都築
正博 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP11028499A priority Critical patent/JP3544145B2/en
Application filed by Canon Inc filed Critical Canon Inc
Priority to US09/294,367 priority patent/US20030164225A1/en
Publication of JP2000306842A publication Critical patent/JP2000306842A/en
Priority to US10/776,173 priority patent/US20040161533A1/en
Application granted granted Critical
Publication of JP3544145B2 publication Critical patent/JP3544145B2/en
Priority to US11/776,265 priority patent/US20080014345A1/en
Priority to US12/326,238 priority patent/US20090084500A1/en
Priority to US12/327,428 priority patent/US20090095420A1/en
Priority to US12/327,403 priority patent/US20090114155A1/en
Priority to US12/327,223 priority patent/US20090145555A1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、プラズマCVD法、熱CVD法、光CVD法、スパッタ法、水素プラズマ処理法、ドライエッチング法等を用いて、処理空間(例えば、基体処理空間や膜処理空間)である反応室内において堆積膜を堆積するような基体処理或いはエッチング等の膜処理を行う処理装置であって、特に、排気ガス中に生成を余儀なくされる未反応ガスや副生成物等を上記反応室より外の排気管内で処理する手段を備えた処理装置に関する。
【0002】
【従来の技術】
従来のプラズマCVD法、熱CVD法、光CVD法等においては、ステンレスや石英管等の材質で構成される処理空間(基体処理空間)である反応室内に、ガスミキシング設備等を経由して混合原料ガスを導入した後、高周波、熱、光等の分解エネルギーを印加し、反応室内で原料ガスを分解し、所望の基体上に堆積膜を形成し、残留する排気ガスを真空ポンプ等の排気手段へつながった排気管を通して排気する手法が一般的に行われている。しかしながら、これらの手法において、導入される原料ガスが全て反応室内において分解消費され、所望の基体上に堆積膜として形成されるわけではなく、未反応なガス成分が存在したり、或いは新たな反応副生成物が生成される場合があり、これら堆積膜には不要となったガスを含む排気ガスが排気管を通して反応室外へ排気されることとなる。
【0003】
また、スパッタ法、水素プラズマ処理法、ドライエッチング法等においては、反応室内に導入されるガス種や反応室内での処理後に生成される残留排気ガスのガス種が、上記CVD法の場合とは異なる点があるものの、排気管を通して排気される排気ガス中に未反応ガス成分や副生成物等が含まれてしまうことは、上記CVD法の場合と同様である。
【0004】
【発明が解決しようとする課題】
上記したように、プラズマCVD法、熱CVD法、光CVD法、スパッタ法、水素プラズマ処理法、ドライエッチング法等を用いて、機能性堆積膜の堆積等基体処理或いはエッチング等の膜処理といった処理を行う際、処理空間である反応室内から排気される排気ガスの中には、未反応ガス成分や副生成物等が含まれることから、この排気ガスが排気管を通過する際に、該未反応ガスや副生成物等が元となって排気管内壁面に新たな副堆積物が生じてしまい、これが積み重なってくると、排気管内断面、即ち排気管開口を閉塞させてしまうことになる結果、反応室内の排気されるべき排気ガスを十分に排気することが困難になってしまい、処理装置としての機能が損なわれてしまう。
【0005】
排気管内副堆積物によって排気管の開口が次第に閉塞してくると、排気ガスの排気能力が経時的に低下してくることは自明であり、またその閉塞具合が時間に対して必ずしも一定ではないことも相俟って、反応室で行っている処理条件を厳しく管理したとしても、その処理を長時間にわたって再現性良く実行することが困難になってしまうという問題があった。
【0006】
このような問題点を解決するために、排気管内に加熱手段を設けることによって、副堆積物を処理する方法が知られている。しかしながら、排気管内に設置される加熱手段を構成する発熱体が連続使用により破損に至ってしまう。そこで、発熱体ユニットのメンテナンスを行うことが必要となるが、それにより装置の稼働率を低下させてしまう問題があった。そのため、装置の稼働率を向上させるべく、発熱体ユニットの耐久性を向上させることが望まれていた。
【0007】
また、排気管の途中には、L型のバルブ類や反応室内の圧力を調整するためのコンダクタンスバルブや圧力を測定するための圧力計等が設置されており、これらの部材に副堆積物が付着してくると、次第にその機能が損なわれてくることから定期的なメンテナンス作業が必要となるといった問題点もあった。
【0008】
さらには、排気手段として用いられているロータリーポンプ等の真空ポンプへの副堆積物の混入は、ポンプ本体の排気能力を低下させるだけにとどまらず、故障等を引き起こす原因にもなり、ポンプ交換の手間や装置の復旧のための時間損失等の問題があった。
【0009】
本発明の目的は、上記問題点を解決し、処理装置において、反応室から排気される未反応ガス及び副生成物を効率良く分解し、排気管及び排気手段への副堆積物の付着、堆積を防止し、効率良く本来の処理を行うことにある。
【0010】
【課題を解決するための手段】
上記課題を達成するために、本発明の処理装置は、下記のように構成したものである。
【0011】
即ち本発明の処理装置は、基体または膜を処理するための処理空間と該処理空間を排気するための排気手段とを有する処理装置であって、
前記処理空間と前記排気手段とを連絡する排気経路中にコンダクタンス調整バルブを備え、
上記処理空間とコンダクタンス調整バルブとを連絡する排気経路中に、上記処理空間から排気される未反応ガス及び副生成物の少なくとも一方に化学反応を起こさせるための化学反応生起手段を有し、該化学反応生起手段がシリコン原子を含む発熱体から構成されていることを特徴とする。
【0012】
本発明においては、上記発熱体が、少なくともクロム、モリブデン、タングステン、バナジウム、ニオブ、タンタル、チタン、ジルコニウム、ハフニウムのいずれかを母体材料として形成されていることが好ましく、また、上記発熱体に含まれるシリコン原子の量は、発熱体を構成する全原子成分に対し、原子組成比で0.1%以上であることが好ましい。
【0013】
【発明の実施の形態】
本発明の処理装置について、CVD装置を例に挙げて説明する。例えば、非晶質(アモルファス)シリコン膜や、非晶質シリコン合金膜等の非単結晶半導体薄膜を形成するためには、プラズマCVD法を用いることになる。
【0014】
図1に、本発明の処理装置の一つであるプラズマCVD装置の一実施形態の模式的断面図を示す。図中、100は反応室、101は被処理基体、102はガスミキシング設備、103は排気管、104はカソード電極、105はヒーターユニット、106は高周波電力源、107は発熱体ユニット、108は排気ポンプユニット、109はガス導入管、110は排気ガス配管、111は高周波印加ケーブル、112は放電空間、113は圧力計、114はコンダクタンス調整バルブ、115はAC電力源、116はAC印加ケーブルである。
【0015】
図1の装置においては、処理空間としてステンレスや石英等からなる反応室100を使用し、マスフローコントローラー等で構成されるガスミキシング設備102を経由してシランガス(SiH)や水素ガス(H)を所望の比率で混合した原料ガスを反応室100内へガス導入管109を通して導入した後、高周波電力源106から高周波印加ケーブル111を経由してカソード電極104へ分解エネルギーとしての高周波電力を印加し、放電空間112で放電を生じさせ、反応室100内の原料ガスを分解し、ステンレスやガラス等所望の被処理基体101上に堆積膜を形成する。カソード電極104の裏面にはヒーターユニット105が設けられており、それにより基体101が加熱される。また、反応室100内の圧力は圧力計113でモニターされる。
【0016】
堆積膜にならなかった残ガス(未反応ガス、副生成物)は排気ガスとして排気管103、コンダクタンスバルブ114を通り、排気ポンプユニット108によって排気ガス配管110から反応室100外へ排気される。その際、排気経路である排気管103の内部に、未反応ガスや副生成物に化学反応を起こさせるための化学反応生起手段として、シリコン(Si)原子を含有する発熱体ユニット107を設置する。発熱体ユニット107はAC印加ケーブル116を介してAC電力源115に接続されている。発熱体の母体材料としては、高融点金属として分類される、クロム(Cr)、モリブデン(Mo)、タングステン(W)、バナジウム(V)、ニオブ(Nb)、タンタル(Ta)、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)等の少なくとも1種類の材質から選定されることが望ましく、この母体材料にシリコン原子を含有させて使用する。シリコン原子の含有量は、発熱体を構成している全原子成分に対し、原子組成比で0.1%以上であることが望ましい。
【0017】
母体材料にシリコン原子を含有させることの効果を以下に述べる。
【0018】
例えば、発熱体材質として純金属を選定した場合、金属によっては発熱体として昇温させて使用を続けると発熱体自体の熱処理効果が起こる結果、金属の結晶粒径等内部組織の構造が変移し、高温強度が低下し非常に脆くなってしまう場合がある。しかしながら、この発熱体材質にシリコン原子を含有させることにより、母体材料(金属)の高温強度を維持させることが可能となり、発熱体としての機能をより長く維持することができるため、数百時間といった長時間にわたって、連続的に非晶質シリコン膜形成等の処理を行う場合においても十分に対応できる。また、発熱体の損傷周期を長くとることが可能となることにより、メンテナンス頻度が減少し、装置の稼働率を向上させることができる。
【0019】
発熱体を設置する位置としては、処理空間である反応室100とロータリーポンプ等で代表される排気ポンプユニット108との間に配置される排気管103の途中部分で排気管103内部即ち排気ガス流路内が望ましい。
【0020】
発熱体としては、例えば図2に示すように、絶縁性板材200にワイヤ状発熱体201を複数回巻き付けて排気管103内に少なくとも1ユニット以上を設置することができる。ワイヤ状発熱体201にはその両端部にAC電力等の電力を印加して加熱する。必要であれば、スライダック等の電圧調整変換器によってAC電力の電圧値を調整しても良い。また、図3に示すように、発熱体をコイル状発熱体203に形成し、絶縁性棒材204を中に通すことによって支持し、排気管103内のガス流れ方向を横切るような位置関係で少なくとも1本以上設置しても良い。コイル状発熱体203の両端部にはAC電力等を印加する。また、図4に示すように、棒状発熱体205を少なくとも1本以上用い、該棒状発熱体205の両端部に別途導電性電極材206を設け、棒状発熱体205を並列接続させ、両端部の導電性電極材206にAC電力等を印加して使用しても良い。さらに、図5に示すように、テープ状発熱体207を少なくとも1本以上用い、該テープ状発熱体207の両端部に別途導電性電極材208を設け、該テープ状発熱体207を並列接続させ、両端部の導電性電極材208にAC電力等を印加して使用しても良い。
【0021】
上記いずれの場合においても、発熱体ユニット108が処理空間(反応室100)と排気手段(コンダクタンス調整バルブ114、排気ポンプユニット108)との間の排気管103内に設置され、且つ、排気ガス流路を塞ぐことなく設置されていれば良く、設定の態様が限定されるものではない。
【0022】
上記発熱体の加熱方法としては、線状、棒状、コイル状等のいずれの形状であっても、その両端部にAC電力やDC電力を印加して発熱体自体に電流を流すことで発熱させると良い。必要であれば、温度調整コントローラーを介して電力を印加しても良い。
【0023】
また、発熱体の温度としては、例えば非晶質シリコン膜の形成時においては、排気管103内に堆積するポリシラン(Si;x、yは整数)に含まれる大量の水素原子の放出反応を促進させ、結果としてシリコン膜片に変化させてしまう処理を行うという観点から、500℃以上に昇温させて使用することが望ましい。
【0024】
【実施例】
(実施例1)
図1に示したプラズマCVD装置を用いて、堆積膜形成を行った。発熱体ユニット107の仕様としては、図2に示すようなアルミナセラミックス製の絶縁性板材200(300mm×150mm×5mm)に、発熱体201として直径0.2mmでシリコン原子を1%(原子組成比)含有したワイヤ材(母体材料:クロム、モリブデン、タングステン、バナジウム、ニオブ、タンタル、チタン、ジルコニウム、ハフニウムのいずれか1種)を、板材の長手方向に5周巻き付けて排気管103内に設置した。被処理基体101としてステンレス(SUS304)からなる基体(50mm×50mm×1mm)をカソード電極104上に設置し、カソード電極104下部に埋め込まれたヒーターユニット105を用いて、上記ステンレス基体101が300℃になるように設定した。本例においては、発熱体ユニット107の効果をより明確に判断するために、以下のような通常より厳しい成膜条件を設定した。
【0025】
ガスミキシング設備102において、シラン(SiH)ガス(流量:200sccm)と水素(H)ガス(流量:200sccm)とを混合し、この混合ガスをガス導入管109を通して反応室100内に導入した。発熱体201の両端部には、AC電力源115からAC印加ケーブル116を介して、AC100Vを印加した。この時、発熱体201を流れる電流値は5Aであり、発熱体201の温度は1000℃であった。その後、圧力計113にて反応室100内の圧力が1Torrになるようにコンダクタンス調整バルブ114を調整した。その後、高周波電力源106から高周波印加ケーブルを介してカソード電極104に、RF電力500Wを印加し、放電を生起させた。処理時間即ち放電時間は、連続的に10時間とした。
【0026】
(比較例1)
発熱体ユニット107の仕様として、シリコン原子の含有率が0%のワイヤ材を発熱体として用いる以外は実施例1と同様の発熱体レイアウト、同様な装置構成、同様な成膜条件にて堆積膜を形成した。
【0027】
実施例1及び比較例1ともに、連続的に10時間の放電処理を行った後、上記基体を入れ替える作業を行い、再度放電を調整し、10時間放電処理を行うという手順を繰り返した。そして、発熱体の寿命を比較するために、発熱体が破損して使用不能になるまでの各々連続10時間放電を1サイクルとしてその繰り返し回数を比較し、耐久性の評価を行った。また、同時に、排気管103の内壁面に付着した副堆積物の状況比較(発熱体破損後)も行い、処理能力を評価した。結果を表1に示す。
【0028】
【表1】

Figure 0003544145
【0029】
〔耐久性の評価〕
○:11サイクル以上
△:6〜10サイクル
×:0〜5サイクル
【0030】
〔処理能力の評価〕
◎:粉状のポリシランは全く観測されず、硬質の膜が付着、堆積していた。
○:粉状のポリシランがわずかに観測され、硬質な膜が付着、堆積していた。
△:粉状のポリシランが3割程度、硬質な膜が7割程度の割合で付着、堆積していた。
【0031】
表1に示す通り、シリコン原子を含む発熱体を使用することで、繰り返し使用における発熱体が破損するまでの回数、即ち寿命が長く、耐久性に優れていることが実証された。それと同時に、排気管103の内壁部へ付着する副堆積物の状況と言う観点からも、シリコン原子を含む発熱体を使用することで優れた結果が得られることが実証された。
【0032】
(実施例2)
シリコン原子含有率が異なる発熱体を使い分けたこと以外は実施例1と同様にして堆積膜を形成し、発熱体のシリコン原子含有率依存性を調べた。具体的には、シリコン原子の含有率が0.01%、0.05%、0.1%、0.5%、1%、5%(原子組成比)の6種類のワイヤ材(母体材料:クロム、モリブデン、タングステン、バナジウム、ニオブ、タンタル、チタン、ジルコニウム、ハフニウムのいずれか1種)を用意し、いずれのワイヤ材も直径0.2mmと同一にした。
【0033】
実施例1及び比較例1の手順と同様に、連続10時間の放電処理を1サイクルとして、発熱体が破損に至るまでの繰り返し回数を比較し、同時に排気管103内壁面に付着した副堆積物の比較を行った。結果を表2に示す。
【0034】
【表2】
Figure 0003544145
【0035】
上記表2における評価基準は表1と同じである。
【0036】
表2に示す通り、シリコン原子含有率が0.1%以上である発熱体を使用することで、繰り返し使用における発熱体の耐久性が優れていることが実証された。それと同時に、排気管103の内壁部へ付着する副堆積物の状況という観点からも、シリコン原子含有率が0.1%以上である発熱体を使用することで優れた効果が得れることが実証された。
【0037】
(実施例3)
シリコン原子の含有率が1%(原子組成比)、直径が0.2mmのタングステンワイヤ材を用い、該ワイヤ材へ印加するAC電圧を変化させることでワイヤ材即ち発熱体の温度を種々変化させ、発熱体温度依存性を調べた。発熱体レイアウト、装置構成、放電条件は実施例1と同様とした。発熱体の温度は、300℃、500℃、600℃、800℃、1000℃、1200℃の6種類とし、実施例1及び比較例1の手順と同様にして、発熱体が破損に至るまでの、連続的な10時間放電処理の繰り返し回数を比較した。同時に排気管103内壁面に付着した副堆積物の比較を行った。結果を表3に示す。
【0038】
【表3】
Figure 0003544145
【0039】
表中の処理能力の評価基準は表1と同じである。
【0040】
表3に示す通り、ワイヤ材即ち発熱体の温度が500℃以上の温度領域において、本発明にかかる発熱体は破損に至るまでの繰り返し回数が多い、即ち寿命が長いことが実証され、同時に、発熱体の温度を500℃以上とすることによって、処理能力も優れた結果が得られることがわかった。
【0041】
【発明の効果】
本発明の処理装置によれば、機能性堆積膜の形成といった基体処理やエッチング等の膜処理において、反応室内から排気される排気ガス中に含まれる未反応ガスや副生成物等が排気管を通過する際に該排気管内壁面に形成されてしまうが副堆積物が、良好に分解されて硬質の膜として堆積されるため、排気管開口の閉塞を防止して長時間にわたって本来の処理を行うことができる。
【0042】
また、排気経路に設置される発熱体の耐久性が高いことから、発熱体ユニットのメンテナンス回数が低減され、装置の稼働率を向上させることができる。
【0043】
さらに、排気管の途中に設けられたL型のバルブ類や、コンダクタンス調整バルブ、圧力計等への副堆積物の付着を防止することができ、その機能を長時間維持することが可能となり、従来行っていた定期的なメンテナンス作業が不要となる。
【0044】
またさらに、排気手段として用いられるロータリーポンプ等の真空ポンプへの副堆積物の混入を防止することができ、ポンプ本体の排気能力を長時間維持することが可能となり、ポンプの故障頻度を大幅に減少させることが可能となる。
【図面の簡単な説明】
【図1】本発明の処理装置であるプラズマCVD装置の一実施形態の模式的断面図である。
【図2】本発明で用いられる発熱体の構造の一例を示す図である。
【図3】本発明で用いられる発熱体の構造の他の例を示す図である。
【図4】本発明で用いられる発熱体の構造の他の例を示す図である。
【図5】本発明で用いられる発熱体の構造の他の例を示す図である。
【符号の説明】
100 反応室
101 被処理基体
102 ガスミキシング設備
103 排気管
104 カソード電極
105 ヒーターユニット
106 高周波電力源
107 発熱体ユニット
108 排気ポンプユニット
109 ガス導入管
110 排気ガス配管
111 高周波印加ケーブル
112 放電空間
113 圧力計
114 コンダクタンス調整バルブ
115 AC電力源
116 AC印加ケーブル
200 絶縁性板材
201 ワイヤ状発熱体
203 コイル状発熱体
204 絶縁性棒材
205 棒状発熱体
206 導電性電極材
207 テープ状発熱体
208 導電性電極材[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention employs a plasma CVD method, a thermal CVD method, an optical CVD method, a sputtering method, a hydrogen plasma processing method, a dry etching method, or the like, in a reaction chamber that is a processing space (for example, a substrate processing space or a film processing space). A processing apparatus for performing a film processing such as substrate processing or etching for depositing a deposited film, and in particular, exhausting unreacted gas and by-products generated in exhaust gas to the outside of the reaction chamber. The present invention relates to a processing apparatus provided with means for processing in a pipe.
[0002]
[Prior art]
In the conventional plasma CVD method, thermal CVD method, optical CVD method, and the like, a gas is mixed into a reaction chamber which is a processing space (substrate processing space) made of a material such as stainless steel or a quartz tube via a gas mixing facility. After the introduction of the source gas, decomposition energy such as high frequency, heat, light or the like is applied to decompose the source gas in the reaction chamber, form a deposited film on a desired substrate, and exhaust the remaining exhaust gas by a vacuum pump or the like. It is common practice to exhaust air through an exhaust pipe connected to a means. However, in these methods, all of the introduced source gases are decomposed and consumed in the reaction chamber, and are not formed as a deposited film on a desired substrate, but unreacted gas components are present or a new reaction occurs. By-products may be generated, and exhaust gas containing unnecessary gas in these deposited films is exhausted to the outside of the reaction chamber through the exhaust pipe.
[0003]
In a sputtering method, a hydrogen plasma treatment method, a dry etching method, or the like, the gas species introduced into the reaction chamber and the gas species of the residual exhaust gas generated after the treatment in the reaction chamber are different from those in the case of the CVD method. Although there are differences, the fact that unreacted gas components and by-products are contained in the exhaust gas exhausted through the exhaust pipe is the same as in the case of the CVD method.
[0004]
[Problems to be solved by the invention]
As described above, using a plasma CVD method, a thermal CVD method, an optical CVD method, a sputtering method, a hydrogen plasma processing method, a dry etching method, or the like, processing such as substrate processing such as deposition of a functional deposition film or film processing such as etching. When the exhaust gas passes through the exhaust pipe, the exhaust gas exhausted from the reaction chamber, which is the processing space, contains unreacted gas components and by-products. New by-products are generated on the inner wall surface of the exhaust pipe based on the reaction gas and by-products and the like, and when these are accumulated, the inner cross section of the exhaust pipe, that is, the opening of the exhaust pipe is closed, It becomes difficult to sufficiently exhaust the exhaust gas to be exhausted from the reaction chamber, and the function as a processing apparatus is impaired.
[0005]
It is obvious that when the opening of the exhaust pipe gradually closes due to sub-deposits in the exhaust pipe, the exhaust capacity of the exhaust gas gradually decreases over time, and the degree of the closing is not always constant with time. For this reason, there is a problem that even if the processing conditions performed in the reaction chamber are strictly controlled, it becomes difficult to perform the processing with good reproducibility over a long period of time.
[0006]
In order to solve such a problem, there is known a method of treating a sub-sediment by providing a heating means in an exhaust pipe. However, the heating element constituting the heating means provided in the exhaust pipe is damaged by continuous use. Therefore, it is necessary to perform maintenance on the heating element unit, but there is a problem that the operation rate of the apparatus is reduced. Therefore, it has been desired to improve the durability of the heating element unit in order to improve the operation rate of the apparatus.
[0007]
In the middle of the exhaust pipe, L-shaped valves, a conductance valve for adjusting the pressure in the reaction chamber, a pressure gauge for measuring the pressure, and the like are installed. If it adheres, its function gradually deteriorates, so that there is a problem that periodic maintenance work is required.
[0008]
Furthermore, the incorporation of sub-deposits into a vacuum pump such as a rotary pump used as an evacuation means not only lowers the evacuation capacity of the pump body, but also causes a failure or the like, and causes a pump replacement. There were problems such as trouble and time loss for restoring the device.
[0009]
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems, to efficiently decompose unreacted gas and by-products exhausted from a reaction chamber in a processing apparatus, and to deposit and deposit by-products on exhaust pipes and exhaust means. And to perform the original processing efficiently.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, a processing apparatus of the present invention is configured as follows.
[0011]
That is, the processing apparatus of the present invention is a processing apparatus having a processing space for processing a substrate or a film and an exhaust means for exhausting the processing space,
A conductance adjusting valve is provided in an exhaust path connecting the processing space and the exhaust unit ,
In an exhaust path connecting the processing space and the conductance adjusting valve, a chemical reaction generating means for causing a chemical reaction to at least one of an unreacted gas and a by-product exhausted from the processing space is provided. The chemical reaction generating means is constituted by a heating element containing silicon atoms.
[0012]
In the present invention, the heating element is preferably formed with at least one of chromium, molybdenum, tungsten, vanadium, niobium, tantalum, titanium, zirconium, and hafnium as a base material, and is included in the heating element. The amount of silicon atoms to be added is preferably 0.1% or more in an atomic composition ratio to all atomic components constituting the heating element.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
The processing apparatus of the present invention will be described using a CVD apparatus as an example. For example, in order to form a non-single-crystal semiconductor thin film such as an amorphous silicon film or an amorphous silicon alloy film, a plasma CVD method is used.
[0014]
FIG. 1 shows a schematic cross-sectional view of one embodiment of a plasma CVD apparatus which is one of the processing apparatuses of the present invention. In the figure, 100 is a reaction chamber, 101 is a substrate to be processed, 102 is gas mixing equipment, 103 is an exhaust pipe, 104 is a cathode electrode, 105 is a heater unit, 106 is a high-frequency power source, 107 is a heating element unit, and 108 is exhaust. A pump unit, 109 is a gas introduction pipe, 110 is an exhaust gas pipe, 111 is a high-frequency application cable, 112 is a discharge space, 113 is a pressure gauge, 114 is a conductance adjustment valve, 115 is an AC power source, and 116 is an AC application cable. .
[0015]
In the apparatus shown in FIG. 1, a reaction chamber 100 made of stainless steel, quartz, or the like is used as a processing space, and silane gas (SiH 4 ) or hydrogen gas (H 2 ) is passed through a gas mixing facility 102 composed of a mass flow controller or the like. Is introduced into the reaction chamber 100 through the gas introduction pipe 109, and high-frequency power as decomposition energy is applied from the high-frequency power source 106 to the cathode electrode 104 via the high-frequency application cable 111. Then, a discharge is generated in the discharge space 112 to decompose the source gas in the reaction chamber 100 to form a deposited film on a desired substrate 101 such as stainless steel or glass. A heater unit 105 is provided on the back surface of the cathode electrode 104, and thereby the base 101 is heated. The pressure in the reaction chamber 100 is monitored by a pressure gauge 113.
[0016]
The residual gas (unreacted gas, by-product) that did not become a deposited film passes through the exhaust pipe 103 and the conductance valve 114 as exhaust gas, and is exhausted from the exhaust gas pipe 110 to the outside of the reaction chamber 100 by the exhaust pump unit 108. At this time, a heating element unit 107 containing silicon (Si) atoms is installed inside the exhaust pipe 103 serving as an exhaust path, as a chemical reaction generating means for causing a chemical reaction to the unreacted gas and by-products. . Heating element unit 107 is connected to AC power source 115 via AC application cable 116. As the base material of the heating element, chromium (Cr), molybdenum (Mo), tungsten (W), vanadium (V), niobium (Nb), tantalum (Ta), and titanium (Ti) are classified as high melting point metals. , Zirconium (Zr), hafnium (Hf), and the like, it is desirable to use the base material containing silicon atoms. It is desirable that the content of silicon atoms be 0.1% or more in atomic composition ratio with respect to all atomic components constituting the heating element.
[0017]
The effect of including silicon atoms in the base material will be described below.
[0018]
For example, if pure metal is selected as the heating element material, depending on the metal, if the temperature is increased as the heating element and continued to be used, a heat treatment effect of the heating element itself occurs, and the structure of the internal structure such as the crystal grain size of the metal changes. In some cases, the high-temperature strength decreases and the material becomes very brittle. However, when the heating element material contains silicon atoms, the high-temperature strength of the base material (metal) can be maintained, and the function as the heating element can be maintained for a longer time. The present invention can sufficiently cope with a case where processes such as amorphous silicon film formation are continuously performed for a long time. Further, since the damage period of the heating element can be made longer, the frequency of maintenance can be reduced, and the operation rate of the apparatus can be improved.
[0019]
The heating element is installed at a position in the middle of the exhaust pipe 103 disposed between the reaction chamber 100, which is a processing space, and the exhaust pump unit 108 represented by a rotary pump or the like, that is, the exhaust gas flow. Inside the road is desirable.
[0020]
As the heating element, for example, as shown in FIG. 2, at least one unit or more can be installed in the exhaust pipe 103 by winding the wire-shaped heating element 201 around the insulating plate member 200 a plurality of times. The wire-like heating element 201 is heated by applying power such as AC power to both ends thereof. If necessary, the voltage value of the AC power may be adjusted by a voltage adjusting converter such as Slidak. Further, as shown in FIG. 3, a heating element is formed on the coil-shaped heating element 203, and is supported by passing an insulating rod material 204 through the heating element 203 so that the heating element crosses the gas flow direction in the exhaust pipe 103. At least one or more may be installed. AC power or the like is applied to both ends of the coil-shaped heating element 203. Further, as shown in FIG. 4, at least one rod-shaped heating element 205 is used, conductive electrode materials 206 are separately provided at both ends of the rod-shaped heating element 205, and the rod-shaped heating elements 205 are connected in parallel to each other. AC power or the like may be applied to the conductive electrode material 206 for use. Further, as shown in FIG. 5, at least one or more tape-shaped heating elements 207 are used, conductive electrode materials 208 are separately provided at both ends of the tape-shaped heating elements 207, and the tape-shaped heating elements 207 are connected in parallel. Alternatively, AC power or the like may be applied to the conductive electrode members 208 at both ends for use.
[0021]
In any of the above cases, the heating element unit 108 is installed in the exhaust pipe 103 between the processing space (reaction chamber 100) and the exhaust means (the conductance adjusting valve 114, the exhaust pump unit 108), and the exhaust gas flow It is only necessary that the setting is performed without blocking the road, and the setting mode is not limited.
[0022]
Regarding the heating method of the heating element, any shape such as a linear shape, a rod shape, and a coil shape is generated by applying an AC power or a DC power to both ends thereof and flowing a current to the heating body itself. And good. If necessary, power may be applied via a temperature adjustment controller.
[0023]
As the temperature of the heating element, for example, at the time of formation of the amorphous silicon film, polysilane to deposit in the exhaust pipe 103 (Si x H y; x , y are integers) release of a large amount of hydrogen atoms contained in the From the viewpoint of promoting the reaction and performing a process of changing the silicon film piece as a result, it is desirable to use the temperature raised to 500 ° C. or more.
[0024]
【Example】
(Example 1)
A deposited film was formed using the plasma CVD apparatus shown in FIG. As for the specifications of the heating element unit 107, an insulating plate material 200 (300 mm × 150 mm × 5 mm) made of alumina ceramics as shown in FIG. The wire material (base material: any one of chromium, molybdenum, tungsten, vanadium, niobium, tantalum, titanium, zirconium, and hafnium) was wound around the plate material five times in the longitudinal direction and set in the exhaust pipe 103. . A substrate (50 mm × 50 mm × 1 mm) made of stainless steel (SUS304) is placed on the cathode electrode 104 as the substrate 101 to be processed, and the stainless steel substrate 101 is heated to 300 ° C. by using a heater unit 105 embedded below the cathode electrode 104. It was set to become. In this example, in order to more clearly determine the effect of the heating element unit 107, the following stricter film forming conditions were set.
[0025]
In the gas mixing equipment 102, a silane (SiH 4 ) gas (flow rate: 200 sccm) and a hydrogen (H 2 ) gas (flow rate: 200 sccm) were mixed, and the mixed gas was introduced into the reaction chamber 100 through a gas introduction pipe 109. . 100 V AC was applied to both ends of the heating element 201 from an AC power source 115 via an AC application cable 116. At this time, the current value flowing through the heating element 201 was 5 A, and the temperature of the heating element 201 was 1000 ° C. Thereafter, the conductance adjusting valve 114 was adjusted by the pressure gauge 113 so that the pressure in the reaction chamber 100 became 1 Torr. Thereafter, RF power of 500 W was applied from the high-frequency power source 106 to the cathode electrode 104 via the high-frequency application cable to generate a discharge. The treatment time, that is, the discharge time was continuously 10 hours.
[0026]
(Comparative Example 1)
Except for using a wire material having a silicon atom content of 0% as a heating element, the heating element unit 107 has the same heating element layout, the same apparatus configuration, and the same film forming conditions as those of the first embodiment except that a wire material having a silicon atom content of 0% is used. Was formed.
[0027]
In each of Example 1 and Comparative Example 1, the procedure of continuously performing the discharge treatment for 10 hours, performing the operation of replacing the base, adjusting the discharge again, and performing the discharge treatment for 10 hours was repeated. Then, in order to compare the lifespans of the heating elements, each cycle was repeated for 10 hours continuously until the heating elements were damaged and became unusable, and the number of repetitions was compared to evaluate the durability. At the same time, the situation of sub-deposits adhering to the inner wall surface of the exhaust pipe 103 was compared (after the heating element was damaged), and the processing ability was evaluated. Table 1 shows the results.
[0028]
[Table 1]
Figure 0003544145
[0029]
[Evaluation of durability]
:: 11 cycles or more △: 6 to 10 cycles X: 0 to 5 cycles
[Evaluation of processing capacity]
A: No powdery polysilane was observed at all, and a hard film was attached and deposited.
:: Powdery polysilane was slightly observed, and a hard film was attached and deposited.
Δ: About 30% of the powdery polysilane was adhered and deposited at a rate of about 70% of the hard film.
[0031]
As shown in Table 1, the use of the heating element containing silicon atoms proved that the number of times until the heating element was damaged in repeated use, that is, the life was long and the durability was excellent. At the same time, from the viewpoint of the state of sub-deposits adhering to the inner wall of the exhaust pipe 103, it was proved that excellent results were obtained by using a heating element containing silicon atoms.
[0032]
(Example 2)
A deposited film was formed in the same manner as in Example 1 except that heating elements having different silicon atom contents were properly used, and the dependency of the heating element on the silicon atom content was examined. Specifically, six types of wire materials (base materials) having a silicon atom content of 0.01%, 0.05%, 0.1%, 0.5%, 1%, and 5% (atomic composition ratio) : Any one of chromium, molybdenum, tungsten, vanadium, niobium, tantalum, titanium, zirconium, and hafnium) was prepared, and each wire material had the same diameter of 0.2 mm.
[0033]
Similar to the procedure of Example 1 and Comparative Example 1, the number of repetitions until the heating element was damaged was compared with the discharge treatment for 10 hours in a continuous cycle as one cycle. Was compared. Table 2 shows the results.
[0034]
[Table 2]
Figure 0003544145
[0035]
The evaluation criteria in Table 2 are the same as in Table 1.
[0036]
As shown in Table 2, it was demonstrated that by using the heating element having a silicon atom content of 0.1% or more, the durability of the heating element in repeated use was excellent. At the same time, from the viewpoint of availability of the sub deposits adhering to the inner wall of the exhaust pipe 103, it effects the silicon atom content is excellent by using a heating element is 0.1% or more is obtained, et al. Proven.
[0037]
(Example 3)
Using a tungsten wire material having a silicon atom content of 1% (atomic composition ratio) and a diameter of 0.2 mm, changing the AC voltage applied to the wire material to variously change the temperature of the wire material, that is, the temperature of the heating element. The heating element temperature dependence was examined. The heating element layout, device configuration, and discharge conditions were the same as in Example 1. The temperature of the heating element was set to six types of 300 ° C., 500 ° C., 600 ° C., 800 ° C., 1000 ° C., and 1200 ° C. In the same manner as in Example 1 and Comparative Example 1, the temperature until the heating element was damaged was determined. And the number of repetitions of the continuous 10-hour discharge treatment was compared. At the same time, a comparison was made of the sub-deposits attached to the inner wall surface of the exhaust pipe 103. Table 3 shows the results.
[0038]
[Table 3]
Figure 0003544145
[0039]
The evaluation criteria for the processing capacity in the table are the same as in Table 1.
[0040]
As shown in Table 3, in the temperature range where the temperature of the wire material, that is, the heating element is 500 ° C. or more, the heating element according to the present invention has a large number of repetitions until breakage, that is, has a long life. It was found that by setting the temperature of the heating element to 500 ° C. or higher, a result having an excellent processing ability was obtained.
[0041]
【The invention's effect】
According to the processing apparatus of the present invention, in substrate processing such as formation of a functional deposited film or film processing such as etching, unreacted gas or by-products contained in exhaust gas exhausted from the reaction chamber passes through the exhaust pipe. Although formed on the inner wall surface of the exhaust pipe when passing through, the sub-deposits are satisfactorily decomposed and deposited as a hard film, so that the original processing is performed for a long time by preventing the exhaust pipe opening from being blocked. be able to.
[0042]
Further, since the durability of the heating element provided in the exhaust path is high, the number of times of maintenance of the heating element unit is reduced, and the operation rate of the apparatus can be improved.
[0043]
Furthermore, it is possible to prevent adhesion of sub-deposits to L-shaped valves, a conductance adjusting valve, a pressure gauge, and the like provided in the middle of the exhaust pipe, and it is possible to maintain the function for a long time. The regular maintenance work conventionally performed is no longer necessary.
[0044]
Furthermore, it is possible to prevent sub-deposits from being mixed into a vacuum pump such as a rotary pump used as an evacuation unit, and to maintain the evacuation capacity of the pump body for a long time, thereby greatly reducing the frequency of pump failure. It can be reduced.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view of an embodiment of a plasma CVD apparatus which is a processing apparatus of the present invention.
FIG. 2 is a diagram showing an example of the structure of a heating element used in the present invention.
FIG. 3 is a diagram showing another example of the structure of the heating element used in the present invention.
FIG. 4 is a view showing another example of the structure of the heating element used in the present invention.
FIG. 5 is a diagram showing another example of the structure of the heating element used in the present invention.
[Explanation of symbols]
REFERENCE SIGNS LIST 100 Reaction chamber 101 Substrate to be processed 102 Gas mixing equipment 103 Exhaust pipe 104 Cathode electrode 105 Heater unit 106 High frequency power source 107 Heating element unit 108 Exhaust pump unit 109 Gas introduction pipe 110 Exhaust gas pipe 111 High frequency application cable 112 Discharge space 113 Pressure gauge 114 Conductance adjusting valve 115 AC power source 116 AC application cable 200 Insulating plate 201 Wire-shaped heating element 203 Coiled heating element 204 Insulating bar 205 Bar-shaped heating element 206 Conductive electrode material 207 Tape-shaped heating element 208 Conductive electrode material

Claims (4)

基体または膜を処理するための処理空間と該処理空間を排気するための排気手段とを有する処理装置であって、
前記処理空間と前記排気手段とを連絡する排気経路中にコンダクタンス調整バルブを備え、
上記処理空間とコンダクタンス調整バルブとを連絡する排気経路中に、上記処理空間から排気される未反応ガス及び副生成物の少なくとも一方に化学反応を起こさせるための化学反応生起手段を有し、該化学反応生起手段がシリコン原子を含む発熱体から構成されていることを特徴とする処理装置。
A processing apparatus having a processing space for processing a substrate or a film and an exhaust unit for exhausting the processing space,
A conductance adjusting valve is provided in an exhaust path connecting the processing space and the exhaust unit ,
In an exhaust path connecting the processing space and the conductance adjusting valve, a chemical reaction generating means for causing a chemical reaction to at least one of an unreacted gas and a by-product exhausted from the processing space is provided. A processing apparatus, wherein the chemical reaction generating means is constituted by a heating element containing silicon atoms.
上記発熱体が、少なくともクロム、モリブデン、タングステン、バナジウム、ニオブ、タンタル、チタン、ジルコニウム、ハフニウムのいずれかを母体材料として形成されている請求項1記載の処理装置。The processing apparatus according to claim 1, wherein the heating element is formed using at least one of chromium, molybdenum, tungsten, vanadium, niobium, tantalum, titanium, zirconium, and hafnium as a base material. 上記発熱体に含まれるシリコン原子の量が、発熱体を構成する全原子成分に対し、原子組成比で0.1%以上である請求項1記載の処理装置。2. The processing apparatus according to claim 1, wherein an amount of silicon atoms contained in the heating element is 0.1% or more in an atomic composition ratio with respect to all atomic components constituting the heating element. 上記発熱体が上記排気経路中の未反応ガス及び副生成物の排気流路に設置されている請求項1記載の処理装置。The processing apparatus according to claim 1, wherein the heating element is provided in an exhaust passage for unreacted gas and by-products in the exhaust passage.
JP11028499A 1998-04-20 1999-04-19 Processing equipment Expired - Fee Related JP3544145B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP11028499A JP3544145B2 (en) 1999-04-19 1999-04-19 Processing equipment
US09/294,367 US20030164225A1 (en) 1998-04-20 1999-04-20 Processing apparatus, exhaust processing process and plasma processing
US10/776,173 US20040161533A1 (en) 1998-04-20 2004-02-12 Processing apparatus, exhaust processing process and plasma processing process
US11/776,265 US20080014345A1 (en) 1998-04-20 2007-07-11 Processing apparatus, exhaust processing process and plasma processing process
US12/326,238 US20090084500A1 (en) 1998-04-20 2008-12-02 Processing apparatus, exhaust processing process and plasma processing process
US12/327,223 US20090145555A1 (en) 1998-04-20 2008-12-03 Processing apparatus, exhaust processing process and plasma processing process
US12/327,403 US20090114155A1 (en) 1998-04-20 2008-12-03 Processing apparatus, exhaust processing process and plasma processing process
US12/327,428 US20090095420A1 (en) 1998-04-20 2008-12-03 Processing apparatus, exhaust processing process and plasma processing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11028499A JP3544145B2 (en) 1999-04-19 1999-04-19 Processing equipment

Publications (2)

Publication Number Publication Date
JP2000306842A JP2000306842A (en) 2000-11-02
JP3544145B2 true JP3544145B2 (en) 2004-07-21

Family

ID=14531802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11028499A Expired - Fee Related JP3544145B2 (en) 1998-04-20 1999-04-19 Processing equipment

Country Status (1)

Country Link
JP (1) JP3544145B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW509593B (en) * 2000-08-08 2002-11-11 Ebara Corp Method and device for preventing solid products from adhering to the inside of exhaust pipe and exhaust gas treating apparatus having such device
JP5144207B2 (en) * 2006-11-06 2013-02-13 株式会社日立国際電気 Substrate processing apparatus and semiconductor device manufacturing method
US9460945B2 (en) 2006-11-06 2016-10-04 Hitachi Kokusai Electric Inc. Substrate processing apparatus for semiconductor devices

Also Published As

Publication number Publication date
JP2000306842A (en) 2000-11-02

Similar Documents

Publication Publication Date Title
US20030164225A1 (en) Processing apparatus, exhaust processing process and plasma processing
JP4459329B2 (en) Method and apparatus for removing attached film
US20070169890A1 (en) Exhaust processing method, plasma processing method and plasma processing apparatus
US5391232A (en) Device for forming a deposited film
US6942892B1 (en) Hot element CVD apparatus and a method for removing a deposited film
JP7453352B2 (en) Method for forming protective coatings on processing chamber surfaces or components
EP1637624B1 (en) Thin film forming apparatus
EP0020746B1 (en) Process and apparatus for cleaning wall deposits from a film deposition furnace tube
US5120625A (en) Carbon material containing a halogen and deposition method for same
JP3544145B2 (en) Processing equipment
JP3494933B2 (en) Semiconductor manufacturing apparatus cleaning method
JP3652166B2 (en) Processing equipment
JP3544144B2 (en) Processing equipment
JP3706763B2 (en) Processing apparatus and exhaust processing method thereof
JP3416563B2 (en) Plasma processing method
JP2002302769A (en) Method for cleaning deposited film forming apparatus
JPS59177919A (en) Selective growth of thin film
JP2925291B2 (en) Deposition film forming equipment
JPH03120374A (en) Method and apparatus for forming deposited film by microwave plasma cvd method
Ti et al. Subject Index of Volume 386
JPH08225961A (en) Plasma etching device
JP2008202096A (en) Deposition film forming method and electrophotographic photoreceptor
JPS6357773A (en) Functional deposited film forming device
JPS6357774A (en) Formation of functional deposited film
JPS63216975A (en) Thin film treating device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040331

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees