JP3543368B2 - Method for producing bromodifluoroacetic acid fluoride - Google Patents

Method for producing bromodifluoroacetic acid fluoride Download PDF

Info

Publication number
JP3543368B2
JP3543368B2 JP15750894A JP15750894A JP3543368B2 JP 3543368 B2 JP3543368 B2 JP 3543368B2 JP 15750894 A JP15750894 A JP 15750894A JP 15750894 A JP15750894 A JP 15750894A JP 3543368 B2 JP3543368 B2 JP 3543368B2
Authority
JP
Japan
Prior art keywords
reaction
acid fluoride
producing
present
bromodifluoroacetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15750894A
Other languages
Japanese (ja)
Other versions
JPH0827058A (en
Inventor
一也 大春
清作 熊井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP15750894A priority Critical patent/JP3543368B2/en
Publication of JPH0827058A publication Critical patent/JPH0827058A/en
Application granted granted Critical
Publication of JP3543368B2 publication Critical patent/JP3543368B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【産業上の利用分野】
ブロモジフルオロ酢酸フルオリドは各種の触媒、医農薬の中間体および機能性材料の中間体等に用いられる有用な化合物である。本発明は、ブロモジフルオロ酢酸フルオリドの新規な製造方法に関する。
【0002】
【従来の技術】
ブロモジフルオロ酢酸の製造方法としては、1,2−ジブロモクロロトリフルオロエタンと発煙硫酸を反応させる方法(特開昭57−40433、特開昭57−40434、特開昭57−40435)、臭素とテトラフルオロエチレンと三酸化イオウとを反応させる方法(特開平3−38543)、1,4−ジブロモヘキサフルオロ−2−ブテンをオゾン酸化する方法が知られている。
【0003】
【発明が解決しようとする課題】
しかし、発煙硫酸や三酸化イオウを用いる方法はブロモジフルオロ酢酸フルオリドと、反応副生成物である二酸化イオウが共沸し、満足できる収率で得ることができない問題がある。またオゾン酸化法は、原料の入手が困難である問題がある。
【0004】
【課題を解決するための手段】
本発明は、上記の問題点を解決するためになされたものである。本発明者らは、新規なブロモジフルオロ酢酸フルオリドの製造方法について鋭意検討を重ねた結果、入手が容易な原料から高収率でブロモジフルオロ酢酸フルオリドを製造する方法を見いだした。
【0005】
すなわち、本発明は、ジフルオロ酢酸フルオリドと臭素とを光照射下で反応せしめることを特徴とするブロモジフルオロ酢酸フルオリドの製造方法を提供する。
【0006】
本発明のジフルオロ酢酸フルオリドは、式CF2 HCOFで表される化合物である。該化合物は、公知の化合物であり、1−アルコキシ−1,1,2,2−テトラフルオロエタンをルイス酸存在下で分解することにより容易に合成できる化合物である。
【0007】
本発明はジフルオロ酢酸フルオリドと臭素とを光照射下で反応せしめることが特徴である。本発明の反応における光源としては、臭素を活性化するものであれば特に限定されない。たとえば高圧水銀灯、中圧水銀灯、低圧水銀灯、キセノンランプ、タングステンランプ、ハロゲンランプ等が使用可能である。
【0008】
また、反応生成物のブロモジフルオロ酢酸フルオリドは、紫外線を吸収すると一部が分解し、フッ酸を生ずる可能性がある。したがって、光源からの光は、280nm以下の波長をカットすることが望ましい。
【0009】
一般に、フッ酸の発生を伴う光反応においては、フッ酸量が微量であったとしても光源を保護するガラスが腐食し失透する恐れがある。ガラスの腐食および失透は、反応率の早期低下を導くだけでなく、安全性の点でも問題である。
【0010】
したがって、本発明においては、光源からの光が導入される透明壁の反応物と接触する面に、保護層を設けるのが好ましい。保護層を設けることにより、光源部のガラスと反応生成物とが直接触れることを防ぎ、長期間にわたって反応を円滑に進行させることができる。該透明壁としては、光源を保護するガラス筒やガラス管等が挙げられる。
【0011】
保護層としては光源部より照射された有効な光を透過させるものであれば特に限定されない。例えば、反応に有効な光を透過させる樹脂等が挙げられる。本発明の保護層としては、フッ素樹脂が好ましく、特に透明性のフッ素樹脂が好ましい。透明性のフッ素樹脂としては、テトラフルオロエチレン−パーフルオロビニルエーテル共重合体(以下、PFAと記す。)、エチレン−テトラフルオロエチレン系の共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン系の共重合体、旭硝子社製商品名「サイトップ」、デュポン社製商品名「テフロンAF」等が挙げられる。
【0012】
本発明の反応は、液相反応または気相反応のいずれで実施してもよい。液相反応で実施する場合には、溶媒系または無溶媒系のいずれでも可能である。液相反応で溶媒を用いる際には、原料および臭素の溶解度の高い溶媒を用いるのが好ましく、たとえばパーフルオロヘキサン等のパーフルオロ化合物、四塩化炭素、クロロホルム等が好ましい。また、本発明の反応は、触媒等を存在させなくても、満足に進行させ得る。
【0013】
反応温度は、気相反応においては通常は室温〜200℃の範囲が好ましく、さらには50〜150℃がより好ましい。また、液相反応においては通常は−50〜+100℃が好ましく、さらには−20〜+50℃が好ましい。反応時間は、光源の種類、反応液の量などにより、大きく異なり、各々の条件に応じた任意の時間が設定され得る。
【0014】
反応圧力は、気相反応においても液相反応においても特に限定されず、任意の圧力で実施できる。本発明の反応は、常圧であっても容易に進行するが、液相で反応を行う場合には原料および生成物の沸点等の点から、加圧系で実施するのが好ましい。反応圧力や反応温度等の反応条件は、適宜変更可能である。
【0015】
臭素の量は、ジフルオロ酢酸フルオリド1モルに対して、理論的には1モル必要であるが、気相反応においては必要な化学量論量の約20〜400%、好ましくは50〜400%の量が、反応の収率の点から望ましい。また、本発明の反応は、臭素、反応中間体、および反応生成物に対して不活性な化合物、例えば窒素ガス、ヘリウムガス、アルゴンガス、または炭酸ガス等を存在させて実施してもよい。該不活性な化合物の量は、ジフルオロ酢酸フルオリドの1モルに対して、0〜50モル%程度が好ましい。
【0016】
本発明によって製造されたブロモジフルオロ酢酸フルオリド(CBrF2 COF)は、必要に応じて蒸留等の精製処理を施して高純度のものとできる。該ブロモジフルオロ酢酸フルオリドは触媒、医農薬中間体、および機能性材料の中間体として有用な化合物である。
【0017】
以下に、本発明の実施例についてさらに具体的に説明するが、かかる説明によって本発明は何等限定されない。
【0018】
【実施例】
[実施例1]
500ccのPFA製の容器を60℃の温水浴中に漬け、ジフルオロ酢酸フルオリドと臭素のモル比が1/1に調された60℃の混合ガスを、容器内のガスが完全に置換されるまで常圧で導入した。導入終了後、外部より400Wの高圧水銀灯を10分間照射した。反応終了後、反応粗ガスを19F−NMRおよびガスクロマトグラフにより分析した。その結果ジフルオロ酢酸フルオリドの転化率は87%、ブロモジフルオロ酢酸フルオリドの選択率は82%であった。
【0019】
[実施例2]
内容積30ccのPFAチューブ型反応器に、あらかじめジフルオロ酢酸フルオリドと臭素のモル比が1/1.5に調された反応ガスを、80℃の恒温槽中で、反応管内圧が2kg/cm2(ゲージ圧)になるように導入した。導入終了後外部よりパイレックス(米国コーニング社登録商標)製(280nm以下の波長をカット)の保護管の付いた400Wの高圧水銀灯を20分間照射した。反応終了後、反応粗ガスを19F−NMRおよびガスクロマトグラフにより分析した。その結果ジフルオロ酢酸フルオリドの転化率は99%、ブロモジフルオロ酢酸フルオリドの選択率は89%であった。
【0020】
[実施例3]
反応ガスとしてジフルオロ酢酸フルオリドと臭素と窒素とのモル比が1/1.2/1に調されたものを使う以外は、実施例2と全く同様に反応を行い、反応終了後、反応粗ガスを19F−NMRおよびガスクロマトグラフにより分析した。その結果ジフルオロ酢酸フルオリドの転化率は89%、ブロモジフルオロ酢酸フルオリドの選択率は84%であった。
【0021】
[実施例4]
−80℃の冷却管を取り付けた1000ccのPFAライニング反応器に、ジフルオロ酢酸フルオリドを1.0kg仕込み、反応温度−10℃で臭素を1mol/hで液中に導入しながら、表面を透明フッ素樹脂「サイトップ」でコーティングしたパイレックス(同前)製(280nm以下の波長をカット)の保護管の付いた400Wの高圧水銀灯で、内部より光照射し、反応を行った。10時間反応後、反応粗生成物を19F−NMRおよびガスクロマトグラフにより分析した。その結果ジフルオロ酢酸フルオリドの転化率は60%、ブロモジフルオロ酢酸フルオリドの選択率は78%であった。
【0022】
【発明の効果】
また、本発明方法によれば、入手が容易な原料を用い、かつ、触媒等を用いずに、非常に効率的に、かつ高収率でブロモジフルオロ酢酸フルオリドが得られる。また、本発明方法は、工業的に実施する場合にも適した方法である。
[0001]
[Industrial applications]
Bromodifluoroacetic acid fluoride is a useful compound used for various catalysts, intermediates for medical and agricultural chemicals, intermediates for functional materials, and the like. The present invention relates to a novel method for producing bromodifluoroacetic acid fluoride.
[0002]
[Prior art]
As a method for producing bromodifluoroacetic acid, a method of reacting 1,2-dibromochlorotrifluoroethane with fuming sulfuric acid (JP-A-57-40433, JP-A-57-40434, JP-A-57-40435), A method of reacting tetrafluoroethylene with sulfur trioxide (JP-A-3-38543) and a method of ozone-oxidizing 1,4-dibromohexafluoro-2-butene are known.
[0003]
[Problems to be solved by the invention]
However, a method using fuming sulfuric acid or sulfur trioxide and bromodifluoroacetate fluoride, and sulfur dioxide azeotropic a reaction by-product, there is a problem that can not be obtained in satisfactory yield. The ozone oxidation method, it is difficult der Ru problems availability of raw materials.
[0004]
[Means for Solving the Problems]
The present invention has been made to solve the above problems. The present inventors have conducted intensive studies on a novel method for producing bromodifluoroacetic acid fluoride, and as a result, have found a method for producing bromodifluoroacetic acid fluoride in a high yield from easily available raw materials.
[0005]
That is, the present invention provides a method for producing bromodifluoroacetic acid fluoride, which comprises reacting difluoroacetic acid fluoride with bromine under light irradiation.
[0006]
The difluoroacetic acid fluoride of the present invention is a compound represented by the formula CF 2 HCOF. The compound is a known compound and can be easily synthesized by decomposing 1-alkoxy-1,1,2,2-tetrafluoroethane in the presence of a Lewis acid.
[0007]
The present invention is characterized in that difluoroacetic acid fluoride and bromine are reacted under light irradiation. The light source in the reaction of the present invention is not particularly limited as long as it activates bromine. For example, a high-pressure mercury lamp, a medium-pressure mercury lamp, a low-pressure mercury lamp, a xenon lamp, a tungsten lamp, a halogen lamp and the like can be used.
[0008]
Further, bromodifluoroacetic acid fluoride as a reaction product may partially decompose when absorbing ultraviolet rays, and may generate hydrofluoric acid. Therefore, it is desirable that the light from the light source cuts a wavelength of 280 nm or less.
[0009]
In general, in a photoreaction involving the generation of hydrofluoric acid, even if the amount of hydrofluoric acid is very small, the glass protecting the light source may be corroded and devitrified. Corrosion and devitrification of the glass not only leads to an early fall in the conversion, but is also a problem in terms of safety.
[0010]
Therefore, in the present invention, it is preferable to provide a protective layer on the surface of the transparent wall into which the light from the light source is introduced, which is in contact with the reactant. By providing the protective layer, it is possible to prevent the glass of the light source unit from directly contacting the reaction product, and to allow the reaction to proceed smoothly for a long period of time. Examples of the transparent wall include a glass tube and a glass tube for protecting the light source.
[0011]
The protective layer is not particularly limited as long as it transmits effective light emitted from the light source unit. For example, a resin that transmits light effective for the reaction may be used. As the protective layer of the present invention, a fluororesin is preferable, and a transparent fluororesin is particularly preferable. Examples of the transparent fluororesin include a tetrafluoroethylene-perfluorovinyl ether copolymer (hereinafter, referred to as PFA), an ethylene-tetrafluoroethylene-based copolymer, and a tetrafluoroethylene-hexafluoropropylene-based copolymer. And "Teflon AF" (trade name, manufactured by Asahi Glass Co., Ltd.).
[0012]
The reaction of the present invention may be performed in either a liquid phase reaction or a gas phase reaction. When the reaction is carried out by a liquid phase reaction, either a solvent system or a solventless system can be used. When a solvent is used in the liquid phase reaction, it is preferable to use a solvent having high solubility for the raw material and bromine, and for example, a perfluoro compound such as perfluorohexane, carbon tetrachloride, chloroform and the like are preferable. The reaction of the present invention can proceed satisfactorily without the presence of a catalyst or the like.
[0013]
The reaction temperature is usually preferably in the range of room temperature to 200 ° C., more preferably 50 to 150 ° C. in the gas phase reaction. In the liquid phase reaction, the temperature is usually preferably from -50 to + 100C, more preferably from -20 to + 50C. The reaction time greatly varies depending on the type of the light source, the amount of the reaction solution, and the like, and an arbitrary time can be set according to each condition.
[0014]
The reaction pressure is not particularly limited in a gas phase reaction or a liquid phase reaction, and the reaction can be carried out at any pressure. The reaction of the present invention proceeds easily even at normal pressure, but when the reaction is carried out in a liquid phase, it is preferable to carry out the reaction in a pressurized system from the viewpoint of the boiling points of the raw materials and products. Reaction conditions such as reaction pressure and reaction temperature can be appropriately changed.
[0015]
The amount of bromine, relative difluoro acetate fluoride 1 mol, but is theoretically required 1 mole, about 20 to 400% of the required stoichiometric amount in the gas phase reaction, preferably 5 0-400% Is desirable from the viewpoint of the yield of the reaction. The reaction of the present invention may be carried out in the presence of a compound inert to bromine, a reaction intermediate, and a reaction product, for example, a nitrogen gas , a helium gas , an argon gas , a carbon dioxide gas , or the like. The amount of the inactive compound is preferably about 0 to 50 mol% based on 1 mol of difluoroacetic acid fluoride.
[0016]
The bromodifluoroacetic acid fluoride (CBrF 2 COF) produced according to the present invention can be subjected to a purification treatment such as distillation as required to obtain a highly purified one. The bromodifluoroacetic acid fluoride is a compound useful as a catalyst, an intermediate for medical and agricultural chemicals, and an intermediate for functional materials.
[0017]
Hereinafter, examples of the present invention will be described more specifically, but the present invention is not limited to the description.
[0018]
【Example】
[Example 1]
Immersed PFA-made vessel 500cc in warm water bath at 60 ° C., a 60 ° C. mixture gas of molar ratio of difluoro acetic fluoride and bromine are integer 1/1 two tone, gas in the container is completely replaced Up to normal pressure. After the introduction, a 400 W high-pressure mercury lamp was irradiated from the outside for 10 minutes. After the completion of the reaction, the reaction crude gas was analyzed by 19 F-NMR and gas chromatography. As a result, the conversion of difluoroacetic acid fluoride was 87%, and the selectivity of bromodifluoroacetic acid fluoride was 82%.
[0019]
[Example 2]
The PFA tube reactor having an inner volume of 30 cc, a prereacted gas molar ratio of difluoro acetic fluoride and bromine are integer tone two 1 / 1.5, in a thermostatic bath at 80 ° C., the reaction tube pressure is 2 kg / cm 2 (gauge pressure). After the completion of the introduction, a 400 W high-pressure mercury lamp equipped with a protective tube made of Pyrex (registered trademark of Corning Incorporated, USA) (cutting a wavelength of 280 nm or less) was irradiated from the outside for 20 minutes. After the completion of the reaction, the reaction crude gas was analyzed by 19 F-NMR and gas chromatography. As a result, the conversion of difluoroacetic acid fluoride was 99%, and the selectivity of bromodifluoroacetic acid fluoride was 89%.
[0020]
[Example 3]
Except that the molar ratio of difluoro acetic fluoride bromine and nitrogen use those 1 / 1.2 / 1 two adjustment as a reaction gas, subjected to reaction in exactly the same manner as in Example 2, after the completion of the reaction, the reaction The crude gas was analyzed by 19 F-NMR and gas chromatography. As a result, the conversion of difluoroacetic acid fluoride was 89%, and the selectivity of bromodifluoroacetic acid fluoride was 84%.
[0021]
[Example 4]
To -80 ° C. in a cooling tube 1000cc of PFA Rainin grayed anti応器fitted with, 1.0 kg difluoroacetic acid fluoride was charged, while the bromine at a reaction temperature of -10 ° C. was introduced in the liquid at 1 mol / h, clear surface The reaction was performed by irradiating light from the inside with a 400 W high-pressure mercury lamp equipped with a protective tube made of Pyrex (same as above) (cutting a wavelength of 280 nm or less ) coated with a fluororesin “CYTOP”. After reacting for 10 hours, the crude reaction product was analyzed by 19 F-NMR and gas chromatography. As a result, the conversion of difluoroacetic acid fluoride was 60%, and the selectivity of bromodifluoroacetic acid fluoride was 78%.
[0022]
【The invention's effect】
In addition, according to the method of the present invention, bromodifluoroacetic acid fluoride can be obtained very efficiently and in high yield using easily available raw materials and without using a catalyst or the like. In addition, the method of the present invention is a method suitable for industrial implementation.

Claims (2)

ジフルオロ酢酸フルオリドと臭素とを光照射下で反応せしめることを特徴とするブロモジフルオロ酢酸フルオリドの製造方法。A process for producing bromodifluoroacetic acid fluoride, comprising reacting difluoroacetic acid fluoride with bromine under light irradiation. 光照射に用いるが、280nm以下の波長をカットした光である請求項1に記載の製造方法。The process according to claim 1 the light used for light irradiation, a light cut wavelength below 280nm following.
JP15750894A 1994-07-08 1994-07-08 Method for producing bromodifluoroacetic acid fluoride Expired - Fee Related JP3543368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15750894A JP3543368B2 (en) 1994-07-08 1994-07-08 Method for producing bromodifluoroacetic acid fluoride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15750894A JP3543368B2 (en) 1994-07-08 1994-07-08 Method for producing bromodifluoroacetic acid fluoride

Publications (2)

Publication Number Publication Date
JPH0827058A JPH0827058A (en) 1996-01-30
JP3543368B2 true JP3543368B2 (en) 2004-07-14

Family

ID=15651217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15750894A Expired - Fee Related JP3543368B2 (en) 1994-07-08 1994-07-08 Method for producing bromodifluoroacetic acid fluoride

Country Status (1)

Country Link
JP (1) JP3543368B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002193874A (en) * 2000-12-28 2002-07-10 Daikin Ind Ltd Method for producing dibromofluoroacetic acid
JPWO2020138434A1 (en) * 2018-12-28 2021-11-04 Agc株式会社 A method for producing a haloalkyl acid halide, a method for producing a haloalkyl acid ester, and a method for producing a haloalkyl acid amide.

Also Published As

Publication number Publication date
JPH0827058A (en) 1996-01-30

Similar Documents

Publication Publication Date Title
US5710317A (en) Preparation of difluoroacetic acid fluoride and difluoroacetic acid esters
US4900874A (en) Method for producing fluorine-containing olefin
JP2941305B2 (en) Improved process for producing perfluoropolyethers substantially constituted by perfluorooxyethylene and perfluorooxypropylene units
JPH0222326A (en) Production of perfluoropolyether controlled in its molecular weight having perfluoroalkyl or perfluoroalkyl terminal group
US5545298A (en) Process for preparing polyfluorocarboxylic acid chlorides and perfluorocarboxylic acid chlorides
JP2956024B2 (en) Process for producing polyfluorochloride and perfluorocarboxylic acid chloride
JP5266902B2 (en) Method for producing fluorine-containing olefin compound
WO2005023734A1 (en) Process for producing chlorinated fluorine compound
US5205914A (en) Synthesis of desflurane
JPWO2018123301A1 (en) Method for producing sulfur tetrafluoride
US5594159A (en) Producing CF3 CH2 CF3 and/or CF3 CH═CF2 by the conversion of alpha-hydroperfluoroisobutyric acid compounds
KR101284659B1 (en) Process for production of 1,2,2,2-tetrafluoro ethyl difluoro methyl ether
JP4520712B2 (en) Method for producing fluorohalogen ethers
JP3543368B2 (en) Method for producing bromodifluoroacetic acid fluoride
JPH0244817B2 (en)
JPH0853388A (en) Production of difluoroacetic acid halide and difluoroacetic acid
Haszeldine 715. The addition of free radicals to unsaturated systems. Part IV. The direction of radical addition to hexafluoropropene.
WO1995006629A1 (en) Process for producing polyfluoropropionyl halide
JP2595080B2 (en) New perfluoroalkenes and their fluorinated products
US5736012A (en) Process for the preparation of a fluorinated acid
TWI839648B (en) Method for producing a composition containing a purified fluorinated ether compound
JP3711568B2 (en) Process for producing polyfluoropropionic acid halide
KR920004455B1 (en) Process for the preparation of 1,1-dichloro-1-fluoroethane
JP4058142B2 (en) Method for producing fluorinated iodoethane
JPS63139151A (en) Manufacture of perhalohydrocarbon hypochlorite

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees