JP3541418B2 - Phenyl-substituted hydroxycyclopentenones, method for producing the same, and method for producing phenyl-substituted hydroxycyclopentanone - Google Patents

Phenyl-substituted hydroxycyclopentenones, method for producing the same, and method for producing phenyl-substituted hydroxycyclopentanone Download PDF

Info

Publication number
JP3541418B2
JP3541418B2 JP05121794A JP5121794A JP3541418B2 JP 3541418 B2 JP3541418 B2 JP 3541418B2 JP 05121794 A JP05121794 A JP 05121794A JP 5121794 A JP5121794 A JP 5121794A JP 3541418 B2 JP3541418 B2 JP 3541418B2
Authority
JP
Japan
Prior art keywords
group
carbon atoms
hydrogen atom
phenyl
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05121794A
Other languages
Japanese (ja)
Other versions
JPH07238045A (en
Inventor
史衛 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP05121794A priority Critical patent/JP3541418B2/en
Publication of JPH07238045A publication Critical patent/JPH07238045A/en
Application granted granted Critical
Publication of JP3541418B2 publication Critical patent/JP3541418B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Description

【0001】
【産業上の利用分野】
本発明は、種々の医薬品として有用なフェニル置換プロスタグランジン(以下フェニル置換PGと略称する)E類を得るための有用な新規な中間体、その製造方法及びかかるフェニル置換PGE類を有利に製造し得る方法に関する。
【0002】
【従来の技術】
プロスタグランジン(以下PGと略称する)類は微量で種々の重要な生理作用を示すことから、医薬への応用を意図した検討が活発に行なわれている。
【0003】
中でもプロスタグランジンE(以下PGEと略称する)類は、天然PG類のみならず多くの類縁体が合成されてその生物活性が検討され、いくつかの化合物が医薬品として実用化されている。
【0004】
【発明が解決しようとする課題】
PGE類の類縁体展開として、5員環部に結合するα鎖及びω鎖の展開が種々行なわれてきた。
【0005】
中でもα鎖は、その型により薬効プロファイル・代謝安定性が大きく変化するため特に重要である。
【0006】
しかしながら従来、PGE類のα鎖としてフェニル基が5員環に直接結合したフェニル置換PGE類は知られておらず、従ってこれらの有効な製造法はなかった。
【0007】
【課題を解決するための手段及び作用】
本発明者らは鋭意検討を行なった結果、以下に示すような新規な中間体及びそれらを用いたフェニル置換PGE類の有効な製造法を見いだし、本発明を完成するに至った。
【0008】
すなわち、本発明者らは、下記反応式に示すように、式[III]のフラン誘導体を酸触媒存在下転位反応させて式[IV]の化合物とし、これを酸性条件または塩基性条件下で異性化反応させ、必要に応じてその水酸基を保護することにより、式[I]の新規なフェニル置換ヒドロキシシクロペンテノン類を得ることができ、更にこの式[I]のフェニル置換ヒドロキシシクロペンテノン類に式[V]で示される求核試薬を反応させることにより、式[II]のフェニル置換ヒドロキシシクロペンタノン類が得られることを見い出した。このフェニル置換ヒドロキシシクロペンタノン類[II]はそのまま、あるいは必要に応じて、加水分解、保護基の除去、官能基の変換等を行なうことによりフェニル置換PGE類へ導くことができる。
【0009】
また、フェニル置換ヒドロキシシクロペンテノン類[I]の両対掌体の混合物を酵素分割することにより、光学活性な[I]を得ることができ、これを用いることにより、対応する光学活性なフェニル置換ヒドロキシシクロペンタノン類[II]、さらには光学活性なフェニル置換PGE類を効率的に製造することができる。
【0010】
【化8】

Figure 0003541418
[式中、Z1は水素原子または水酸基の保護基を示し、X1は水素原子、ハロゲン原子、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基、炭素数1〜6のアルキルチオ基、ニトロ基、シアノ基またはアミノ基を示し、X2はハロゲン原子、
−Y1 h(CR12mn(CH2p2 q(CR34rs
(式中、Y1及びY2はそれぞれ酸素原子または硫黄原子を示し、Aはビニレン基、エチニレン基、またはアレンの両端の炭素原子から1個ずつ水素原子を除いてできる2価の基を示し、R1、R2、R3及びR4は水素原子、炭素数1〜4のアルキル基、または炭素数1〜4のアルコキシ基を示し、Qは水素原子、
−COOR5
(式中、R5は水素原子、炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基を示す。)で表される基、シアノ基、水酸基、
−OCOR6
(式中、R6は水素原子、炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基を示す。)で表される基、
−CONR78
(式中、R7及びR8は水素原子、炭素数1〜6のアルキル基またはフェニル基を示す。)で表される基またはフェニル基を示し、h、n、q、sは0または1を示し、m、p、rは0〜5の整数を示す。)を示し、
3
−T−(CH2j−C(R9(2-k)(OZ2k−R10
(式中、TはCH2CH2、CH=CH、またはC≡Cより選ばれる基を示し、j及びkはそれぞれ独立に0、1または2の整数を示し、R9は(2−k)個の水素原子、炭素数1〜4のアルキル基または炭素数1〜4のアルコキシ基を示し、R10は炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、炭素数1〜10のアルキニル基、フェニル基、フェノキシ基、(該フェニル基及びフェノキシ基は、ハロゲン原子、トリフルオロメチル基、炭素数1〜6のアルキル基または炭素数1〜6のアルコキシ基で任意に置換されていてもよい。)または−B−D(Bは炭素数1〜4のアルキレン基を、Dはフェニル基、フェノキシ基、(該フェニル基及びフェノキシ基は、ハロゲン原子、トリフルオロメチル基、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基、フェニル基またはフェノキシ基で任意に置換されていてもよい。)または炭素数5〜7のシクロアルキル基を示す。)で表される基を示し、Z2は水素原子または水酸基の保護基を示し、ただしTがC≡Cなる基の場合水酸基の保護基を示す。MはLi、Na、K、Mg、Ca、Ti、Zr、Ni、Cu、Zn、Al、Snより選ばれる金属または該金属を含む基を示す。)
を示す。]
【0011】
従って、本発明は、新規な中間体であるフェニル置換ヒドロキシシクロペンテノン類[I]とその製造法及び光学分割法、並びにフェニル置換ヒドロキシシクロペンテノン類[I]を用いるフェニル置換ヒドロキシシクロペンタノン類[II]の新規な製造法を提供するものである。
【0012】
以下、本発明につき更に詳しく説明する。 本発明の第1発明は、下記式[I]で表される新規なフェニル置換ヒドロキシシクロペンテノン類に係わる。
【0013】
【化9】
Figure 0003541418
【0014】
ここで、Z1は水素原子または水酸基の保護基を示す。本発明において、水酸基の保護基とはPGの分野で通常用いられるものでよく、例えば置換シリル基(トリメチルシリル基、トリエチルシリル基、t−ブチルジメチルシリル基、t−ブチルジフェニルシリル基、フェニルジメチルシリル基など)、テトラヒドロピラニル(THP)基、テトラヒドロフラニル基、アルコキシアルキル基(メトキシメチル基、エトキシエチル基など)、ベンジルオキシメチル基、ベンジル基、トリチル基、アシル基(ホルミル基、アセチル基、ベンゾイル基など)を挙げることができる。ハロゲン原子とは、フッ素原子、塩素原子、臭素原子またはヨウ素原子である。
【0015】
はフェニル基上の置換基を表し、水素原子、ハロゲン原子、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基、炭素数1〜6のアルキルチオ基、ニトロ基、シアノ基またはアミノ基を示す。炭素数1〜6のアルキル基としては、メチル基、エチル基、プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、t−ブチル基、ペンチル基、ヘキシル基、シクロプロピル基、シクロペンチル基、またはシクロヘキシル基などが挙げられる。炭素数1〜6のアルコキシ基としては、メトキシ基、エトキシ基、n−プロポキシ基、i−プロポキシ基、n−ブトキシ基、i−ブトキシ基、t−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロプロポキシ基、シクロペンチルオキシ基、またはシクロヘキシルオキシ基などが挙げられる。炭素数1〜6のアルキルチオ基としては、メチルチオ基、エチルチオ基、n−プロピルチオ基、i−プロピルチオ基、n−ブチルチオ基、i−ブチルチオ基、t−ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、シクロプロピルチオ基、シクロペンチルチオ基、またはシクロヘキシルチオ基などが挙げられる。
【0016】
2は、α鎖としての官能基を有するフェニル基上の側鎖、またはα鎖の導入・変換が可能なフェニル基上の置換基を表し、ハロゲン原子、
−Y1 h(CR12mn(CH2p2 q(CR34rs
(式中、Y1及びY2はそれぞれ酸素原子または硫黄原子を示し、Aはビニレン基、エチニレン基、またはアレンの両端の炭素原子から1個ずつ水素原子を除いてできる2価の基を示し、R1、R2、R3及びR4は水素原子、炭素数1〜4のアルキル基、または炭素数1〜4のアルコキシ基を示し、Qは水素原子、
−COOR5
(式中、R5は水素原子、炭素数1〜6のアルキル基、または炭素数2〜6のアルケニル基を示す。)で表される基、シアノ基、水酸基、
−OCOR6
(式中、R6は水素原子、炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基を示す。)で表される基、
−CONR78
(式中、R7及びR8は水素原子、炭素数1〜6のアルキル基またはフェニル基を示す。)で表される基またはフェニル基を表す。なお、h,n,q,sは0または1を示し、m,p,rは0〜5の整数を示す。)を示す。
【0017】
炭素数1〜4のアルキル基としては、具体的にはメチル基、エチル基、プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、t−ブチル基またはシクロプロピル基を挙げることができる。炭素数1〜4のアルコキシ基としては、具体的にはメトキシ基、エトキシ基、n−プロポキシ基、i−プロポキシ基、n−ブトキシ基、i−ブトキシ基、t−ブトキシ基またはシクロプロポキシ基を挙げることができる。炭素数1〜6のアルキル基としては、具体的には前記と同じものを挙げることができる。炭素数2〜6のアルケニル基としては、具体的にはビニル基、アリル基、2−ブテニル基、3−メチル−2−ブテニル基または3−メチル−2−ペンテニル基などを挙げることができる。
【0018】
上記Xの具体的な例としては、塩素原子、臭素原子、ヨウ素原子、水酸基、メトキシ基、アリルオキシ基、ベンジルオキシ基、チオ−ル基、メチルチオ基、ベンジルチオ基、更に下記式で示されるものなどが挙げられる。
【0019】
【化10】
Figure 0003541418
【0020】
【化11】
Figure 0003541418
【0021】
本発明の第2発明は、上記式[I]のフェニル置換ヒドロキシシクロペンテノン類の製造法に係わる。これは、下記式[III]のフラン誘導体を酸触媒の存在下転位反応させて式[IV]の化合物とし、これを酸性条件または塩基性条件下で異性化反応させ、必要に応じて水酸基を保護するものである。
【0022】
ここで、原料であるフラン誘導体[III]は、フランの2−リチオ体(1)と、置換フェニルアルデヒド(2)を反応させる方法(反応式1)、またはフルフラ−ル(3)に置換フェニルの求核試薬(4)を反応させる方法(反応式2)等で合成することができる。
【0023】
【化12】
Figure 0003541418
【0024】
フラン誘導体[III]は、酸触媒存在下加熱すると転位反応が起こり、式[IV]の化合物となり、続いて酸性条件または塩基性条件下で異性化させ必要に応じて水酸基を保護することにより、フェニル置換ヒドロキシシクロペンテノン類[I]が製造できる(反応式3)。
【0025】
【化13】
Figure 0003541418
【0026】
転位反応は、そのままあるいは適当な溶媒中で行なうことができる。溶媒としては、水、あるいは、エ−テル系(ジエチルエ−テル、ジオキサン、テトラヒドロフランなど)、ハロゲン系(ジクロロメタン、ジクロロエタンなど)、ケトン系(アセトン、メチルイソブチルケトンなど)、エステル系(酢酸エチルなど)、脂肪族炭化水素系(ヘキサン、ヘプタン、シクロヘキサンなど)または芳香族炭化水素系(ベンゼン、トルエン、ジクロロベンゼンなど)の有機溶媒を単独または混合して用いることができる。好ましくは水とテトラヒドロフランの混合溶媒である。
【0027】
酸触媒としては、無機酸(塩酸、硫酸など)あるいは有機酸(酢酸、トリフルオロ酢酸、p−トルエンスルホン酸、メタンスルホン酸など)をフラン誘導体[III]に対して0.001〜100当量、好ましくは0.01〜1当量用いる。反応温度は、0℃〜溶媒の還流温度、好ましくは50〜100℃である。
【0028】
反応時間は、基質や反応温度により異なるが、通常0.5〜24時間、特に3〜15時間である。反応溶液を中和後、適当な有機溶媒で抽出すれば化合物[IV]が得られる。化合物[IV]は精製してあるいは粗製物のまま次の反応に用いることができる。
【0029】
異性化反応は、そのままあるいは適当な溶媒中で行なうことができる。溶媒としては、水、あるいは、エ−テル系(ジエチルエ−テル、ジオキサン、テトラヒドロフランなど)、ハロゲン系(ジクロロメタン、ジクロロエタンなど)、ケトン系(アセトン、メチルイソブチルケトンなど)、エステル系(酢酸エチルなど)、脂肪族炭化水素系(ヘキサン、ヘプタン、シクロヘキサンなど)または芳香族炭化水素系(ベンゼン、トルエン、ジクロロベンゼンなど)の有機溶媒を単独または混合して用いることができる。酸性または塩基性条件下どちらでも反応は進行するが、好ましくは塩基性条件下で反応することが望ましい。酸触媒としては、無機酸(塩酸、硫酸など)あるいは有機酸(酢酸、トリフルオロ酢酸、p−トルエンスルホン酸、メタンスルホン酸など)を化合物[IV]に対して0.01〜100当量、好ましくは0.01〜1当量用いる。塩基性触媒としては、有機アミン(トリエチルアミン、ピリジン、N−メチルモルホリン、ジアザビシクロウンデセンなど)、金属酸化物(アルミナ、シリカゲルなど)、無機塩基(水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、リン酸水素カリウムなど)を単独または混合して用いることができる。使用量は、塩基によって異なり、化合物[IV]に対して0.001〜100当量であり、これは同時に溶媒として用いることもでき、好ましくは化合物[IV]に対して0.01〜50当量用いる。反応温度は−40〜100℃、好ましくは−20〜50℃である。反応時間は、基質、溶媒や反応温度により異なるが、通常5分〜20時間、特に30分〜5時間である。なお、本反応において、クロラ−ル(ClCCHO)などの電子吸引性基を持つアルデヒドを化合物[IV]に対して0.1〜3当量程度共存させておくと、反応がスム−ズに進行し、生成物の純度も高くなる。
【0030】
反応溶液を中和後、適当な有機溶媒で抽出、再結晶あるいはカラムクロマトグラフィ−等で精製すればフェニル置換ヒドロキシシクロペンテノン類[I](Zが水素原子)が得られる。水酸基の保護は通常の方法で行なうことができ、フェニル置換ヒドロキシシクロペンテノン類[I](Zが水酸基の保護基)に容易に誘導できる。
【0031】
上記の方法によれば、式[I]のフェニル置換ヒドロキシシクロペンテノン類を容易かつ確実に、しかも高収率で合成できる。
【0032】
本発明の第3発明は、上記式[I]のフェニル置換ヒドロキシシクロペンテノン類の両対掌体の混合物を酵素で処理することからなる光学分割法に係わる。
【0033】
すなわち、フェニル置換ヒドロキシシクロペンテノン類[I]のエステル体[Zがアシル基(ホルミル基、アセチル基、ベンゾイル基など)の場合]を酵素により不斉水解するか、フェニル置換ヒドロキシシクロペンテノン類[I]の水酸基体(Zが水素原子の場合)を酵素により不斉エステル化することで、両対掌体を分割することができる。酵素としては、微生物または動植物由来のエステラ−ゼあるいはリパ−ゼを用いる。具体的には、シュ−ドモナス属、アスペルギルス属、ムコ−ル属、カンジダ属、リゾプス属、サッカロマイセス属等の微生物由来のリパ−ゼ、あるいはステアプシン、パンクレアチン、ブタ肝臓エステラ−ゼ、ブタ膵臓リパ−ゼ、小麦胚芽リパ−ゼ等の動植物由来の酵素が挙げられる。反応は水溶液中または有機溶媒中あるいはそれらの混合液中で行なうことができる。水溶液としては、通常、リン酸ナトリウム、リン酸カリウムのような無機酸塩の緩衝液、クエン酸ナトリウム、酢酸ナトリウムのような有機酸塩の緩衝液を用いることが望ましい。有機溶媒としては、ヘプタン、トルエン、メチルイソブチルケトン、ジクロロメタン、ジエチルエ−テルなどを挙げることができる。
【0034】
なお、不斉エステル化を行なう場合には、酢酸ビニル、酢酸トリクロロエチル等のエステル源を共存させて行なう。反応液のpH、反応温度、反応時間は、基質や酵素により異なるが、通常pHは5〜10、温度は10〜50℃に保つことが望ましい。反応時間は通常2時間〜10日間である。反応終了後、生成物を有機溶媒で抽出し、再結晶あるいはカラムクロマトグラフィ−で両異性体を分離することにより、光学活性なフェニル置換ヒドロキシシクロペンテノン類[IR],[IS]が得られる。
【0035】
【化14】
Figure 0003541418
【0036】
本発明の第4発明は、上記式[I]のフェニル置換ヒドロキシシクロペンテノン類を式[V]の求核試薬と反応させてω鎖X3を導入することからなる式[II]のフェニル置換ヒドロキシシクロペンタノン類の製造法に係わる。ここで得られたフェニル置換ヒドロキシシクロペンタノン類[II]は、さらにはフェニル置換PGE類を製造することができる。(反応式4)
【0037】
【化15】
Figure 0003541418
【0038】
この場合、Z、X、Xは上記と同様の意味を示し、Xはω鎖であり、
−T−(CH−C(R(2−k)(OZ−R10
で表される基である。
【0039】
但し、式中、TはCH2CH2、CH=CH、またはC≡Cより選ばれる基を示し、j及びkはそれぞれ独立に0、1または2の整数を示し、R9は(2−k)個の水素原子、炭素数1〜4のアルキル基または炭素数1〜4のアルコキシ基を示し、R10は炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、炭素数2〜10のアルキニル基、フェニル基、フェノキシ基、(該フェニル基及びフェノキシ基は、ハロゲン原子、トリフルオロメチル基、炭素数1〜6のアルキル基または炭素数1〜6のアルコキシ基で任意に置換されていてもよい。)または−B−D(Bは炭素数1〜4のアルキレン基を、Dはフェニル基、フェノキシ基、(該フェニル基及びフェノキシ基は、ハロゲン原子、トリフルオロメチル基、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基、フェニル基またはフェノキシ基で任意に置換されていてもよい。)または炭素数5〜7のシクロアルキル基を示す。)で表される基を示す。
【0040】
炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基は前記と同様のものを挙げることができる。炭素数1〜10のアルキル基としては、メチル基、エチル基、プロピル基、i−プロピル基、ブチル基、i−ブチル基、t−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、1−メチルペンチル基、2−メチルペンチル基、1−メチルヘキシル基、2−メチルヘキシル基、2、4−ジメチルペンチル基、2−エチルペンチル基、2−メチルペプチル基、2−エチルヘキシル基、2−プロピルペンチル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基、4−メチルシクロペンチル基、2、5−ジメチルシクロヘキシル基、シクロペンチルメチル基、シクロヘキシルメチル基、シクロペンチルエチル基、またはシクロヘキシルエチル基などを挙げることができる。
【0041】
炭素数2〜10のアルケニル基としては、ビニル基、アリル基、1−ブテニル基、2−ブテニル基、1−ペンテニル基、2−ヘキセニル基、3−メチル−2−ブテニル基または3−メチル−2−ペンテニル基、2,6−ジメチル−5−ヘプテニル基などを挙げることができる。炭素数2〜10のアルキニル基としては、エチニル基、1−プロピニル基、1−ブチニル基、1−メチル−3−ペンチニル基、1−メチル−3−ヘキシニル基、2−メチル−3−ヘキシニル基などを挙げることができる。炭素数5〜7のシクロアルキル基としては、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、または4−メチルシクロヘキシル基などを挙げることができる。
【0042】
また、Z2は水素原子または水酸基の保護基を示すが、TがC≡Cである場合はZ2は水酸基の保護基のみを表わす。なお、水酸基の保護基はZ1で説明した場合と同様のものを例示することができる。
【0043】
一方、MはLi、Na、K、Mg、Ca、Ti、Zr、Ni、Cu、Zn、Al、Snより選ばれる金属または該金属を含む基を示す。具体的には、Li、MgBr、MgI、ZnBr、ZnI、CuLi、Cu(CN)Li、CuMe(CN)Li、EtAl、EtAlLi、Cu(SPh)Li、(2−チエニル)Cu(CN)Liなどを挙げることができる。
【0044】
より具体的には、求核試薬としては、通常PG類のω鎖導入反応に用いられるもので、Xの種類によりリチウム試薬、銅−リチウム試薬、グリニヤ−ル(マグネシウム)試薬、亜鉛試薬、アルミニウム試薬などが用いられる。特にX中のTがCHCHの場合、ZnIX3、Cu(CN)LiX3が好ましく、TがCH=CHの場合、(2−チエニル)Cu(CN)Li3が好ましく、TがC≡Cの場合、EtAlX3が好ましく用いられる。求核試薬は化合物[I]に対して、0.5〜4当量、好ましくは0.8〜2当量用いる。
【0045】
反応溶媒としては、反応を阻害しないものであればよく、例えばテトラヒドロフラン、ジエチルエ−テル、ヘキサン、ペンタン、ベンゼン、トルエン等が挙げられる。反応温度は、求核試薬により異なり、−100℃〜溶媒の還流温度、通常−70〜40℃である。反応時間は、基質、溶媒や反応温度により異なるが、通常5分〜50時間である。
【0046】
フェニル置換ヒドロキシシクロペンタノン類[II]はそのまま、あるいは必要に応じて、加水分解、保護基の除去、官能基の変換等を行なうことによりフェニル置換PGE類へ導くことができる。
【0047】
なお、フェニル置換ヒドロキシシクロペンテノン類[I]を両対掌体の混合物として用いた場合、得られるフェニル置換ヒドロキシシクロペンタノン類[II]、さらにはフェニル置換PGE類は5員環部の水酸基について両対掌体の混合物となる。しかしながら、ω鎖であるX部分に光学活性な水酸基等がある場合、化合物[II]はジアステレオマ−混合物となるため再結晶あるいはカラムクロマトグラフィ−等で分離することができ、光学活性なフェニル置換ヒドロキシシクロペンタノン類[II]、さらには光学活性なフェニル置換PGE類を得ることができる(反応式5)。(*は光学活性を示す。)
【0048】
【化16】
Figure 0003541418
【0049】
また、上記第3発明で得られた光学活性なフェニル置換ヒドロキシシクロペンテノン類[IR],[IS]を用いることにより、異性体を分離することなく、光学活性なフェニル置換ヒドロキシシクロペンタノン類[II]、さらには光学活性なフェニル置換PGE類を得ることができる(反応式6)。(*は光学活性を示す。)
【0050】
【化17】
Figure 0003541418
【0051】
【発明の効果】
本発明の第1発明のフェニル置換ヒドロキシシクロペンテノン類[I]は医薬品としての用途が期待されるフェニル置換プロスタグランジンE類の合成中間体として有用である。さらに本発明の第4発明の方法によれば、フェニル置換プロスタグランジンE類を効率的に製造することができる。加えて本発明の第2,3発明の方法によれば、光学活性なフェニル置換ヒドロキシシクロペンテノン類[I]及び光学活性なフェニル置換プロスタグランジンE類を効率的に製造することができる。
【0052】
【実施例】
以下、実施例及び参考例を挙げて本発明をさらに詳しく説明する。なお、下記例において、Meはメチル基、Etはエチル基、n−Buはn−ブチル基、TBSはt−ブチルジメチルシリル基を示す。
【0053】
【化18】
Figure 0003541418
【0054】
フラン(10.32ml,141.8mmol)のTHF(100ml)溶液に−78℃でn−BuLi(71.5ml,121.6mmol,1.70Mのヘキサン溶液)を滴下した後、30分かけて0℃に昇温し、再び−78℃に冷却した。ジエチルアルミニウムクロリド(134.4ml,131.7mmol,0.98Mのヘキサン溶液)を滴下した後、30分間撹はんした。−78℃で化合物1(19.68g,101.3mmol)のTHF(5ml)溶液を加え、2時間かけて室温に昇温した。0℃で反応液に水(9.27ml)とTHF(13.9ml)の混合液をゆっくり加えた後、室温に昇温し、続いてNaF(37g)およびセライト(31g)を加えた。1時間撹はんした後、濾過した。濾液を減圧下濃縮して化合物2の粗生成物(25.2g)を得た。得られた粗生成物をそのまま次の反応に用いた。
【0055】
【化19】
Figure 0003541418
【0056】
前の反応で得られた化合物2の粗生成物(21.2g)のTHF(202ml)および水(25.2ml)溶液にp−トルエンスルホン酸一水和物(1.07g,5.66mmol)を加え、70℃で12時間撹はんした。室温に冷却後、飽和重曹水溶液を加えて中和し、次いで反応液を酢酸エチル(2×100ml)で抽出した。得られた有機層を硫酸マグネシウムで乾燥した後、濾過した。濾液を減圧下濃縮して化合物3の粗生成物(27g)を得た。得られた粗生成物をそのまま次の反応に用いた。
【0057】
【化20】
Figure 0003541418
【0058】
前の反応で得られた化合物3の粗生成物(22g)のTHF(161ml)溶液にクロラール(0.78ml,8.09mmol),トリエチルアミン(16.8ml,121mmol)を加え、室温で1時間撹はんした。反応液に飽和塩化アンモニウム水溶液(100ml)を加えた後、酢酸エチル(2×100ml)で抽出した。得られた有機層を硫酸マグネシウムで乾燥した後、濾過した。濾液を減圧下濃縮して得られた粗生成物をシリカゲルカラムクロマトグラフィーで精製して、化合物4(10.9g)を化合物1からの収率41%で得た。
【0059】
【化21】
Figure 0003541418
【0060】
0℃で化合物4(6.2g,23.6mmol)の塩化メチレン(23.6ml)溶液にトリエチルアミン(4.91ml,35.5mmol),N,N−ジメチルアミノピリジン(57.7mg,0.472mmol),t−ブチルジメチルシリルクロリド(4.97g,30.7mmol)を加え、室温に昇温した後、14時間撹はんした。飽和重曹水溶液(50ml)を加えた後、エーテル(2×50ml)で抽出した。得られた有機層を硫酸マグネシウムで乾燥した後、濾過した。濾液を減圧下濃縮して得られた粗生成物をシリカゲルカラムクロマトグラフィーで精製して化合物5(8.18g)を収率92%で得た。化合物5の分析値を以下に示す。
【0061】
1 H−NMR(CDCl 3 ,300MHz) δ
0.15及び0.16(2s,6H),
0.93(s,9H),
2.48(dd,J=2.3,18.2Hz,1H),
2.93(dd,J=6.0,18.2Hz,1H),
3.81(s,3H),
4.66(s,2H),
4.97〜5.03(m,1H),
6.88〜6.95(m,1H),
7.27〜7.35(m,3H),
7.53(d,J=2.6Hz,1H).
13 C−NMR(CDCl 3 ,75MHz) δ
−4.7,18.1,25.7,46.6,52.2,65.3,68.2,113.8,115.3,121.0,129.5,132.1,142.9,157.7,169.2,203.6.
【0062】
[実施例3]
実施例1及び実施例2と同様にして化合物6を得た。
【0063】
【化22】
Figure 0003541418
1 H−NMR(CDCl 3 ,300MHz) δ
0.17及び0.18(2s,6H),
0.94(s,9H),
2.44(dd,J=2.3,18.0Hz,1H),
2.87(dd,J=6.1,18.0Hz,1H),
3.78(s,3H),
4.62(s,2H),
5.02〜5.10(m,1H),
6.80(d,J=8.3Hz,1H),
7.02(dt,J=1.0,7.6Hz,1H),
7.22〜7.32(m,1H),
7.72(dd,J=1.7,7.7Hz,1H),
7.96(d,J=2.5Hz,1H).
【0064】
[実施例4]
実施例1及び実施例2と同様にして化合物7を得た。
【0065】
【化23】
Figure 0003541418
1 H−NMR(CDCl 3 ,300MHz) δ
0.14 及び0.16(2s,6H),
0.92(s,9H),
2.45(dd,J=2.4,18.2Hz,1H),
2.90(dd,J=6.0,18.2Hz,1H),
3.79(s,3H),
4.64(s,2H),
4.98(dt,J=6.0,2.4Hz,1H),
6.87〜6.94(m,2H),
7.45(d,J=2.6Hz,1H),
7.65〜7.72(m,2H).
【0066】
【化24】
Figure 0003541418
【0067】
フラン(10.37ml,142.6mmol)のTHF(300ml)溶液に−78℃でn−BuLi(69.3ml,1.87Mのヘキサン溶液,129.7mmol)を滴下し、−40℃で1時間撹拌した後、再び−78℃に冷却した。これに2−ブロモベンズアルデヒド(24.0g,129.7mmol)を滴下し、1時間かけて室温まで昇温した。飽和NH4Cl水溶液(300ml)を加え、エーテル(2×100ml)で抽出した。得られた有機層をMgSO4で乾燥した後、濾過した。濾液を減圧下濃縮して、化合物8の粗生成物(32.5g,〜100%)を得た。得られた粗生成物をこのまま次の反応に用いた。
【0068】
【化25】
Figure 0003541418
【0069】
前の反応で得られた化合物8の粗生成物(32.5g),THF(225ml),水(28ml)の混合物に、p−TsOH・H2O(1.28g,6.75mmol)を加え、75℃で20時間撹拌した。室温に冷却した後、酢酸エチル(100ml)を加え、有機層を分離した。水層を酢酸エチル(2×100ml)で抽出した。得られた有機層を飽和NaHCO3水溶液(200ml)で洗浄し、MgSO4で乾燥した。濾過後、濾液を減圧下濃縮して得られた粗生成物を酢酸エチル(100ml)に溶解し、短いシリカゲルカラムを通した後、減圧下濃縮して化合物9(30.0g,収率92%)を得た。
【0070】
【化26】
Figure 0003541418
【0071】
化合物9(10.0g,40mmol)のTHF(80ml)溶液にクロラール(0.39ml,4.05mmol),トリエチルアミン(5.55ml,40mmol)を加え、室温で1時間撹はんした。反応液に飽和NH4Cl水溶液(50ml)を加え、酢酸エチル(2×50ml)で抽出した。得られた有機層をMgSO4で乾燥し、濾過した。濾液を減圧下濃縮して得られた残渣をシリカゲルカラムクロマトグラフィーにより精製して、化合物10(8.3g)を収率83%で得た。以下に化合物9及び化合物10の分析値を示す。
化合物9
1 H−NMR(CDCl 3 ,300MHz) δ
3.73(d,J=2.8Hz,1H),
5.02(br s,1H),
6.30(dd,J=1.4,5.9Hz,1H),
6.96〜7.60(m,5H).
化合物10
1 H−NMR(CDCl 3 ,300MHz) δ
2.51(dd,J=2.2.18.5Hz,1H),
2.99(dd,J=6.2.18.5Hz,1H),
5.08〜5.17(m,1H),
7.17〜7.37(m,3H),
7.60〜7.65(m,1H),
7.64(d,J=2.4Hz,1H).
13 C−NMR(CDCl 3 ,75MHz) δ
44.6,67.9,122.6,127.1,129.8,130.7,132.0,132.9,145.2,161.1,203.6.
【0072】
[実施例6]
実施例5と同様にして化合物11及び化合物12を得た。以下に分析値を示す。
【0073】
【化27】
Figure 0003541418
1 H−NMR(CDCl 3 ,300MHz) δ
3.43(d,J=2.8Hz,1H),
4.96(br s,1H),
6.34(dd,J=0.9Hz,5.8Hz,1H),
7.03(d,J=8.5Hz,2H),
7.48(d,J=8.5Hz,2H),
7.63(dd,J=2.2,5.8Hz,1H).
【0074】
【化28】
Figure 0003541418
1 H−NMR(CDCl 3 ,300MHz) δ
2.52(dd,J=2.3,18.6Hz,1H),
3.21(dd,J=6.2,18.6Hz,1H),
5.04〜5.10(m,1H),
7.52(d,J=8.8Hz,2H),
7.61(d,J=8.8Hz,2H),
7.65(d,J=2.6Hz,1H).
【0075】
[実施例7]
実施例5と同様にして化合物13及び化合物14を得た。以下に分析値を示す。
【0076】
【化29】
Figure 0003541418
1 H−NMR(CDCl 3 ,300MHz) δ
3.43(d,J=3.0Hz,1H),
4.98(br s,1H),
6.35(dd,J=5.8,1.4Hz,1H),
7.08(d,J=7.7Hz,1H),
7.17〜7.33(m,2H),
7.43(dt,J=8.0,1.0Hz,1H),
7.63(dd,J=1.6,5.8Hz,1H).
【0077】
【化30】
Figure 0003541418
【0078】
[実施例8]
実施例2と同様にして化合物15を得た。以下に分析値を示す。
【0079】
【化31】
Figure 0003541418
1 H−NMR(CDCl 3 ,300MHz) δ
0.16及び0.17(2s,6H),
0.94(s,9H),
2.48(dd,J=2.3,18.2Hz,1H),
2.93(dd,J=6.1,18.2Hz,1H),
5.05〜5.12(m,1H),
7.16〜7.37(m,3H),
7.55(d,J=2.4Hz,1H),
7.62(dd,J=1.0,8.0Hz,1H).
13 C−NMR(CDCl 3 ,75MHz) δ
−4.6,18.1,25.8,45.5,68.8,122.8,127.1,129.8,130.9,132.2,133.1,144.8,161.2,202.9.
【0080】
[実施例9]
実施例2と同様にして化合物16を得た。以下に分析値を示す。
【0081】
【化32】
Figure 0003541418
1 H−NMR(CDCl 3 ,300MHz) δ
0.15及び0.17(2s,6H),
0.93(s,9H),
2.48(dd,J=2.3,18.3Hz,1H),
2.93(dd,J=6.1,18.3Hz,1H),
4.95〜5.03(m,1H),
7.48〜7.53(m,2H),
7.54(d,J=2.6Hz,1H),
7.57〜7.63(m,2H).
【0082】
[実施例10]
実施例2と同様にして化合物17を得た。以下に分析値を示す。
【0083】
【化33】
Figure 0003541418
1 H−NMR(CDCl 3 ,300MHz) δ
0.16及び0.17(2s,6H),
0.93(s,9H),
2.49(dd,J=2.3,18.2Hz,1H),
2.94(dd,J=6.0,18.2Hz,1H),
4.96〜5.04(m,1H),
7.20〜7.30(m,1H),
7.48(d,J=8.0Hz,1H),
7.55(d,J=2.5Hz,1H),
7.66(d,J=7.7Hz,1H),
7.85(t,J=1.7Hz,1H).
13 C−NMR(CDCl 3 ,75MHz) δ
−4.7,18.0,25.7,46.4,68.1,122.4,126.0,129.8,130.2,131.7,132.6,141.8,158.0,203.0.
【0084】
【化34】
Figure 0003541418
【0085】
4−ペンテノイック酸エチルエステル(256mg,2mmol)に、9−ボラビシクノナンのTHF溶液(0.5M,4ml,2mmol)を0℃で加え、室温で4時間撹拌した。これに化合物16(367.4mg,1mmol)、THF(2ml),Cl2Pd(dppf)(18.3mg,0.025mmol)、K3PO4(327.4mg,1.5mmol)を加え、60〜70℃で4時間撹はんした。室温に冷却後、飽和NH4Cl水溶液(10ml)を加え、酢酸エチル(2×10ml)で抽出した。得られた有機層をMgSO4で乾燥し、濾過した。濾液を減圧下濃縮して得られた粗生成物をシリカゲルカラムクロマトグラフィーにより精製して、化合物17(4.08g)を収率98%で得た。以下に分析値を示す。
【0086】
1 H−NMR(CDCl 3 ,300MHz) δ
0.15及び0.17(2s,6H),
0.93(s,9H),
1.30〜1.80(m,4H),
2.33(t,J=7.1Hz,2H),
2.48(dd,J=2.3,18.2Hz,1H),
2.64(t,J=7.0Hz,2H),
2.92(dd,J=6.0,18.2Hz,1H),
3.66(s,3H),
4.97〜5.04(m,1H),
7.19(d,J=8.1Hz,2H),
7.49(d,J=2.6Hz,1H),
7.62(d,J=8.1Hz,2H).
【0087】
[実施例12]
実施例11と同様にして化合物18を得た。分析値を以下に示す。
【0088】
【化35】
Figure 0003541418
1 H−NMR(CDCl 3 ,300MHz) δ
0.16及び0.17(2s,6H),
0.93(s,9H),
1.25(t,J=7.1Hz,3H),
1.50〜1.95(m,4H),
2.32(t,J=7.2Hz,2H),
2.49(dd,J=2.3,18.2Hz,1H),
2.64(t,J=7.4Hz,2H),
2.93(dd,J=6.1,18.2Hz,1H),
4.12(q,J=7.1Hz,2H),
5.01(dt,J=2.4,6.0Hz,1H),
7.17(d,J=7.6Hz,1H),
7.29(t,J=8.0Hz,1H),
7.51(d,J=6.2Hz,1H),
7.52(d,J=7.6Hz,1H).
【0089】
[実施例13]
実施例11と同様にして化合物19を得た。分析値を以下に示す。
【0090】
【化36】
Figure 0003541418
1 H−NMR(CDCl 3 ,300MHz) δ
0.16及び0.17(2s,6H),
0.93(s,9H),
1.90〜2.03(m,2H),
2.34(t,J=7.4Hz,2H),
2.48(dd,J=2.4,18.3Hz,1H),
2.67(t,J=7.7Hz,2H),
2.93(dd,J=6.0,18.3Hz,1H),
3.67(S,3H),
4.98〜5.03(m,1H),
7.17(d,J=7.7Hz,1H),
7.30(t,J=7.6Hz,1H),
7.47〜7.56(m,3H).
13 C−NMR(CDCl 3 ,75MHz) δ
−4.6,18.2,25.8,26.5,33.4,35.1,46.7,51.5,68.4,125.4,127.7,128.5,129.1,130.9,141.6,143.7,157.3,173.8,203.9.
【0091】
[実施例14]
実施例11と同様にして化合物20を得た。分析値を以下に示す。
【0092】
【化37】
Figure 0003541418
1 H−NMR(CDCl 3 ,300MHz) δ
0.16及び0.17(2s,6H),
0.93(s,4H),
1.40〜1.80(m,4H),
2.29(t,J=7.2Hz,2H),
2.46(dd,J=2.2,18.2Hz,1H),
2.52(t,J=8.2Hz,2H),
2.92(dd,J=6.0,18.2Hz,1H),
5.03〜5.10(m,1H),
7.04〜7.31(m,4H),
7.32(d,J=2.4Hz,1H).
【0093】
[実施例15]
実施例11と同様にして化合物21を得た。分析値を以下に示す。
【0094】
【化38】
Figure 0003541418
1 H−NMR(CDCl 3 ,300MHz) δ
0.16及び0.17(2s,6H),
0.94(s,9H),
1.77〜1.90(m,2H),
2.28(t,J=7.3Hz,2H),
2.47(dd,J=2.2,18.2Hz,1H),
2.55(t,J=8.0Hz,2H),
2.92(dd,J=6.0,18.2Hz,1H),
5.04〜5.11(m,1H),
7.08〜7.32(m,4H),
7.34(d,J=2.4Hz,1H).
【0095】
【化39】
Figure 0003541418
【0096】
(E,3S)−1−ヨード−3−[(t−ブチルジメチルシリル)オキシ]オクト−1−エン(678 mg,1.84mmol)のエーテル(4.6ml)溶液に−78℃でt−ブチルリチウム(2.03ml,3.45mmol,1.7Mのペンタン溶液)を加え、1時間撹はんした。−78℃で(2−チエニル)シアノ銅リチウム(8.28ml,2.07mmol,0.25MのTHF溶液)を加え、20分間撹はんした後、化合物5(433mg,1.15mmol)のTHF(5ml)溶液を滴下した。2時間かけて0℃に昇温した後、飽和塩化アンモニウム水溶液(5ml)を加えた。反応液をエーテル(2×10ml)で抽出して得られた有機層を硫酸マグネシウムで乾燥した。濾過して得られた濾液を減圧下濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィーで精製して化合物8(586mg)を収率82%で得た。分析値を以下に示す。
【0097】
1 H−NMR(CDCl 3 ,300MHz) δ
−0.29,−0.21,−0.17,−0.14,−0.02及び−0.01(6s,12H),
0.07,0.73及び0.80(3s,18H),
0.66〜0.86(m,3H),
0.99〜1.39(m,8H),
2.27及び2.28(2dd,J=8.8,18.4Hz及びJ=8.8,18.4Hz,1H),
2.71(dd,J=7.2,18.4Hz,1H),
2.71〜2.92(m,1H),
3.05及び3.07(2d,J=12.4Hz及びJ=12.4Hz,1H),
3.69(s,3H),
3.84〜3.96(m,1H),
3.98〜4.16(m,1H),
4.49(s,2H),
5.27〜5.56(m,2H),
6.56〜6.76(m,3H),
7.02〜7.20(m,1H).
13 C−NMR(CDCl 3 ,75MHz) δ
−5.4,−5.3,−5.2,−5.0,−4.9,13.7,17.6,17.7,22.2,24.1,24.4,25.4,27.6,31.4,37.9,38.1,47.2,51.7,55.0,60.5,60.7,65.0,72.0,72.3,72.4,72.9,112.8,115.5,122.2,122.3,127.3,127.7,129.4,136.9,137.4,137.8,137.9,157.9,169.2,211.7,211.8.
IR(neat) 777,837,1118,1253,1467,1473,1589,1750,2862,2932,2958cm-1
【0098】
[実施例17]
実施例16と同様にして化合物6より化合物23を得た。分析値を以下に示す。
【0099】
【化40】
Figure 0003541418
1 H−NMR(CDCl 3 ,300MHz) δ
−0.22,−0.07,−0.02,0.07,0.08及び0.09(6s,12H),0.79,0.84,0.89及び0.90(4s,18H),
0.72〜1.45(m,11H),
2.68〜2.85(m,2H),
3.08〜3.34(m,2H),
3.79(s,3H),
3.94〜4.04(m,1H),
4.08〜4.22(m,1H),
4.50〜4.66(m,2H),
5.33〜5.59(m,2H),
6.72〜7.32(m,4H).
【0100】
[実施例18]
実施例16と同様にして化合物7より化合物24を得た。分析値を以下に示す。
【0101】
【化41】
Figure 0003541418
1 H−NMR(CDCl 3 ,300MHz) δ
−0.18,−0.11,−0.06,−0.04,0.01,0.08及び0.10(7s,12H),
0.80,0.84及び0.90(3s,18H),
0.76〜0.94(m,3H),
1.12〜1.45(m,8H),
2.36及び2.37(2dd,J=8.8,18.4Hz及びJ=8.8,18.5Hz,1H),
2.74〜2.95(m,2H),
3.12及び3.14(2d,J=12.5Hz及びJ=12.5Hz,1H),
3.80(s,3H),
3.94〜4.05(m,1H),
4.07〜4.23(m,1H),
4.58及び4.59(2s,2H),
5.37〜5.64(m,2H),
6.81〜6.88(m,2H),
6.99〜7.09(m,2H).
【0102】
[実施例19]
実施例16と同様にして化合物5より化合物25を得た。分析値を以下に示す。
【0103】
【化42】
Figure 0003541418
1 H−NMR(CDCl 3 ,300MHz) δ
−0.27,−0.24,−0.11,−0.06,0.11及び0.15(6s,12H),
0.94及び0.95(2s,9H),
0.79〜1.85(m,11H),
1.32,1.33,1.36及び1.38(4s,6H),
2.40及び2.39(2dd,J=8.9,18.4Hz及びJ=8.8,18.4Hz,1H),
2.78〜3.20(m,3H),
3.65〜3.76(m,1H),
3.83(s,3H),
4.06〜4.23(m,1H),
4.62(s,2H),
5.25〜5.48(m,2H),
6.66〜7.34(m,9H).
【0104】
[実施例20]
実施例16と同様にして化合物5より化合物26を得た。分析値を以下に示す。
【0105】
【化43】
Figure 0003541418
1 H−NMR(CDCl 3 ,300MHz) δ
−0.14,−0.09,−0.08,−0.04,0.01,0.03及び0.10(7s,12H),
0.87及び1.10(2s,18H),
0.70〜2.04(m,15H),
2.31〜2.45(m,1H),
2.75〜2.87(m,1H),
2.88〜3.24(m,1H),
3.10〜3.21(m,1H),
3.80(s,3H),
4.02〜4.24(m,2H),
4.60(s,2H),
5.42〜5.56(m,2H),
6.67〜6.81(m,3H),
7.18〜7.26(m,1H).
【0106】
【化44】
Figure 0003541418
【0107】
化合物22(586mg,0.947mmol)のアセトニトリル(31.9ml)溶液にピリジン(1.9ml)およびふっ酸−ピリジン複合物(1.61ml)を0℃で加え、室温で6時間撹はんした。反応液を酢酸エチル(30ml)および飽和重曹水溶液(30ml)の混合液中に撹はんしながら注いだ。酢酸エチル(2×30ml)で抽出して得られた有機層を飽和食塩水(20ml)で洗浄した。得られた有機層を硫酸マグネシウムで乾燥した後、濾過した。濾液を減圧下濃縮して得られた粗生成物をシリカゲルカラムクロマトグラフィーで精製して化合物27(153mg,収率41%)および化合物28(128mg,収率35%)を得た。分析値を以下に示す。
【0108】
【化45】
Figure 0003541418
1 H−NMR(CDCl 3 ,200MHz) δ
0.83(t,J=6.4Hz,3H),
0.96〜1.60(m,8H),
2.42(dd,J=9.9,18.6Hz,1H),
2.70〜2.90(m,1H),
2.89(dd,J=7.1,18.6Hz,1H),
3.19(d,J=12.8Hz,1H),
3.81(s,3H),
3.92〜4.08(m,1H),
4.09〜4.28(m,1H),
4.61(s,2H),
5.43〜5.68(m,2H),
6.64〜6.84(m,3H),
7.14〜7.28(m,1H).
13 C−NMR(CDCl 3 ,50MHz) δ
13.8,22.3,24.7,31.4,36.7,45.9,52.2,56.0,61.0,65.1,71.1,73.0,112.8,115.8,122.2,129.7,130.8,137.4,137.6,158.0,169.7,212.2.
Rf=0.33(AcOEt/MeOH=100/1)
【0109】
【化46】
Figure 0003541418
1 H−NMR(CDCl 3 ,200MHz) δ
0.86(t,J=6.2Hz,3H),
1.02〜1.60(m,8H),
2.43(dd,J=9.7,18.9Hz,1H),
2.72〜2.95(m,1H),
2.90(dd,J=7.2,18.9Hz,1H),
3.20(d,J=12.8Hz,1H),
3.80(s,3H),
3.96〜4.12(m,1H),
4.13〜4.31(m,1H),
4.61(s,2H),
5.52〜5.74(m,2H),
6.62〜6.84(m,3H),
7.15〜7.34(m,1H).
13 C−NMR(CDCl 3 ,50MHz) δ
13.8,22.3,24.7,31.5,36.7,46.3,52.2,55.0,61.1,65.1,71.2,71.6,112.9,115.9,122.3,128.3,129.8,136.8,137.8,157.9,169.8,212.5.
Rf=0.44(AcOEt/MeOH=100/1)
【0110】
[実施例22]
実施例21と同様にして化合物23より化合物29及び化合物30を得た。分析値を以下に示す。
【0111】
【化47】
Figure 0003541418
1 H−NMR(CDCl 3 ,300MHz) δ
0.83(t,J=6.8Hz,3H),
0.96〜1.55(m,8H),
2.80〜2.88(m,2H),
3.06〜3.26(m,2H),
3.79(s,3H),
3.92〜4.04(m,1H),
4.06〜4.22(m,1H),
4.52及び4.61(2d,J=15.7Hz及びJ=15.7Hz,2H),
5.42(dd,J=7.4,15.3Hz,1H),
5.59(dd,J=7.7,15.3Hz,1H),
6.75(d,J=8.3Hz,1H),
6.86〜7.02(m,2H),
7.15〜7.26(m,1H).
【0112】
【化48】
Figure 0003541418
1 H−NMR(CDCl 3 ,300MHz) δ
0.86(t,J=6.8Hz,3H),
1.05〜1.80(m,8H),
2.83〜2.98(m,2H),
3.12〜3.35(m,2H),
3.81(s,3H),
4.01〜4.15(m,1H),
4.17〜4.30(m,1H),
4.58及び4.62(2d,J=15.2Hz及びJ=15.2Hz,2H),
5.52(dd,J=6.0,15.9Hz,1H),
5.71(dd,J=8.3,15.9Hz,1H),
6.78(d,J=9.1Hz,1H),
6.88〜7.08(m,2H),
7.18〜7.35(m,1H).
【0113】
[実施例23]
実施例21と同様にして化合物24より化合物31及び化合物32を得た。分析値を以下に示す。
【0114】
【化49】
Figure 0003541418
1 H−NMR(CDCl 3 ,300MHz) δ
0.84(t,J=7.2Hz,3H),
1.00〜1.57(m,8H),
2.40(dd,J=9.8,18.7Hz,1H),
2.70〜2.85(m,1H),
2.89(dd,J=7.5,18.7Hz,1H),
3.17(d,J=12.7Hz,1H),
3.80(s,3H),
3.97〜4.06(m,1H),
4.12〜4.25(m,1H),
4.60(s,2H),
5.47〜5.65(m,2H),
6.86(s,J=8.8Hz,2H),
7.02(d,J=8.8Hz,2H).
【0115】
【化50】
Figure 0003541418
1 H−NMR(CDCl 3 ,300MHz) δ
0.87(t,J=6.8Hz,3H),
1.15〜1.53(m,8H),
2.42(dd,J=9.6,18.5Hz,1H),
2.74〜2.88(m,1H),
2.90(dd,J=7.1,18.5Hz,1H),
3.19(d,J=12.9Hz,1H),
3.80(s,3H),
4.02〜4.10(m,1H),
4.16〜4.28(m,1H),
4.61(s,2H),
5.57〜5.72(m,2H),
6.86(d,J=8.8Hz,2H),
7.05(d,J=8.8Hz,2H).
【0116】
[実施例24]
実施例21と同様にして化合物33及び化合物34を得た。分析値を以下に示す。
【0117】
【化51】
Figure 0003541418
1 H−NMR(CDCl 3 ,300MHz) δ
0.77(d,J=6.3Hz,3H),
0.85(d,J=6.3Hz,3H),
0.96〜1.50(m,9H),
2.43(dd,J=9.6,18.6Hz,1H),
2.74〜2.90(m,1H),
2.90(dd,J=7.2,18.6Hz,1H),
3.20(s,J=12.9Hz,1H),
3.80(s,3H),
4.06〜4.28(m,2H),
4.61(s,2H),
5.46〜5.72(m,2H),
6.67〜6.79(m,3H),
7.17〜7.30(m,1H).
IR(neat) 730,1080,1220,1440,1590,1740,2930,3400cm-1
【0118】
【化52】
Figure 0003541418
1 H−NMR(CDCl 3 ,300MHz) δ
0.77(d,J=6.3Hz,3H),
0.85(d,J=6.3Hz,3H),
0.96〜1.50(m,9H),
2.43(dd,J=9.6,18.6Hz,1H),
2.74〜2.90(m,1H),
2.90(dd,J=7.2,18.6Hz,1H),
3.20(s,J=12.9Hz,1H),
3.80(s,3H),
4.06〜4.28(m,2H),
4.61(s,2H),
5.46〜5.72(m,2H),
6.67〜6.79(m,3H),
7.17〜7.30(m,1H).
【0119】
[実施例25]
実施例21と同様にして化合物35及び化合物36を得た。分析値を以下に示す。
【0120】
【化53】
Figure 0003541418
1 H−NMR(CDCl 3 ,300MHz) δ
0.66〜1.80(m,11H),
2.42(dd,J=9.9,18.6Hz,1H),
2.75〜2.90(m,1H),
2.90(dd,J=7.2,18.6Hz,1H),
3.19(d,J=13.2Hz,1H),
3.70〜3.85(m,1H),
3.80(s,3H),
4.15〜4.30(m,1H),
4.59(s,2H),
5.47〜5.68(m,2H),
6.67〜6.84(m,3H),
7.17〜7.30(m,1H).
IR(neat) 730,1180,1210,1440,1590,1740,2920,3400cm-1
【0121】
【化54】
Figure 0003541418
1 H−NMR(CDCl 3 ,300MHz) δ
0.65〜1.72(m,11H),
2.43(dd,J=9.6,18.6Hz,1H),
2.75〜2.90(m,1H),
2.90(dd,J=7.2,18.6Hz,1H),
3.21(d,J=12.6Hz,1H),
3.70〜3.85(m,1H),
3.80(s,3H),
4.15〜4.30(m,1H),
4.60(s,2H),
5.47〜5.68(m,2H),
6.67〜6.84(m,3H),
7.17〜7.30(m,1H).
【0122】
[実施例26]
実施例21と同様にして化合物26より化合物37及び化合物38を得た。分析値を以下に示す。
【0123】
【化55】
Figure 0003541418
1 H−NMR(CDCl 3 ,300MHz) δ
0.80〜0.92(m,6H),
1.05〜1.70(m,9H),
2.45(dd,J=9.0,17.3Hz,1H),
2.79〜2.91(m,1H),
2.92(dd,J=7.5,17.3Hz,1H),
3.21(d,J=10.5Hz,1H),
3.82(s,3H),
4.08〜4.30(m,2H),
4.62(s,2H),
5.55〜5.70(m,2H),
4.62(s,2H),
5.55〜5.70(m,2H),
6.66〜6.82(m,2H),
7.18〜7.28(m,1H).
【0124】
【化56】
Figure 0003541418
1 H−NMR(CDCl 3 ,300MHz) δ
0.80〜0.95(m,6H),
1.08〜1.67(m,9H),
2.45(dd,J=8.2,17.3Hz,1H),
2.78〜2.90(m,1H),
2.92(dd,J=6.8,17.3Hz,1H),
3.21(d,J=13.5Hz,1H),
3.81(s,3H),
4.12〜4.31(m,2H),
4.62(s,2H),
5.56〜5.72(m,2H),
6.67〜6.82(m,3H),
7.20〜7.28(m,1H).
【0125】
【化57】
Figure 0003541418
【0126】
化合物27(81.8mg,0.2095 mmol)の燐酸緩衝液(9.33ml,pH8,0.1 M)およびアセトン(1.87ml)溶液にブタ肝臓エステラーゼ(0.0229ml,79units)を加え、室温で3時間撹はんした。塩酸水溶液(1N)で中和した後、硫化アンモニウムを加えて飽和した。酢酸エチル(2×15ml)で抽出して得られた有機層を硫酸マグネシウムで乾燥した。濾過した後、濾液を減圧下で濃縮して得られた粗生成物を分取薄層クロマトグラフィーで精製して化合物39(44mg)を収率56%で得た。分析値を以下に示す。
【0127】
1 H−NMR(CDCl 3 ,300MHz) δ
0.84(t,J=5.3Hz,3H),
1.01〜1.68(m,8H),
2.44(dd,J=9.9,18.4Hz,1H),
2.60〜2.80(m,1H),
2.91(dd,J=7.1,18.4Hz,1H),
3.21(d,J=13.3Hz,1H),
4.02〜4.28(m,2H),
4.63(s,2H),
5.51〜5.75(m,2H),
6.59〜6.88(m,3H),
7.14〜7.33(m,1H).
【0128】
[実施例28]
実施例27と同様にして化合物29より化合物40を得た。分析値を以下に示す。
【0129】
【化58】
Figure 0003541418
1 H−NMR(CDCl 3 ,300MHz) δ
0.83(t,J=7.6Hz,3H),
0.95〜1.70(m,8H),
2.81(dd,J=7.5,19.0Hz,1H),
2.95(dd,J=9.7,19.0Hz,1H),
3.08〜3.24(m,2H),
3.94〜4.05(m,1H),
4.10〜4.30(m,1H),
4.49及び4.62(2d,J=15.8Hz及びJ=15.8Hz,2H),
5.39(dd,J=7.8,15.2Hz,1H),
5.57(dd,J=8.3,15.2Hz,1H),
6.80(d,J=9.1Hz,1H),
6.85〜6.99(m,2H),
7.17〜7.26(m,1H).
【0130】
[実施例29]
実施例27と同様にして化合物35より化合物41を得た。分析値を以下に示す。
【0131】
【化59】
Figure 0003541418
1 H−NMR(CDCl 3 ,300MHz) δ
0.55〜1.95(m,11H),
2.41(dd,J=9.6,18.6 Hz,1H),
2.74〜2.92(m,2H),
3.17(d,J=12.9Hz,1H),
3.55〜3.80(m,1H),
4.10〜4.25(m,1H),
4.58(s,2H),
5.38〜5.55(m,2H),
6.61〜7.85(m,3H),
7.10〜7.30(m,1H).
【0132】
[実施例30]
実施例27と同様にして化合物26より化合物42を得た。分析値を以下に示す。
【0133】
【化60】
Figure 0003541418
1 H−NMR(CDCl 3 ,300MHz) δ
0.75〜1.85(m,11H),
2.42(dd,J=9.5,18.5Hz,1H),
2.74〜2.90(m,1H),
2.91(dd,J=7.2,18.5Hz,1H),
3.23(d,J=13.2Hz,1H),
3.79〜3.90(m,1H),
4.10〜4.30(m,1H),
4.61(s,2H),
5.49〜5.66(m,2H),
6.50〜6.88(m,3H),
7.19〜7.30(m,1H).
【0134】
[実施例31]
実施例27と同様にして化合物37より化合物43を得た。分析値を以下に示す。
【0135】
【化61】
Figure 0003541418
1 H−NMR(CDCl 3 ,300MHz) δ
0.75(d,J=6.3Hz,3H),
0.85(T,J=6.3Hz,3H),
0.95〜1.75(m,9H),
2.40(dd,J=9.7,18.2Hz,1H),
2.73〜2.93(m,2H),
3.18(d,J=12.6Hz,1H),
4.05〜4.25(m,2H),
5.45〜5.65(m,2H),
6.62〜6.83(m,3H),
7.16〜7.25(m,1H).
【0136】
【化62】
Figure 0003541418
【0137】
化合物10(5.6g,22.1mmol)の酢酸ビニル(88.5ml)溶液にPPL(Porcine Pancreas Lipase,5.6g)を加え、室温で3日間撹はんした。反応液をセライト濾過し、得られた濾液を減圧下濃縮した。残渣をシリカゲルカラムクロマトグラフィーにより分離、精製して化合物44(2.46g,収率44%)と化合物45(2.74g,収率42%)を得た。分析値を以下に示す。なお、化合物44の1H−NMR分析値は化合物10と同じであった。
化合物44
[α]25 D=−7.13°(c 2.16,CHCl3
化合物45
1 H−NMR(CDCl 3 ,300MHz) δ
2.14(s,3H),
2.56(dd,J=2.2.18.7Hz,1H),
3.05(dd,J=6.3.18.7Hz,1H),
5.91〜5.98(m,1H),
7.19〜7.43(m,3H),
7.64(d,J=8.0Hz,1H),
7.66(d,J=2.2Hz,1H).
【0138】
【化63】
Figure 0003541418
【0139】
0℃でメタノール(9.72ml)に金属ナトリウム(223mg,9.72mmol)を加え、金属ナトリウムが全て溶解するまで撹はんした。これに0℃でNH=C(NH22・H2CO3(グラニジン炭酸塩)(1.75g,4.72mmol)を加え、25分間撹はんした。得られた溶液を0℃で別のフラスコに用意した化合物45(2.87g,9.72mmol)のMeOH(9.72ml)溶液に加え、5分間撹はんした。これに氷酢酸(0.60ml)を加え、5分間撹はんした後、減圧下濃縮した。残渣に水(10ml),酢酸エチル(10ml)を加えた後、有機層を分離した。水層を酢酸エチル(2×10ml)で抽出した。得られた有機層をMgSO4で乾燥した後、濾過した。濾液を減圧下濃縮して得られた残渣をシリカゲルカラムクロマトグラフィーにより精製して、化合物46(1.49g,収率61%)を得た。以下に分析値を示すが、1H−NMR分析値は化合物10と同じであった。
[α]25 D=+9.94°(c 1.52,CHCl3
【0140】
[実施例34]
実施例32と同様にして化合物47及び化合物48を得た。分析値を以下に示す。なお、化合物47の1H−NMR分析値は化合物12と同じであった。
【0141】
【化64】
Figure 0003541418
化合物48
1 H−NMR(CDCl 3 ,300MHz) δ
2.12(s,3H),
2.55(dd,J=2.2.18.8Hz,1H),
3.02(dd,J=6.4.18.8Hz,1H),
5.80〜5.87(m,1H),
7.49(d,J=8.6Hz,2H),
7.60(d,J=8.6Hz,2H),
7.66(d,J=2.7Hz,1H),
13 C−NMR(CDCl 3 ,75MHz) δ
20.7,42.3,69.4,123.5,128.8,128.9,131.5,144.2,152.1,170.2,202.0.[0001]
[Industrial applications]
The present invention relates to a novel intermediate useful for obtaining phenyl-substituted prostaglandins (hereinafter abbreviated as phenyl-substituted PG) E useful as various pharmaceuticals, a method for producing the intermediate, and an advantageous production of such phenyl-substituted PGE. How to do it.
[0002]
[Prior art]
Since prostaglandins (hereinafter abbreviated as PGs) show various important physiological actions in a very small amount, studies aiming at application to pharmaceuticals are being actively conducted.
[0003]
Above all, prostaglandin E (hereinafter abbreviated as PGE) is synthesized not only with natural PGs but also with many analogs, and its biological activity is examined. Some compounds are put to practical use as pharmaceuticals.
[0004]
[Problems to be solved by the invention]
Various developments of α-chain and ω-chain linked to a 5-membered ring have been performed as analogs of PGEs.
[0005]
Among them, the α-chain is particularly important because the drug profile and metabolic stability greatly change depending on its type.
[0006]
However, heretofore, phenyl-substituted PGEs in which a phenyl group is directly bonded to a 5-membered ring as the α-chain of PGEs have not been known, and thus there has been no effective production method thereof.
[0007]
Means and Action for Solving the Problems
As a result of intensive studies, the present inventors have found the following novel intermediates and an effective method for producing phenyl-substituted PGEs using them, and have completed the present invention.
[0008]
That is, as shown in the following reaction formula, the present inventors carried out a rearrangement reaction of a furan derivative of the formula [III] in the presence of an acid catalyst to give a compound of the formula [IV], which was converted under acidic or basic conditions. By subjecting the compound to an isomerization reaction and, if necessary, protecting the hydroxyl group, a novel phenyl-substituted hydroxycyclopentenone of the formula [I] can be obtained. It has been found that phenyl-substituted hydroxycyclopentanones of the formula [II] can be obtained by reacting them with a nucleophile of the formula [V]. The phenyl-substituted hydroxycyclopentanones [II] can be led to phenyl-substituted PGEs as they are or by performing hydrolysis, removal of protective groups, conversion of functional groups, and the like as necessary.
[0009]
In addition, by enzymatic resolution of a mixture of both enantiomers of phenyl-substituted hydroxycyclopentenones [I], optically active [I] can be obtained, and by using this, the corresponding optically active phenyl can be obtained. Substituted hydroxycyclopentanones [II] and optically active phenyl-substituted PGEs can be efficiently produced.
[0010]
Embedded image
Figure 0003541418
[Where Z1Represents a hydrogen atom or a protecting group for a hydroxyl group;1Represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkylthio group having 1 to 6 carbon atoms, a nitro group, a cyano group or an amino group;TwoIs a halogen atom,
-Y1 h(CR1RTwo)mAn(CHTwo)pYTwo q(CRThreeRFour)rQs
(Where Y1And YTwoEach represents an oxygen atom or a sulfur atom; A represents a vinylene group, an ethynylene group, or a divalent group formed by removing one hydrogen atom from each of carbon atoms at both ends of an allene;1, RTwo, RThreeAnd RFourRepresents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, Q represents a hydrogen atom,
-COORFive
(Where RFiveRepresents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms. ), Cyano group, hydroxyl group,
-OCOR6
(Where R6Represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms. ) Group,
-CONR7R8
(Where R7And R8Represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or a phenyl group. ), A phenyl group, h, n, q, and s represent 0 or 1, and m, p, and r represent an integer of 0 to 5. ),
XThreeIs
-T- (CHTwo)j-C (R9)(2-k)(OZTwo)k-RTen
(Where T is CHTwoCHTwo, CH = CH or a group selected from C≡C, j and k each independently represent an integer of 0, 1 or 2;9Represents (2-k) hydrogen atoms, an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms;TenIs an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkynyl group having 1 to 10 carbon atoms, a phenyl group, a phenoxy group, (the phenyl group and the phenoxy group are a halogen atom, a trifluoromethyl group , Optionally substituted by an alkyl group having 1 to 6 carbon atoms or an alkoxy group having 1 to 6 carbon atoms) or -BD (B is an alkylene group having 1 to 4 carbon atoms, D is phenyl Group, phenoxy group, (the phenyl group and the phenoxy group are optionally substituted with a halogen atom, a trifluoromethyl group, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a phenyl group or a phenoxy group. Or a cycloalkyl group having 5 to 7 carbon atoms.)TwoRepresents a protecting group for a hydrogen atom or a hydroxyl group, provided that when T is a group of C≡C, it represents a protecting group for a hydroxyl group. M represents a metal selected from Li, Na, K, Mg, Ca, Ti, Zr, Ni, Cu, Zn, Al and Sn or a group containing the metal. )
Is shown. ]
[0011]
Accordingly, the present invention relates to a novel intermediate, a phenyl-substituted hydroxycyclopentenone [I], a method for producing the same and an optical resolution method, and a phenyl-substituted hydroxycyclopentanone using the phenyl-substituted hydroxycyclopentenone [I]. The present invention provides a novel production method of class [II].
[0012]
Hereinafter, the present invention will be described in more detail. The first invention of the present invention relates to novel phenyl-substituted hydroxycyclopentenones represented by the following formula [I].
[0013]
Embedded image
Figure 0003541418
[0014]
Where Z1Represents a hydrogen atom or a hydroxyl-protecting group. In the present invention, the hydroxyl-protecting group may be any of those commonly used in the field of PG, such as a substituted silyl group (trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, t-butyldiphenylsilyl group, phenyldimethylsilyl group). Group, etc.), tetrahydropyranyl (THP) group, tetrahydrofuranyl group, alkoxyalkyl group (methoxymethyl group, ethoxyethyl group, etc.), benzyloxymethyl group, benzyl group, trityl group, acyl group (formyl group, acetyl group, Benzoyl group). A halogen atom is a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
[0015]
X1Represents a substituent on the phenyl group, and represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkylthio group having 1 to 6 carbon atoms, a nitro group, a cyano group or an amino group. Represents a group. Examples of the alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, a propyl group, an i-propyl group, an n-butyl group, an i-butyl group, a t-butyl group, a pentyl group, a hexyl group, a cyclopropyl group, Examples thereof include a cyclopentyl group and a cyclohexyl group. Examples of the alkoxy group having 1 to 6 carbon atoms include a methoxy group, an ethoxy group, an n-propoxy group, an i-propoxy group, an n-butoxy group, an i-butoxy group, a t-butoxy group, a pentyloxy group, a hexyloxy group, Examples thereof include a cyclopropoxy group, a cyclopentyloxy group, and a cyclohexyloxy group. Examples of the alkylthio group having 1 to 6 carbon atoms include methylthio, ethylthio, n-propylthio, i-propylthio, n-butylthio, i-butylthio, t-butylthio, pentylthio, hexylthio, and cyclopropyl. Examples include a thio group, a cyclopentylthio group, and a cyclohexylthio group.
[0016]
XTwoRepresents a side chain on a phenyl group having a functional group as an α chain, or a substituent on a phenyl group capable of introducing and converting an α chain, and represents a halogen atom,
-Y1 h(CR1RTwo)mAn(CHTwo)pYTwo q(CRThreeRFour)rQs
(Where Y1And YTwoEach represents an oxygen atom or a sulfur atom; A represents a vinylene group, an ethynylene group, or a divalent group formed by removing one hydrogen atom from each of carbon atoms at both ends of an allene;1, RTwo, RThreeAnd RFourRepresents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, Q represents a hydrogen atom,
-COORFive
(Where RFiveRepresents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms. ), Cyano group, hydroxyl group,
-OCOR6
(Where R6Represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms. ) Group,
-CONR7R8
(Where R7And R8Represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or a phenyl group. ) Or a phenyl group. In addition, h, n, q, and s show 0 or 1, m, p, and r show the integer of 0-5. ).
[0017]
Specific examples of the alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, a propyl group, an i-propyl group, an n-butyl group, an i-butyl group, a t-butyl group and a cyclopropyl group. Can be. Specific examples of the alkoxy group having 1 to 4 carbon atoms include a methoxy group, an ethoxy group, an n-propoxy group, an i-propoxy group, an n-butoxy group, an i-butoxy group, a t-butoxy group and a cyclopropoxy group. Can be mentioned. Specific examples of the alkyl group having 1 to 6 carbon atoms include the same as described above. Specific examples of the alkenyl group having 2 to 6 carbon atoms include a vinyl group, an allyl group, a 2-butenyl group, a 3-methyl-2-butenyl group, and a 3-methyl-2-pentenyl group.
[0018]
X above2Specific examples include a chlorine atom, a bromine atom, an iodine atom, a hydroxyl group, a methoxy group, an allyloxy group, a benzyloxy group, a thiol group, a methylthio group, a benzylthio group, and those represented by the following formulas. Can be
[0019]
Embedded image
Figure 0003541418
[0020]
Embedded image
Figure 0003541418
[0021]
The second invention of the present invention relates to a method for producing the phenyl-substituted hydroxycyclopentenone of the formula [I]. This is accomplished by subjecting a furan derivative of the following formula [III] to a rearrangement reaction in the presence of an acid catalyst to give a compound of the formula [IV], and subjecting it to an isomerization reaction under acidic or basic conditions, and forming a hydroxyl group as necessary. To protect.
[0022]
Here, the furan derivative [III], which is a raw material, is obtained by reacting a 2-lithio form of furan (1) with a substituted phenyl aldehyde (2) (reaction formula 1), or using furfural (3) with a substituted phenyl (Reaction formula 2) and the like.
[0023]
Embedded image
Figure 0003541418
[0024]
The furan derivative [III] undergoes a rearrangement reaction when heated in the presence of an acid catalyst to give a compound of the formula [IV], which is then isomerized under acidic or basic conditions to protect a hydroxyl group as required, Phenyl-substituted hydroxycyclopentenones [I] can be produced (Scheme 3).
[0025]
Embedded image
Figure 0003541418
[0026]
The rearrangement reaction can be carried out as it is or in a suitable solvent. Examples of the solvent include water or ethers (such as diethyl ether, dioxane, and tetrahydrofuran), halogens (such as dichloromethane and dichloroethane), ketones (such as acetone and methyl isobutyl ketone), and esters (such as ethyl acetate). Organic solvents such as aliphatic hydrocarbons (hexane, heptane, cyclohexane, etc.) and aromatic hydrocarbons (benzene, toluene, dichlorobenzene, etc.) can be used alone or in combination. Preferred is a mixed solvent of water and tetrahydrofuran.
[0027]
As the acid catalyst, an inorganic acid (such as hydrochloric acid or sulfuric acid) or an organic acid (such as acetic acid, trifluoroacetic acid, p-toluenesulfonic acid, or methanesulfonic acid) is used in an amount of 0.001 to 100 equivalents based on the furan derivative [III]. Preferably, 0.01 to 1 equivalent is used. The reaction temperature is from 0 ° C to the reflux temperature of the solvent, preferably from 50 to 100 ° C.
[0028]
The reaction time varies depending on the substrate and the reaction temperature, but is usually 0.5 to 24 hours, particularly 3 to 15 hours. After neutralizing the reaction solution, extraction with a suitable organic solvent gives compound [IV]. Compound [IV] can be used in the next reaction after purification or as a crude product.
[0029]
The isomerization reaction can be performed as it is or in an appropriate solvent. Examples of the solvent include water or ethers (such as diethyl ether, dioxane, and tetrahydrofuran), halogens (such as dichloromethane and dichloroethane), ketones (such as acetone and methyl isobutyl ketone), and esters (such as ethyl acetate). Organic solvents such as aliphatic hydrocarbons (hexane, heptane, cyclohexane, etc.) and aromatic hydrocarbons (benzene, toluene, dichlorobenzene, etc.) can be used alone or in combination. The reaction proceeds under either acidic or basic conditions, but preferably under basic conditions. As the acid catalyst, an inorganic acid (such as hydrochloric acid or sulfuric acid) or an organic acid (such as acetic acid, trifluoroacetic acid, p-toluenesulfonic acid, or methanesulfonic acid) is preferably used in an amount of 0.01 to 100 equivalents to compound [IV]. Is used in an amount of 0.01 to 1 equivalent. Examples of the basic catalyst include organic amines (triethylamine, pyridine, N-methylmorpholine, diazabicycloundecene, etc.), metal oxides (alumina, silica gel, etc.), inorganic bases (sodium hydroxide, potassium hydroxide, sodium carbonate, Potassium carbonate, sodium hydrogen carbonate, potassium hydrogen phosphate, etc.) can be used alone or in combination. The amount used varies depending on the base, and is 0.001 to 100 equivalents to compound [IV]. It can be used simultaneously as a solvent, and preferably 0.01 to 50 equivalents to compound [IV]. . The reaction temperature is from -40 to 100C, preferably from -20 to 50C. The reaction time varies depending on the substrate, the solvent and the reaction temperature, but is usually 5 minutes to 20 hours, particularly 30 minutes to 5 hours. In this reaction, chloral (Cl3When an aldehyde having an electron-withdrawing group such as CCHO) is present in an amount of about 0.1 to 3 equivalents relative to compound [IV], the reaction proceeds smoothly and the purity of the product increases.
[0030]
After neutralization of the reaction solution, extraction with an appropriate organic solvent, recrystallization, or purification by column chromatography or the like, the phenyl-substituted hydroxycyclopentenones [I] (Z1Is a hydrogen atom). The protection of the hydroxyl group can be carried out by a usual method, and the phenyl-substituted hydroxycyclopentenones [I] (Z1Can be easily derived into a hydroxyl-protecting group).
[0031]
According to the above method, the phenyl-substituted hydroxycyclopentenone of the formula [I] can be synthesized easily, reliably, and in high yield.
[0032]
The third invention of the present invention relates to an optical resolution method comprising treating a mixture of both enantiomers of the phenyl-substituted hydroxycyclopentenone of the formula [I] with an enzyme.
[0033]
That is, an ester [Z] of a phenyl-substituted hydroxycyclopentenone [I]1Is an acyl group (formyl group, acetyl group, benzoyl group, etc.)] by enzymatic hydrolysis with an enzyme or a phenyl-substituted hydroxycyclopentenone [I] hydroxyl substrate (Z1Is enzymatically esterified with an enzyme, whereby both enantiomers can be separated. Esterase or lipase derived from microorganisms or animals and plants is used as the enzyme. Specifically, lipases derived from microorganisms such as Pseudomonas, Aspergillus, Mucor, Candida, Rhizopus, Saccharomyces, or stearpsin, pancreatin, pig liver esterase, pig pancreatic lipase And animal and plant-derived enzymes such as wheat germ lipase. The reaction can be performed in an aqueous solution, an organic solvent, or a mixture thereof. As the aqueous solution, it is usually desirable to use a buffer solution of an inorganic acid salt such as sodium phosphate or potassium phosphate, or a buffer solution of an organic acid salt such as sodium citrate or sodium acetate. Examples of the organic solvent include heptane, toluene, methyl isobutyl ketone, dichloromethane, diethyl ether and the like.
[0034]
When performing asymmetric esterification, the esterification is performed in the presence of an ester source such as vinyl acetate or trichloroethyl acetate. The pH, reaction temperature, and reaction time of the reaction solution vary depending on the substrate and the enzyme, but it is usually desirable to maintain the pH at 5 to 10 and the temperature at 10 to 50 ° C. The reaction time is usually 2 hours to 10 days. After completion of the reaction, the product is extracted with an organic solvent, and both isomers are separated by recrystallization or column chromatography to obtain an optically active phenyl-substituted hydroxycyclopentenone [IR], [IS] Is obtained.
[0035]
Embedded image
Figure 0003541418
[0036]
A fourth invention of the present invention is to react the above-mentioned phenyl-substituted hydroxycyclopentenone of the formula [I] with a nucleophile of the formula [V] to form an ω chain XThreeTo produce a phenyl-substituted hydroxycyclopentanone of the formula [II]. The phenyl-substituted hydroxycyclopentanones [II] obtained here can further produce phenyl-substituted PGEs. (Reaction formula 4)
[0037]
Embedded image
Figure 0003541418
[0038]
In this case, Z1, X1, X2Has the same meaning as above, and X3Is the ω chain,
-T- (CH2)j-C (R9)(2-k)(OZ2)k-R10
Is a group represented by
[0039]
Where T is CHTwoCHTwo, CH = CH or a group selected from C≡C, j and k each independently represent an integer of 0, 1 or 2;9Represents (2-k) hydrogen atoms, an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms;TenIs an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkynyl group having 2 to 10 carbon atoms, a phenyl group, a phenoxy group, (the phenyl group and the phenoxy group are a halogen atom, a trifluoromethyl group , Optionally substituted by an alkyl group having 1 to 6 carbon atoms or an alkoxy group having 1 to 6 carbon atoms) or -BD (B is an alkylene group having 1 to 4 carbon atoms, D is phenyl Group, phenoxy group, (the phenyl group and the phenoxy group are optionally substituted with a halogen atom, a trifluoromethyl group, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a phenyl group or a phenoxy group. Or a cycloalkyl group having 5 to 7 carbon atoms.).
[0040]
Examples of the alkyl group having 1 to 4 carbon atoms, the alkoxy group having 1 to 4 carbon atoms, the alkyl group having 1 to 6 carbon atoms, and the alkoxy group having 1 to 6 carbon atoms are the same as those described above. Examples of the alkyl group having 1 to 10 carbon atoms include methyl, ethyl, propyl, i-propyl, butyl, i-butyl, t-butyl, pentyl, hexyl, heptyl, octyl, 1-methylpentyl group, 2-methylpentyl group, 1-methylhexyl group, 2-methylhexyl group, 2,4-dimethylpentyl group, 2-ethylpentyl group, 2-methylpentyl group, 2-ethylhexyl group, 2- A propylpentyl group, a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, a 4-methylcyclopentyl group, a 2,5-dimethylcyclohexyl group, a cyclopentylmethyl group, a cyclohexylmethyl group, a cyclopentylethyl group, or a cyclohexylethyl group; .
[0041]
Examples of the alkenyl group having 2 to 10 carbon atoms include vinyl, allyl, 1-butenyl, 2-butenyl, 1-pentenyl, 2-hexenyl, 3-methyl-2-butenyl and 3-methyl-. Examples thereof include a 2-pentenyl group and a 2,6-dimethyl-5-heptenyl group. Examples of the alkynyl group having 2 to 10 carbon atoms include an ethynyl group, a 1-propynyl group, a 1-butynyl group, a 1-methyl-3-pentynyl group, a 1-methyl-3-hexynyl group, and a 2-methyl-3-hexynyl group. And the like. Examples of the cycloalkyl group having 5 to 7 carbon atoms include a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a 4-methylcyclohexyl group.
[0042]
Also, ZTwoRepresents a hydrogen atom or a protecting group for a hydroxyl group, and when T is C≡C, ZTwoRepresents only a hydroxyl-protecting group. The protecting group for the hydroxyl group is Z1The same thing as the case explained in can be illustrated.
[0043]
On the other hand, M represents a metal selected from Li, Na, K, Mg, Ca, Ti, Zr, Ni, Cu, Zn, Al and Sn or a group containing the metal. Specifically, Li, MgBr, MgI, ZnBr, ZnI, CuLi, Cu (CN) Li, CuMe (CN) Li2, Et2Al, Et3AlLi, Cu (SPh) Li, (2-thienyl) Cu (CN) Li2And the like.
[0044]
More specifically, the nucleophile is usually used for the ω chain introduction reaction of PGs.3Depending on the type, a lithium reagent, a copper-lithium reagent, a Grignard (magnesium) reagent, a zinc reagent, an aluminum reagent and the like are used. Especially X3T inside is CH2CH2In the case of ZnIXThree, Cu (CN) LiXThreeIs preferable, and when T is CH = CH, (2-thienyl) Cu (CN) Li2XThreeIs preferable, and when T is C≡C, Et2AlXThreeIs preferably used. The nucleophilic reagent is used in 0.5 to 4 equivalents, preferably 0.8 to 2 equivalents, relative to compound [I].
[0045]
The reaction solvent may be any solvent that does not hinder the reaction, and examples thereof include tetrahydrofuran, diethyl ether, hexane, pentane, benzene, and toluene. The reaction temperature varies depending on the nucleophile, and is from -100 ° C to the reflux temperature of the solvent, usually -70 to 40 ° C. The reaction time varies depending on the substrate, solvent and reaction temperature, but is usually 5 minutes to 50 hours.
[0046]
The phenyl-substituted hydroxycyclopentanones [II] can be led to phenyl-substituted PGEs as they are or by performing hydrolysis, removal of protective groups, conversion of functional groups, and the like as necessary.
[0047]
When the phenyl-substituted hydroxycyclopentenones [I] are used as a mixture of both enantiomers, the resulting phenyl-substituted hydroxycyclopentanones [II] and the phenyl-substituted PGEs further have a 5-membered ring hydroxyl group. Is a mixture of both enantiomers. However, the ω chain X3When the moiety has an optically active hydroxyl group or the like, the compound [II] becomes a diastereomer mixture and can be separated by recrystallization or column chromatography or the like, and the optically active phenyl-substituted hydroxycyclopentanones [II], Further, optically active phenyl-substituted PGEs can be obtained (reaction formula 5). (* Indicates optical activity.)
[0048]
Embedded image
Figure 0003541418
[0049]
Further, the optically active phenyl-substituted hydroxycyclopentenones [IR], [IS], Optically active phenyl-substituted hydroxycyclopentanones [II] and further optically active phenyl-substituted PGEs can be obtained without separating the isomers (Reaction formula 6). (* Indicates optical activity.)
[0050]
Embedded image
Figure 0003541418
[0051]
【The invention's effect】
The phenyl-substituted hydroxycyclopentenones [I] of the first invention of the present invention are useful as synthetic intermediates of phenyl-substituted prostaglandins E expected to be used as pharmaceuticals. Further, according to the method of the fourth invention of the present invention, phenyl-substituted prostaglandins E can be efficiently produced. In addition, according to the method of the second and third aspects of the present invention, optically active phenyl-substituted hydroxycyclopentenones [I] and optically active phenyl-substituted prostaglandins E can be efficiently produced.
[0052]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples and Reference Examples. In the following examples, Me represents a methyl group, Et represents an ethyl group, n-Bu represents an n-butyl group, and TBS represents a t-butyldimethylsilyl group.
[0053]
Embedded image
Figure 0003541418
[0054]
N-BuLi (71.5 ml, 121.6 mmol, 1.70 M hexane solution) was added dropwise to a solution of furan (10.32 ml, 141.8 mmol) in THF (100 ml) at −78 ° C., and then 0% over 30 minutes. C. and cooled again to -78.degree. After diethyl aluminum chloride (134.4 ml, 131.7 mmol, 0.98 M hexane solution) was added dropwise, the mixture was stirred for 30 minutes. At -78 ° C, a solution of compound 1 (19.68 g, 101.3 mmol) in THF (5 ml) was added, and the temperature was raised to room temperature over 2 hours. A mixture of water (9.27 ml) and THF (13.9 ml) was slowly added to the reaction solution at 0 ° C., and then the temperature was raised to room temperature, followed by addition of NaF (37 g) and celite (31 g). After stirring for 1 hour, the mixture was filtered. The filtrate was concentrated under reduced pressure to obtain a crude product of compound 2 (25.2 g). The obtained crude product was directly used for the next reaction.
[0055]
Embedded image
Figure 0003541418
[0056]
To a solution of the crude product of compound 2 (21.2 g) obtained in the previous reaction in THF (202 ml) and water (25.2 ml) was added p-toluenesulfonic acid monohydrate (1.07 g, 5.66 mmol). And stirred at 70 ° C. for 12 hours. After cooling to room temperature, a saturated aqueous sodium bicarbonate solution was added for neutralization, and the reaction solution was extracted with ethyl acetate (2 × 100 ml). The obtained organic layer was dried over magnesium sulfate and then filtered. The filtrate was concentrated under reduced pressure to obtain a crude product of compound 3 (27 g). The obtained crude product was directly used for the next reaction.
[0057]
Embedded image
Figure 0003541418
[0058]
Chloral (0.78 ml, 8.09 mmol) and triethylamine (16.8 ml, 121 mmol) were added to a solution of the crude product of compound 3 (22 g) obtained in the previous reaction in THF (161 ml), and the mixture was stirred at room temperature for 1 hour. I'm sorry. After adding a saturated ammonium chloride aqueous solution (100 ml) to the reaction solution, the mixture was extracted with ethyl acetate (2 × 100 ml). The obtained organic layer was dried over magnesium sulfate and then filtered. The filtrate was concentrated under reduced pressure, and the obtained crude product was purified by silica gel column chromatography to obtain Compound 4 (10.9 g) at a yield of 41% from Compound 1.
[0059]
Embedded image
Figure 0003541418
[0060]
At 0 ° C., a solution of compound 4 (6.2 g, 23.6 mmol) in methylene chloride (23.6 ml) was added to triethylamine (4.91 ml, 35.5 mmol), N, N-dimethylaminopyridine (57.7 mg, 0.472 mmol). ), T-butyldimethylsilyl chloride (4.97 g, 30.7 mmol) was added, and the mixture was heated to room temperature and stirred for 14 hours. After adding a saturated aqueous sodium bicarbonate solution (50 ml), the mixture was extracted with ether (2 × 50 ml). The obtained organic layer was dried over magnesium sulfate and then filtered. The filtrate was concentrated under reduced pressure, and the obtained crude product was purified by silica gel column chromatography to obtain Compound 5 (8.18 g) at a yield of 92%. The analytical values of compound 5 are shown below.
[0061]
1 H-NMR (CDCl Three , 300 MHz) δ
0.15 and 0.16 (2s, 6H),
0.93 (s, 9H),
2.48 (dd, J = 2.3, 18.2 Hz, 1H),
2.93 (dd, J = 6.0, 18.2 Hz, 1H),
3.81 (s, 3H),
4.66 (s, 2H),
4.97 to 5.03 (m, 1H),
6.88 to 6.95 (m, 1H),
7.27 to 7.35 (m, 3H),
7.53 (d, J = 2.6 Hz, 1H).
13 C-NMR (CDCl Three , 75 MHz) δ
-4.7, 18.1, 25.7, 46.6, 52.2, 65.3, 68.2, 113.8, 115.3, 121.0, 129.5, 132.1, 142 .9, 157.7, 169.2, 203.6.
[0062]
[Example 3]
Compound 6 was obtained in the same manner as in Example 1 and Example 2.
[0063]
Embedded image
Figure 0003541418
1 H-NMR (CDCl Three , 300 MHz) δ
0.17 and 0.18 (2s, 6H),
0.94 (s, 9H),
2.44 (dd, J = 2.3, 18.0 Hz, 1H),
2.87 (dd, J = 6.1, 18.0 Hz, 1H),
3.78 (s, 3H),
4.62 (s, 2H),
5.02 to 5.10 (m, 1H),
6.80 (d, J = 8.3 Hz, 1H),
7.02 (dt, J = 1.0, 7.6 Hz, 1H),
7.22 to 7.32 (m, 1H),
7.72 (dd, J = 1.7, 7.7 Hz, 1H),
7.96 (d, J = 2.5 Hz, 1H).
[0064]
[Example 4]
Compound 7 was obtained in the same manner as in Example 1 and Example 2.
[0065]
Embedded image
Figure 0003541418
1 H-NMR (CDCl Three , 300 MHz) δ
0.14 and 0.16 (2s, 6H),
0.92 (s, 9H),
2.45 (dd, J = 2.4, 18.2 Hz, 1H),
2.90 (dd, J = 6.0, 18.2 Hz, 1H),
3.79 (s, 3H),
4.64 (s, 2H),
4.98 (dt, J = 6.0, 2.4 Hz, 1H),
6.87 to 6.94 (m, 2H),
7.45 (d, J = 2.6 Hz, 1H),
7.65 to 7.72 (m, 2H).
[0066]
Embedded image
Figure 0003541418
[0067]
To a solution of furan (10.37 ml, 142.6 mmol) in THF (300 ml) was added n-BuLi (69.3 ml, 1.87 M hexane solution, 129.7 mmol) dropwise at -78 ° C, and at -40 ° C for 1 hour. After stirring, the mixture was cooled again to -78 ° C. 2-Bromobenzaldehyde (24.0 g, 129.7 mmol) was added dropwise thereto, and the temperature was raised to room temperature over 1 hour. Saturated NHFourAn aqueous solution of Cl (300 ml) was added and extracted with ether (2 × 100 ml). The obtained organic layer was washed with MgSOFourAnd then filtered. The filtrate was concentrated under reduced pressure to obtain a crude product of compound 8 (32.5 g, 100100%). The obtained crude product was directly used for the next reaction.
[0068]
Embedded image
Figure 0003541418
[0069]
To a mixture of the crude product of compound 8 (32.5 g) obtained in the previous reaction, THF (225 ml) and water (28 ml), p-TsOH.H was added.TwoO (1.28 g, 6.75 mmol) was added, and the mixture was stirred at 75 ° C. for 20 hours. After cooling to room temperature, ethyl acetate (100 ml) was added and the organic layer was separated. The aqueous layer was extracted with ethyl acetate (2x100ml). The obtained organic layer is washed with saturated NaHCOThreeWash with aqueous solution (200 ml)FourAnd dried. After filtration, the filtrate was concentrated under reduced pressure. The obtained crude product was dissolved in ethyl acetate (100 ml), passed through a short silica gel column, and concentrated under reduced pressure to give compound 9 (30.0 g, yield 92%). ) Got.
[0070]
Embedded image
Figure 0003541418
[0071]
Chloral (0.39 ml, 4.05 mmol) and triethylamine (5.55 ml, 40 mmol) were added to a solution of compound 9 (10.0 g, 40 mmol) in THF (80 ml), and the mixture was stirred at room temperature for 1 hour. Saturated NHFourAn aqueous solution of Cl (50 ml) was added and extracted with ethyl acetate (2 × 50 ml). The obtained organic layer was washed with MgSOFourAnd filtered. The residue obtained by concentrating the filtrate under reduced pressure was purified by silica gel column chromatography to obtain compound 10 (8.3 g) in a yield of 83%. The analytical values of compound 9 and compound 10 are shown below.
Compound 9
1 H-NMR (CDCl Three , 300 MHz) δ
3.73 (d, J = 2.8 Hz, 1H),
5.02 (br s, 1H),
6.30 (dd, J = 1.4, 5.9 Hz, 1H),
6.96 to 7.60 (m, 5H).
Compound 10
1 H-NMR (CDCl Three , 300 MHz) δ
2.51 (dd, J = 2.2.8.5 Hz, 1H),
2.99 (dd, J = 6.2.8.5 Hz, 1H),
5.08 to 5.17 (m, 1H),
7.17 to 7.37 (m, 3H),
7.60 to 7.65 (m, 1H),
7.64 (d, J = 2.4 Hz, 1H).
13 C-NMR (CDCl Three , 75 MHz) δ
44.6, 67.9, 122.6, 127.1, 129.8, 130.7, 132.0, 132.9, 145.2, 161.1, 203.6.
[0072]
[Example 6]
Compound 11 and compound 12 were obtained in the same manner as in Example 5. The analytical values are shown below.
[0073]
Embedded image
Figure 0003541418
1 H-NMR (CDCl Three , 300 MHz) δ
3.43 (d, J = 2.8 Hz, 1H),
4.96 (br s, 1H),
6.34 (dd, J = 0.9 Hz, 5.8 Hz, 1H),
7.03 (d, J = 8.5 Hz, 2H),
7.48 (d, J = 8.5 Hz, 2H),
7.63 (dd, J = 2.2, 5.8 Hz, 1H).
[0074]
Embedded image
Figure 0003541418
1 H-NMR (CDCl Three , 300 MHz) δ
2.52 (dd, J = 2.3, 18.6 Hz, 1H),
3.21 (dd, J = 6.2, 18.6 Hz, 1H),
5.04 to 5.10 (m, 1H),
7.52 (d, J = 8.8 Hz, 2H),
7.61 (d, J = 8.8 Hz, 2H),
7.65 (d, J = 2.6 Hz, 1H).
[0075]
[Example 7]
Compound 13 and compound 14 were obtained in the same manner as in Example 5. The analytical values are shown below.
[0076]
Embedded image
Figure 0003541418
1 H-NMR (CDCl Three , 300 MHz) δ
3.43 (d, J = 3.0 Hz, 1H),
4.98 (brs, 1H),
6.35 (dd, J = 5.8, 1.4 Hz, 1H),
7.08 (d, J = 7.7 Hz, 1H),
7.17 to 7.33 (m, 2H),
7.43 (dt, J = 8.0, 1.0 Hz, 1H),
7.63 (dd, J = 1.6, 5.8 Hz, 1H).
[0077]
Embedded image
Figure 0003541418
[0078]
Example 8
Compound 15 was obtained in the same manner as in Example 2. The analytical values are shown below.
[0079]
Embedded image
Figure 0003541418
1 H-NMR (CDCl Three , 300 MHz) δ
0.16 and 0.17 (2s, 6H),
0.94 (s, 9H),
2.48 (dd, J = 2.3, 18.2 Hz, 1H),
2.93 (dd, J = 6.1, 18.2 Hz, 1H),
5.05 to 5.12 (m, 1H),
7.16 to 7.37 (m, 3H),
7.55 (d, J = 2.4 Hz, 1H),
7.62 (dd, J = 1.0, 8.0 Hz, 1H).
13 C-NMR (CDCl Three , 75 MHz) δ
-4.6, 18.1, 15.8, 45.5, 68.8, 122.8, 127.1, 129.8, 130.9, 132.2, 133.1, 144.8, 161 .2, 202.9.
[0080]
[Example 9]
Compound 16 was obtained in the same manner as in Example 2. The analytical values are shown below.
[0081]
Embedded image
Figure 0003541418
1 H-NMR (CDCl Three , 300 MHz) δ
0.15 and 0.17 (2s, 6H),
0.93 (s, 9H),
2.48 (dd, J = 2.3, 18.3 Hz, 1H),
2.93 (dd, J = 6.1, 18.3 Hz, 1H),
4.95 to 5.03 (m, 1H),
7.48 to 7.53 (m, 2H),
7.54 (d, J = 2.6 Hz, 1H),
7.57 to 7.63 (m, 2H).
[0082]
[Example 10]
Compound 17 was obtained in the same manner as in Example 2. The analytical values are shown below.
[0083]
Embedded image
Figure 0003541418
1 H-NMR (CDCl Three , 300 MHz) δ
0.16 and 0.17 (2s, 6H),
0.93 (s, 9H),
2.49 (dd, J = 2.3, 18.2 Hz, 1H),
2.94 (dd, J = 6.0, 18.2 Hz, 1H),
4.96 to 5.04 (m, 1H),
7.20 to 7.30 (m, 1H),
7.48 (d, J = 8.0 Hz, 1H),
7.55 (d, J = 2.5 Hz, 1H),
7.66 (d, J = 7.7 Hz, 1H),
7.85 (t, J = 1.7 Hz, 1H).
13 C-NMR (CDCl Three , 75 MHz) δ
-4.7, 18.0, 25.7, 46.4, 68.1, 122.4, 126.0, 129.8, 130.2, 131.7, 132.6, 141.8, 158 0.0, 203.0.
[0084]
Embedded image
Figure 0003541418
[0085]
To 4-pentenoic acid ethyl ester (256 mg, 2 mmol), a THF solution of 9-borabicyclonane (0.5 M, 4 ml, 2 mmol) was added at 0 ° C, and the mixture was stirred at room temperature for 4 hours. Compound 16 (367.4 mg, 1 mmol), THF (2 ml), ClTwoPd (dppf) (18.3 mg, 0.025 mmol), KThreePOFour(327.4 mg, 1.5 mmol) and stirred at 60-70 ° C. for 4 hours. After cooling to room temperature, saturated NHFourAn aqueous solution of Cl (10 ml) was added and extracted with ethyl acetate (2 × 10 ml). The obtained organic layer was washed with MgSOFourAnd filtered. The filtrate was concentrated under reduced pressure, and the obtained crude product was purified by silica gel column chromatography to obtain Compound 17 (4.08 g) at a yield of 98%. The analytical values are shown below.
[0086]
1 H-NMR (CDCl Three , 300 MHz) δ
0.15 and 0.17 (2s, 6H),
0.93 (s, 9H),
1.30 to 1.80 (m, 4H),
2.33 (t, J = 7.1 Hz, 2H),
2.48 (dd, J = 2.3, 18.2 Hz, 1H),
2.64 (t, J = 7.0 Hz, 2H),
2.92 (dd, J = 6.0, 18.2 Hz, 1H),
3.66 (s, 3H),
4.97 to 5.04 (m, 1H),
7.19 (d, J = 8.1 Hz, 2H),
7.49 (d, J = 2.6 Hz, 1H),
7.62 (d, J = 8.1 Hz, 2H).
[0087]
[Example 12]
Compound 18 was obtained in the same manner as in Example 11. The analytical values are shown below.
[0088]
Embedded image
Figure 0003541418
1 H-NMR (CDCl Three , 300 MHz) δ
0.16 and 0.17 (2s, 6H),
0.93 (s, 9H),
1.25 (t, J = 7.1 Hz, 3H),
1.50 to 1.95 (m, 4H),
2.32 (t, J = 7.2 Hz, 2H),
2.49 (dd, J = 2.3, 18.2 Hz, 1H),
2.64 (t, J = 7.4 Hz, 2H),
2.93 (dd, J = 6.1, 18.2 Hz, 1H),
4.12 (q, J = 7.1 Hz, 2H),
5.01 (dt, J = 2.4, 6.0 Hz, 1H),
7.17 (d, J = 7.6 Hz, 1H),
7.29 (t, J = 8.0 Hz, 1H),
7.51 (d, J = 6.2 Hz, 1H),
7.52 (d, J = 7.6 Hz, 1H).
[0089]
Example 13
Compound 19 was obtained in the same manner as in Example 11. The analytical values are shown below.
[0090]
Embedded image
Figure 0003541418
1 H-NMR (CDCl Three , 300 MHz) δ
0.16 and 0.17 (2s, 6H),
0.93 (s, 9H),
1.90 to 2.03 (m, 2H),
2.34 (t, J = 7.4 Hz, 2H),
2.48 (dd, J = 2.4, 18.3 Hz, 1H),
2.67 (t, J = 7.7 Hz, 2H),
2.93 (dd, J = 6.0, 18.3 Hz, 1H),
3.67 (S, 3H),
4.98 to 5.03 (m, 1H),
7.17 (d, J = 7.7 Hz, 1H),
7.30 (t, J = 7.6 Hz, 1H),
7.47 to 7.56 (m, 3H).
13 C-NMR (CDCl Three , 75 MHz) δ
-4.6, 18.2, 25.8, 26.5, 33.4, 35.1, 46.7, 51.5, 68.4, 125.4, 127.7, 128.5, 129 .1, 130.9, 141.6, 143.7, 157.3, 173.8, 203.9.
[0091]
[Example 14]
Compound 20 was obtained in the same manner as in Example 11. The analytical values are shown below.
[0092]
Embedded image
Figure 0003541418
1 H-NMR (CDCl Three , 300 MHz) δ
0.16 and 0.17 (2s, 6H),
0.93 (s, 4H),
1.40 to 1.80 (m, 4H),
2.29 (t, J = 7.2 Hz, 2H),
2.46 (dd, J = 2.2, 18.2 Hz, 1H),
2.52 (t, J = 8.2 Hz, 2H),
2.92 (dd, J = 6.0, 18.2 Hz, 1H),
5.03 to 5.10 (m, 1H),
7.04 to 7.31 (m, 4H),
7.32 (d, J = 2.4 Hz, 1H).
[0093]
[Example 15]
Compound 21 was obtained in the same manner as in Example 11. The analytical values are shown below.
[0094]
Embedded image
Figure 0003541418
1 H-NMR (CDCl Three , 300 MHz) δ
0.16 and 0.17 (2s, 6H),
0.94 (s, 9H),
1.77 to 1.90 (m, 2H),
2.28 (t, J = 7.3 Hz, 2H),
2.47 (dd, J = 2.2, 18.2 Hz, 1H),
2.55 (t, J = 8.0 Hz, 2H),
2.92 (dd, J = 6.0, 18.2 Hz, 1H),
5.04 to 5.11 (m, 1H),
7.08 to 7.32 (m, 4H),
7.34 (d, J = 2.4 Hz, 1H).
[0095]
Embedded image
Figure 0003541418
[0096]
A solution of (E, 3S) -1-iodo-3-[(t-butyldimethylsilyl) oxy] oct-1-ene (678 mg, 1.84 mmol) in ether (4.6 ml) was added at -78 ° C with t-. Butyllithium (2.03 ml, 3.45 mmol, 1.7 M pentane solution) was added and stirred for 1 hour. Lithium (2-thienyl) cyanocopper (8.28 ml, 2.07 mmol, 0.25 M THF solution) was added at −78 ° C., and the mixture was stirred for 20 minutes, and then THF of compound 5 (433 mg, 1.15 mmol) was added. (5 ml) solution was added dropwise. After the temperature was raised to 0 ° C. over 2 hours, a saturated aqueous ammonium chloride solution (5 ml) was added. The reaction solution was extracted with ether (2 × 10 ml), and the obtained organic layer was dried over magnesium sulfate. The filtrate obtained by filtration was concentrated under reduced pressure. The obtained crude product was purified by silica gel column chromatography to obtain Compound 8 (586 mg) with a yield of 82%. The analytical values are shown below.
[0097]
1 H-NMR (CDCl Three , 300 MHz) δ
-0.29, -0.21, -0.17, -0.14, -0.02 and -0.01 (6s, 12H),
0.07, 0.73 and 0.80 (3s, 18H),
0.66-0.86 (m, 3H),
0.99 to 1.39 (m, 8H),
2.27 and 2.28 (2dd, J = 8.8, 18.4 Hz and J = 8.8, 18.4 Hz, 1H),
2.71 (dd, J = 7.2, 18.4 Hz, 1H),
2.71 to 2.92 (m, 1H),
3.05 and 3.07 (2d, J = 12.4 Hz and J = 12.4 Hz, 1H),
3.69 (s, 3H),
3.84 to 3.96 (m, 1H),
3.98-4.16 (m, 1H),
4.49 (s, 2H),
5.27 to 5.56 (m, 2H),
6.56 to 6.76 (m, 3H),
7.02 to 7.20 (m, 1H).
13 C-NMR (CDCl Three , 75 MHz) δ
−5.4, −5.3, −5.2, −5.0, −4.9, 13.7, 17.6, 17.7, 22.2, 24.1, 24.4.4, 25 .4,27.6,31.4,37.9,38.1,47.2,51.7,55.0,60.5,60.7,65.0,72.0,72.3 , 72.4, 72.9, 112.8, 115.5, 122.2, 122.3, 127.3, 127.7, 129.4, 136.9, 137.4, 137.8, 137 .9, 157.9, 169.2, 211.7, 211.8.
IR (neat)  777,837,1118,1253,1467,1473,1589,1750,2862,2932,2958cm-1.
[0098]
[Example 17]
Compound 23 was obtained from Compound 6 in the same manner as in Example 16. The analytical values are shown below.
[0099]
Embedded image
Figure 0003541418
1 H-NMR (CDCl Three , 300 MHz) δ
-0.22, -0.07, -0.02, 0.07, 0.08 and 0.09 (6s, 12H), 0.79, 0.84, 0.89 and 0.90 (4s, 18H),
0.72 to 1.45 (m, 11H),
2.68 to 2.85 (m, 2H),
3.08 to 3.34 (m, 2H),
3.79 (s, 3H),
3.94 to 4.04 (m, 1H),
4.08 to 4.22 (m, 1H),
4.50 to 4.66 (m, 2H),
5.33-5.59 (m, 2H),
6.72-7.32 (m, 4H).
[0100]
[Example 18]
Compound 24 was obtained from Compound 7 in the same manner as in Example 16. The analytical values are shown below.
[0101]
Embedded image
Figure 0003541418
1 H-NMR (CDCl Three , 300 MHz) δ
−0.18, −0.11, −0.06, −0.04, 0.01, 0.08 and 0.10 (7s, 12H),
0.80, 0.84 and 0.90 (3s, 18H),
0.76-0.94 (m, 3H),
1.12 to 1.45 (m, 8H),
2.36 and 2.37 (2dd, J = 8.8, 18.4 Hz and J = 8.8, 18.5 Hz, 1H),
2.74 to 2.95 (m, 2H),
3.12 and 3.14 (2d, J = 12.5 Hz and J = 12.5 Hz, 1H),
3.80 (s, 3H),
3.94 to 4.05 (m, 1H),
4.07 to 4.23 (m, 1H),
4.58 and 4.59 (2s, 2H),
5.37 to 5.64 (m, 2H),
6.81 to 6.88 (m, 2H),
6.99-7.09 (m, 2H).
[0102]
[Example 19]
Compound 25 was obtained from compound 5 in the same manner as in Example 16. The analytical values are shown below.
[0103]
Embedded image
Figure 0003541418
1 H-NMR (CDCl Three , 300 MHz) δ
-0.27, -0.24, -0.11, -0.06, 0.11 and 0.15 (6s, 12H),
0.94 and 0.95 (2s, 9H),
0.79 to 1.85 (m, 11H),
1.32, 1.33, 1.36 and 1.38 (4s, 6H),
2.40 and 2.39 (2dd, J = 8.9, 18.4 Hz and J = 8.8, 18.4 Hz, 1H),
2.78-3.20 (m, 3H),
3.65 to 3.76 (m, 1H),
3.83 (s, 3H),
4.06 to 4.23 (m, 1H),
4.62 (s, 2H),
5.25 to 5.48 (m, 2H),
6.66-7.34 (m, 9H).
[0104]
[Example 20]
Compound 26 was obtained from Compound 5 in the same manner as in Example 16. The analytical values are shown below.
[0105]
Embedded image
Figure 0003541418
1 H-NMR (CDCl Three , 300 MHz) δ
−0.14, −0.09, −0.08, −0.04, 0.01, 0.03 and 0.10 (7s, 12H),
0.87 and 1.10 (2s, 18H),
0.70 to 2.04 (m, 15H),
2.31 to 2.45 (m, 1H),
2.75 to 2.87 (m, 1H),
2.88-3.24 (m, 1H),
3.10 to 3.21 (m, 1H),
3.80 (s, 3H),
4.02 to 4.24 (m, 2H),
4.60 (s, 2H),
5.42 to 5.56 (m, 2H),
6.67 to 6.81 (m, 3H),
7.18 to 7.26 (m, 1H).
[0106]
Embedded image
Figure 0003541418
[0107]
To a solution of compound 22 (586 mg, 0.947 mmol) in acetonitrile (31.9 ml) was added pyridine (1.9 ml) and hydrofluoric acid-pyridine complex (1.61 ml) at 0 ° C., and the mixture was stirred at room temperature for 6 hours. . The reaction solution was poured into a mixture of ethyl acetate (30 ml) and a saturated aqueous solution of sodium bicarbonate (30 ml) with stirring. The organic layer obtained by extraction with ethyl acetate (2 × 30 ml) was washed with saturated saline (20 ml). The obtained organic layer was dried over magnesium sulfate and then filtered. The filtrate was concentrated under reduced pressure, and the obtained crude product was purified by silica gel column chromatography to obtain Compound 27 (153 mg, yield 41%) and Compound 28 (128 mg, yield 35%). The analytical values are shown below.
[0108]
Embedded image
Figure 0003541418
1 H-NMR (CDCl Three , 200 MHz) δ
0.83 (t, J = 6.4 Hz, 3H),
0.96 to 1.60 (m, 8H),
2.42 (dd, J = 9.9, 18.6 Hz, 1H),
2.70 to 2.90 (m, 1H),
2.89 (dd, J = 7.1, 18.6 Hz, 1H),
3.19 (d, J = 12.8 Hz, 1H),
3.81 (s, 3H),
3.92 to 4.08 (m, 1H),
4.09 to 4.28 (m, 1H),
4.61 (s, 2H),
5.43 to 5.68 (m, 2H),
6.64 to 6.84 (m, 3H),
7.14 to 7.28 (m, 1H).
13 C-NMR (CDCl Three , 50 MHz) δ
13.8, 22.3, 24.7, 31.4, 36.7, 45.9, 52.2, 56.0, 61.0, 65.1, 71.1, 73.0, 112. 8, 115.8, 122.2, 129.7, 130.8, 137.4, 137.6, 158.0, 169.7, 212.2.
Rf= 0.33 (AcOEt / MeOH = 100/1)
[0109]
Embedded image
Figure 0003541418
1 H-NMR (CDCl Three , 200 MHz) δ
0.86 (t, J = 6.2 Hz, 3H),
1.02 to 1.60 (m, 8H),
2.43 (dd, J = 9.7, 18.9 Hz, 1H),
2.72 to 2.95 (m, 1H),
2.90 (dd, J = 7.2, 18.9 Hz, 1H),
3.20 (d, J = 12.8 Hz, 1H),
3.80 (s, 3H),
3.96 to 4.12 (m, 1H),
4.13 to 4.31 (m, 1H),
4.61 (s, 2H),
5.52 to 5.74 (m, 2H),
6.62 to 6.84 (m, 3H),
7.15 to 7.34 (m, 1H).
13 C-NMR (CDCl Three , 50 MHz) δ
13.8, 22.3, 24.7, 31.5, 36.7, 46.3, 52.2, 55.0, 61.1, 65.1, 71.2, 71.6, 112. 9, 115.9, 122.3, 128.3, 129.8, 136.8, 137.8, 157.9, 169.8, 212.5.
Rf= 0.44 (AcOEt / MeOH = 100/1)
[0110]
[Example 22]
Compound 29 and Compound 30 were obtained from Compound 23 in the same manner as in Example 21. The analytical values are shown below.
[0111]
Embedded image
Figure 0003541418
1 H-NMR (CDCl Three , 300 MHz) δ
0.83 (t, J = 6.8 Hz, 3H),
0.96 to 1.55 (m, 8H),
2.80 to 2.88 (m, 2H),
3.06 to 3.26 (m, 2H),
3.79 (s, 3H),
3.92 to 4.04 (m, 1H),
4.06 to 4.22 (m, 1H),
4.52 and 4.61 (2d, J = 15.7 Hz and J = 15.7 Hz, 2H),
5.42 (dd, J = 7.4, 15.3 Hz, 1H),
5.59 (dd, J = 7.7, 15.3 Hz, 1H),
6.75 (d, J = 8.3 Hz, 1H),
6.86 to 7.02 (m, 2H),
7.15 to 7.26 (m, 1H).
[0112]
Embedded image
Figure 0003541418
1 H-NMR (CDCl Three , 300 MHz) δ
0.86 (t, J = 6.8 Hz, 3H),
1.05 to 1.80 (m, 8H),
2.83 to 2.98 (m, 2H),
3.12 to 3.35 (m, 2H),
3.81 (s, 3H),
4.01 to 4.15 (m, 1H),
4.17 to 4.30 (m, 1H),
4.58 and 4.62 (2d, J = 15.2 Hz and J = 15.2 Hz, 2H),
5.52 (dd, J = 6.0, 15.9 Hz, 1H),
5.71 (dd, J = 8.3, 15.9 Hz, 1H),
6.78 (d, J = 9.1 Hz, 1H),
6.88 to 7.08 (m, 2H),
7.18 to 7.35 (m, 1H).
[0113]
[Example 23]
Compound 31 and Compound 32 were obtained from Compound 24 in the same manner as in Example 21. The analytical values are shown below.
[0114]
Embedded image
Figure 0003541418
1 H-NMR (CDCl Three , 300 MHz) δ
0.84 (t, J = 7.2 Hz, 3H),
1.00 to 1.57 (m, 8H),
2.40 (dd, J = 9.8, 18.7 Hz, 1H),
2.70 to 2.85 (m, 1H),
2.89 (dd, J = 7.5, 18.7 Hz, 1H),
3.17 (d, J = 12.7 Hz, 1H),
3.80 (s, 3H),
3.97 to 4.06 (m, 1H),
4.12 to 4.25 (m, 1H),
4.60 (s, 2H),
5.47 to 5.65 (m, 2H),
6.86 (s, J = 8.8 Hz, 2H),
7.02 (d, J = 8.8 Hz, 2H).
[0115]
Embedded image
Figure 0003541418
1 H-NMR (CDCl Three , 300 MHz) δ
0.87 (t, J = 6.8 Hz, 3H),
1.15 to 1.53 (m, 8H),
2.42 (dd, J = 9.6, 18.5 Hz, 1H),
2.74 to 2.88 (m, 1H),
2.90 (dd, J = 7.1, 18.5 Hz, 1H),
3.19 (d, J = 12.9 Hz, 1H),
3.80 (s, 3H),
4.02 to 4.10 (m, 1H),
4.16 to 4.28 (m, 1H),
4.61 (s, 2H),
5.57 to 5.72 (m, 2H),
6.86 (d, J = 8.8 Hz, 2H),
7.05 (d, J = 8.8 Hz, 2H).
[0116]
[Example 24]
Compound 33 and compound 34 were obtained in the same manner as in Example 21. The analytical values are shown below.
[0117]
Embedded image
Figure 0003541418
1 H-NMR (CDCl Three , 300 MHz) δ
0.77 (d, J = 6.3 Hz, 3H),
0.85 (d, J = 6.3 Hz, 3H),
0.96-1.50 (m, 9H),
2.43 (dd, J = 9.6, 18.6 Hz, 1H),
2.74 to 2.90 (m, 1H),
2.90 (dd, J = 7.2, 18.6 Hz, 1H),
3.20 (s, J = 12.9 Hz, 1H),
3.80 (s, 3H),
4.06 to 4.28 (m, 2H),
4.61 (s, 2H),
5.46 to 5.72 (m, 2H),
6.67 to 6.79 (m, 3H),
7.17 to 7.30 (m, 1H).
IR (neat)  730, 1080, 1220, 1440, 1590, 1740, 2930, 3400 cm-1.
[0118]
Embedded image
Figure 0003541418
1 H-NMR (CDCl Three , 300 MHz) δ
0.77 (d, J = 6.3 Hz, 3H),
0.85 (d, J = 6.3 Hz, 3H),
0.96-1.50 (m, 9H),
2.43 (dd, J = 9.6, 18.6 Hz, 1H),
2.74 to 2.90 (m, 1H),
2.90 (dd, J = 7.2, 18.6 Hz, 1H),
3.20 (s, J = 12.9 Hz, 1H),
3.80 (s, 3H),
4.06 to 4.28 (m, 2H),
4.61 (s, 2H),
5.46 to 5.72 (m, 2H),
6.67 to 6.79 (m, 3H),
7.17 to 7.30 (m, 1H).
[0119]
[Example 25]
Compound 35 and compound 36 were obtained in the same manner as in Example 21. The analytical values are shown below.
[0120]
Embedded image
Figure 0003541418
1 H-NMR (CDCl Three , 300 MHz) δ
0.66 to 1.80 (m, 11H),
2.42 (dd, J = 9.9, 18.6 Hz, 1H),
2.75 to 2.90 (m, 1H),
2.90 (dd, J = 7.2, 18.6 Hz, 1H),
3.19 (d, J = 13.2 Hz, 1H),
3.70 to 3.85 (m, 1H),
3.80 (s, 3H),
4.15 to 4.30 (m, 1H),
4.59 (s, 2H),
5.47 to 5.68 (m, 2H),
6.67 to 6.84 (m, 3H),
7.17 to 7.30 (m, 1H).
IR (neat)  730,1180,1210,1440,1590,1740,2920,3400cm-1.
[0121]
Embedded image
Figure 0003541418
1 H-NMR (CDCl Three , 300 MHz) δ
0.65 to 1.72 (m, 11H),
2.43 (dd, J = 9.6, 18.6 Hz, 1H),
2.75 to 2.90 (m, 1H),
2.90 (dd, J = 7.2, 18.6 Hz, 1H),
3.21 (d, J = 12.6 Hz, 1H),
3.70 to 3.85 (m, 1H),
3.80 (s, 3H),
4.15 to 4.30 (m, 1H),
4.60 (s, 2H),
5.47 to 5.68 (m, 2H),
6.67 to 6.84 (m, 3H),
7.17 to 7.30 (m, 1H).
[0122]
[Example 26]
Compound 37 and compound 38 were obtained from compound 26 in the same manner as in Example 21. The analytical values are shown below.
[0123]
Embedded image
Figure 0003541418
1 H-NMR (CDCl Three , 300 MHz) δ
0.80 to 0.92 (m, 6H),
1.05 to 1.70 (m, 9H),
2.45 (dd, J = 9.0, 17.3 Hz, 1H),
2.79 to 2.91 (m, 1H),
2.92 (dd, J = 7.5, 17.3 Hz, 1H),
3.21 (d, J = 10.5 Hz, 1H),
3.82 (s, 3H),
4.08 to 4.30 (m, 2H),
4.62 (s, 2H),
5.55 to 5.70 (m, 2H),
4.62 (s, 2H),
5.55 to 5.70 (m, 2H),
6.66 to 6.82 (m, 2H),
7.18 to 7.28 (m, 1H).
[0124]
Embedded image
Figure 0003541418
1 H-NMR (CDCl Three , 300 MHz) δ
0.80 to 0.95 (m, 6H),
1.08 to 1.67 (m, 9H),
2.45 (dd, J = 8.2, 17.3 Hz, 1H),
2.78 to 2.90 (m, 1H),
2.92 (dd, J = 6.8, 17.3 Hz, 1H),
3.21 (d, J = 13.5 Hz, 1H),
3.81 (s, 3H),
4.12 to 4.31 (m, 2H),
4.62 (s, 2H),
5.56-5.72 (m, 2H),
6.67 to 6.82 (m, 3H),
7.20 to 7.28 (m, 1H).
[0125]
Embedded image
Figure 0003541418
[0126]
Pig liver esterase (0.0229 ml, 79 units) was added to a solution of compound 27 (81.8 mg, 0.2095 mmol) in a phosphate buffer (9.33 ml, pH 8, 0.1 M) and acetone (1.87 ml). Stir at room temperature for 3 hours. After neutralization with an aqueous hydrochloric acid solution (1N), ammonium sulfide was added to saturate. The organic layer obtained by extraction with ethyl acetate (2 × 15 ml) was dried over magnesium sulfate. After filtration, the filtrate was concentrated under reduced pressure, and the obtained crude product was purified by preparative thin-layer chromatography to obtain Compound 39 (44 mg) at a yield of 56%. The analytical values are shown below.
[0127]
1 H-NMR (CDCl Three , 300 MHz) δ
0.84 (t, J = 5.3 Hz, 3H),
1.01 to 1.68 (m, 8H),
2.44 (dd, J = 9.9, 18.4 Hz, 1H),
2.60 to 2.80 (m, 1H),
2.91 (dd, J = 7.1, 18.4 Hz, 1H),
3.21 (d, J = 13.3 Hz, 1H),
4.02 to 4.28 (m, 2H),
4.63 (s, 2H),
5.51 to 5.75 (m, 2H),
6.59 to 6.88 (m, 3H),
7.14 to 7.33 (m, 1H).
[0128]
[Example 28]
Compound 40 was obtained from Compound 29 in the same manner as in Example 27. The analytical values are shown below.
[0129]
Embedded image
Figure 0003541418
1 H-NMR (CDCl Three , 300 MHz) δ
0.83 (t, J = 7.6 Hz, 3H),
0.95 to 1.70 (m, 8H),
2.81 (dd, J = 7.5, 19.0 Hz, 1H),
2.95 (dd, J = 9.7, 19.0 Hz, 1H),
3.08 to 3.24 (m, 2H),
3.94 to 4.05 (m, 1H),
4.10 to 4.30 (m, 1H),
4.49 and 4.62 (2d, J = 15.8 Hz and J = 15.8 Hz, 2H),
5.39 (dd, J = 7.8, 15.2 Hz, 1H),
5.57 (dd, J = 8.3, 15.2 Hz, 1H),
6.80 (d, J = 9.1 Hz, 1H),
6.85 to 6.99 (m, 2H),
7.17 to 7.26 (m, 1H).
[0130]
[Example 29]
Compound 41 was obtained from Compound 35 in the same manner as in Example 27. The analytical values are shown below.
[0131]
Embedded image
Figure 0003541418
1 H-NMR (CDCl Three , 300 MHz) δ
0.55 to 1.95 (m, 11H),
2.41 (dd, J = 9.6, 18.6 Hz, 1H),
2.74 to 2.92 (m, 2H),
3.17 (d, J = 12.9 Hz, 1H),
3.55-3.80 (m, 1H),
4.10 to 4.25 (m, 1H),
4.58 (s, 2H),
5.38 to 5.55 (m, 2H),
6.61 to 7.85 (m, 3H),
7.10 to 7.30 (m, 1H).
[0132]
[Example 30]
Compound 42 was obtained from compound 26 in the same manner as in Example 27. The analytical values are shown below.
[0133]
Embedded image
Figure 0003541418
1 H-NMR (CDCl Three , 300 MHz) δ
0.75 to 1.85 (m, 11H),
2.42 (dd, J = 9.5, 18.5 Hz, 1H),
2.74 to 2.90 (m, 1H),
2.91 (dd, J = 7.2, 18.5 Hz, 1H),
3.23 (d, J = 13.2 Hz, 1H),
3.79 to 3.90 (m, 1H),
4.10 to 4.30 (m, 1H),
4.61 (s, 2H),
5.49 to 5.66 (m, 2H),
6.50 to 6.88 (m, 3H),
7.19 to 7.30 (m, 1H).
[0134]
[Example 31]
Compound 43 was obtained from compound 37 in the same manner as in Example 27. The analytical values are shown below.
[0135]
Embedded image
Figure 0003541418
1 H-NMR (CDCl Three , 300 MHz) δ
0.75 (d, J = 6.3 Hz, 3H),
0.85 (T, J = 6.3 Hz, 3H),
0.95 to 1.75 (m, 9H),
2.40 (dd, J = 9.7, 18.2 Hz, 1H),
2.73-2.93 (m, 2H),
3.18 (d, J = 12.6 Hz, 1H),
4.05 to 4.25 (m, 2H),
5.45 to 5.65 (m, 2H),
6.62 to 6.83 (m, 3H),
7.16 to 7.25 (m, 1H).
[0136]
Embedded image
Figure 0003541418
[0137]
To a solution of compound 10 (5.6 g, 22.1 mmol) in vinyl acetate (88.5 ml) was added PPL (Porcine Pancreas Lipase, 5.6 g), and the mixture was stirred at room temperature for 3 days. The reaction solution was filtered through celite, and the obtained filtrate was concentrated under reduced pressure. The residue was separated and purified by silica gel column chromatography to obtain compound 44 (2.46 g, yield 44%) and compound 45 (2.74 g, yield 42%). The analytical values are shown below. The compound 4411 H-NMR analysis value was the same as that of compound 10.
Compound 44
[Α]twenty five D= -7.13 ° (c 2.16, CHClThree)
Compound 45
1 H-NMR (CDCl Three , 300 MHz) δ
2.14 (s, 3H),
2.56 (dd, J = 2.2.18.7 Hz, 1H),
3.05 (dd, J = 6.3.18.7 Hz, 1H),
5.91 to 5.98 (m, 1H),
7.19 to 7.43 (m, 3H),
7.64 (d, J = 8.0 Hz, 1H),
7.66 (d, J = 2.2 Hz, 1H).
[0138]
Embedded image
Figure 0003541418
[0139]
At 0 ° C., sodium metal (223 mg, 9.72 mmol) was added to methanol (9.72 ml), and the mixture was stirred until all the sodium metal was dissolved. At 0 ° C., NH = C (NHTwo)Two・ HTwoCOThree(Granidine carbonate) (1.75 g, 4.72 mmol) was added and stirred for 25 minutes. The obtained solution was added to a solution of compound 45 (2.87 g, 9.72 mmol) in MeOH (9.72 ml) prepared in another flask at 0 ° C., and the mixture was stirred for 5 minutes. Glacial acetic acid (0.60 ml) was added thereto, and the mixture was stirred for 5 minutes and concentrated under reduced pressure. After water (10 ml) and ethyl acetate (10 ml) were added to the residue, the organic layer was separated. The aqueous layer was extracted with ethyl acetate (2 × 10 ml). The obtained organic layer was washed with MgSOFourAnd then filtered. The residue obtained by concentrating the filtrate under reduced pressure was purified by silica gel column chromatography to obtain compound 46 (1.49 g, yield 61%). The analysis values are shown below,11 H-NMR analysis value was the same as that of compound 10.
[Α]twenty five D= + 9.94 ° (c 1.52, CHClThree)
[0140]
[Example 34]
Compound 47 and compound 48 were obtained in the same manner as in Example 32. The analytical values are shown below. The compound 4711 H-NMR analysis was the same as that of compound 12.
[0141]
Embedded image
Figure 0003541418
Compound 48
1 H-NMR (CDCl Three , 300 MHz) δ
2.12 (s, 3H),
2.55 (dd, J = 2.2.18.8 Hz, 1H),
3.02 (dd, J = 6.4.18.8 Hz, 1H),
5.80-5.87 (m, 1H),
7.49 (d, J = 8.6 Hz, 2H),
7.60 (d, J = 8.6 Hz, 2H),
7.66 (d, J = 2.7 Hz, 1H),
13 C-NMR (CDCl Three , 75 MHz) δ
20.7, 42.3, 69.4, 123.5, 128.8, 128.9, 131.5, 144.2, 152.1, 170.2, 202.0.

Claims (4)

式[I]で表わされるフェニル置換ヒドロキシシクロペンテノン類。
Figure 0003541418
[式中、Z1は水素原子または水酸基の保護基を示し、X1は水素原子、ハロゲン原子、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基、炭素数1〜6のアルキルチオ基、ニトロ基、シアノ基またはアミノ基を示し、X2はハロゲン原子、
−Y1 h(CR12mn(CH2p2 q(CR34rs
(式中、Y1及びY2はそれぞれ酸素原子または硫黄原子を示し、Aはビニレン基、エチニレン基、またはアレンの両端の炭素原子から1個ずつ水素原子を除いてできる2価の基を示し、R1、R2、R3及びR4は水素原子、炭素数1〜4のアルキル基、または炭素数1〜4のアルコキシ基を示し、Qは水素原子、
−COOR5
(式中、R5は水素原子、炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基を示す。)で表される基、シアノ基、水酸基、
−OCOR6
(式中、R6は水素原子、炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基を示す。)で表される基、
−CONR78
(式中、R7及びR8は水素原子、炭素数1〜6のアルキル基またはフェニル基を示す。)で表される基またはフェニル基を示し、h、n、q、sは0または1を示し、m、p、rは0〜5の整数を示す。)
を示す。]
Phenyl-substituted hydroxycyclopentenone represented by the formula [I].
Figure 0003541418
[In the formula, Z 1 represents a hydrogen atom or a hydroxyl-protecting group, and X 1 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, X 2 represents an alkylthio group, a nitro group, a cyano group or an amino group;
−Y 1 h (CR 1 R 2 ) m An (CH 2 ) p Y 2 q (CR 3 R 4 ) r Q s
(Wherein, Y 1 and Y 2 each represent an oxygen atom or a sulfur atom, and A represents a vinylene group, an ethynylene group, or a divalent group formed by removing one hydrogen atom from each of carbon atoms at both ends of allene. , R 1 , R 2 , R 3 and R 4 represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, Q represents a hydrogen atom,
−COOR 5
(Wherein, R 5 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms), a cyano group, a hydroxyl group,
-OCOR 6
(Wherein, R 6 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms),
-CONR 7 R 8
(Wherein, R 7 and R 8 represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or a phenyl group) or a phenyl group, and h, n, q, and s are 0 or 1 And m, p, and r each represent an integer of 0 to 5. )
Is shown. ]
式[III]
Figure 0003541418
[式中、X1は水素原子、ハロゲン原子、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基、炭素数1〜6のアルキルチオ基、ニトロ基、シアノ基またはアミノ基を示す。X2はハロゲン原子、
−Y1 h(CR12mn(CH2p2 q(CR34rs
(式中、Y1及びY2はそれぞれ酸素原子または硫黄原子を示し、Aはビニレン基、エチニレン基、またはアレンの両端の炭素原子から1個ずつ水素原子を除いてできる2価の基を示し、R1、R2、R3及びR4は水素原子、炭素数1〜4のアルキル基、または炭素数1〜4のアルコキシ基を示し、Qは水素原子、
−COOR5
(式中、R5は水素原子、炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基を示す。)で表される基、シアノ基、水酸基、
−OCOR6
(式中、R6は水素原子、炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基を示す。)で表される基、
−CONR78
(式中、R7及びR8は水素原子、炭素数1〜6のアルキル基またはフェニル基を示す。)で表される基またはフェニル基を示し、h、n、q、sは0または1を示し、m、p、rは0〜5の整数を示す。)
を示す。]
で表されるフラン誘導体を酸触媒存在下転位反応させ、式[IV]
Figure 0003541418
[式中、X1、X2は前記に同じ。]の化合物とし、続いて酸性条件または塩基性条件下で異性化反応させ、必要に応じて水酸基を保護することを特徴とする、式[I]
Figure 0003541418
[式中、X1、X2は前記に同じ。Z1は水素原子または水酸基の保護基を示す。]
で表されるフェニル置換ヒドロキシシクロペンテノン類の製造方法。
Formula [III]
Figure 0003541418
[In the formula, X 1 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkylthio group having 1 to 6 carbon atoms, a nitro group, a cyano group or an amino group. . X 2 is a halogen atom,
−Y 1 h (CR 1 R 2 ) m An (CH 2 ) p Y 2 q (CR 3 R 4 ) r Q s
(Wherein, Y 1 and Y 2 each represent an oxygen atom or a sulfur atom, and A represents a vinylene group, an ethynylene group, or a divalent group formed by removing one hydrogen atom from each of carbon atoms at both ends of allene. , R 1 , R 2 , R 3 and R 4 represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, Q represents a hydrogen atom,
−COOR 5
(Wherein, R 5 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms), a cyano group, a hydroxyl group,
-OCOR 6
(Wherein, R 6 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms),
-CONR 7 R 8
(Wherein, R 7 and R 8 represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or a phenyl group) or a phenyl group, and h, n, q, and s are 0 or 1 And m, p, and r each represent an integer of 0 to 5. )
Is shown. ]
Is subjected to a rearrangement reaction in the presence of an acid catalyst to give a compound of the formula [IV]
Figure 0003541418
Wherein X 1 and X 2 are the same as above. A compound of the formula [I], which is then subjected to isomerization under acidic or basic conditions to protect a hydroxyl group if necessary.
Figure 0003541418
Wherein X 1 and X 2 are the same as above. Z 1 represents a hydrogen atom or a hydroxyl-protecting group. ]
A method for producing a phenyl-substituted hydroxycyclopentenone represented by the formula:
式[I]
Figure 0003541418
[式中、Z1は水素原子または水酸基の保護基を示し、X1はハロゲン原子、水酸基、保護された水酸基、チオ−ル基、保護されたチオ−ル基、アミノ基、保護されたアミノ基、または炭素数1〜6のアルキル基で置換されたアミノ基を示す。X2はハロゲン原子、
−Y1 h(CR12mn(CH2p2 q(CR34rs
(式中、Y1及びY2はそれぞれ酸素原子または硫黄原子を示し、Aはビニレン基、エチニレン基、またはアレンの両端の炭素原子から1個ずつ水素原子を除いてできる2価の基を示し、R1、R2、R3及びR4は水素原子、炭素数1〜4のアルキル基、または炭素数1〜4のアルコキシ基を示し、Qは水素原子、
−COOR5
(式中、R5は水素原子、炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基を示す。)で表される基、シアノ基、水酸基、
−OCOR6
(式中、R6は水素原子、炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基を示す。)で表される基、
−CONR78
(式中、R7及びR8は水素原子、炭素数1〜6のアルキル基またはフェニル基を示す。)で表される基またはフェニル基を示し、h、n、q、sは0または1を示し、m、p、rは0〜5の整数を示す。)
を示す。]
で表されるフェニル置換ヒドロキシシクロペンテノン類の両光学対掌体の混合物を酵素で処理することを特徴とする光学活性な式[I]のフェニル置換ヒドロキシシクロペンテノン類を得る光学分割法。
Formula [I]
Figure 0003541418
[In the formula, Z 1 represents a hydrogen atom or a hydroxyl-protecting group, and X 1 represents a halogen atom, a hydroxyl group, a protected hydroxyl group, a thiol group, a protected thiol group, an amino group, a protected amino group. And a group or an amino group substituted with an alkyl group having 1 to 6 carbon atoms. X 2 is a halogen atom,
−Y 1 h (CR 1 R 2 ) m An (CH 2 ) p Y 2 q (CR 3 R 4 ) r Q s
(Wherein, Y 1 and Y 2 each represent an oxygen atom or a sulfur atom, and A represents a vinylene group, an ethynylene group, or a divalent group formed by removing one hydrogen atom from each of carbon atoms at both ends of allene. , R 1 , R 2 , R 3 and R 4 represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, Q represents a hydrogen atom,
−COOR 5
(Wherein, R 5 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms), a cyano group, a hydroxyl group,
-OCOR 6
(Wherein, R 6 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms),
-CONR 7 R 8
(Wherein, R 7 and R 8 represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or a phenyl group) or a phenyl group, and h, n, q, and s are 0 or 1 And m, p, and r each represent an integer of 0 to 5. )
Is shown. ]
An optical resolution method for obtaining an optically active phenyl-substituted hydroxycyclopentenone of the formula [I], which comprises treating a mixture of both enantiomers of a phenyl-substituted hydroxycyclopentenone represented by the formula:
式[I]
Figure 0003541418
[式中、Z1は水素原子または水酸基の保護基を示し、X1は水素原子、ハロゲン原子、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基、炭素数1〜6のアルキルチオ基、ニトロ基、シアノ基またはアミノ基を示す。X2はハロゲン原子、
−Y1 h(CR12mn(CH2p2 q(CR34rs
(式中、Y1及びY2はそれぞれ酸素原子または硫黄原子を示し、Aはビニレン基、エチニレン基、またはアレンの両端の炭素原子から1個ずつ水素原子を除いてできる2価の基を示し、R1、R2、R3及びR4は水素原子、炭素数1〜4のアルキル基、または炭素数1〜4のアルコキシ基を示し、Qは水素原子、
−COOR5
(式中、R5は水素原子、炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基を示す。)で表される基、シアノ基、水酸基、
−OCOR6
(式中、R6は水素原子、炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基を示す。)で表される基、
−CONR78
(式中、R7及びR8は水素原子、炭素数1〜6のアルキル基またはフェニル基を示す。)で表される基またはフェニル基を示し、h、n、q、sは0または1を示し、m、p、rは0〜5の整数を示す。)
を示す。]
で表されるフェニル置換ヒドロキシシクロペンテノン類と、式[V]
M−X3 [V]
[式中、X3
−T−(CH2j−C(R9(2-k)(OZ2k−R10
(式中、TはCH2CH2、CH=CH、またはC≡Cより選ばれる基を示し、j及びkはそれぞれ独立に0、1または2の整数を示し、R9は(2−k)個の水素原子、炭素数1〜4のアルキル基または炭素数1〜4のアルコキシ基を示し、R10は炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、炭素数2〜10のアルキニル基、フェニル基、フェノキシ基、(該フェニル基及びフェノキシ基は、ハロゲン原子、トリフルオロメチル基、炭素数1〜6のアルキル基または炭素数1〜6のアルコキシ基で任意に置換されていてもよい。)または−B−D(Bは炭素数1〜4のアルキレン基を、Dはフェニル基、フェノキシ基、(該フェニル基及びフェノキシ基は、ハロゲン原子、トリフルオロメチル基、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基、フェニル基またはフェノキシ基で任意に置換されていてもよい。)または炭素数5〜7のシクロアルキル基を示す。)で表される基を示し、Z2は水素原子または水酸基の保護基を示し、ただしTがC≡Cなる基の場合水酸基の保護基を示す。MはLi、Na、K、Mg、Ca、Ti、Zr、Ni、Cu、Zn、Al、Snより選ばれる金属または該金属を含む基を示す。)
を示す。]
で表される求核試薬とを反応させることを特徴とする、
式[II]
Figure 0003541418
[式中、Z1、X1、X2、X3は前記に同じ。]で表されるフェニル置換ヒドロキシシクロペンタノン類の製造方法。
Formula [I]
Figure 0003541418
[In the formula, Z 1 represents a hydrogen atom or a hydroxyl-protecting group, and X 1 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, It represents an alkylthio group, a nitro group, a cyano group or an amino group. X 2 is a halogen atom,
−Y 1 h (CR 1 R 2 ) m An (CH 2 ) p Y 2 q (CR 3 R 4 ) r Q s
(Wherein, Y 1 and Y 2 each represent an oxygen atom or a sulfur atom, and A represents a vinylene group, an ethynylene group, or a divalent group formed by removing one hydrogen atom from each of carbon atoms at both ends of allene. , R 1 , R 2 , R 3 and R 4 represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, Q represents a hydrogen atom,
−COOR 5
(Wherein, R 5 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms), a cyano group, a hydroxyl group,
-OCOR 6
(Wherein, R 6 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms),
-CONR 7 R 8
(Wherein, R 7 and R 8 represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or a phenyl group) or a phenyl group, and h, n, q, and s are 0 or 1 And m, p, and r each represent an integer of 0 to 5. )
Is shown. ]
A phenyl-substituted hydroxycyclopentenone represented by the formula:
MX 3 [V]
[Wherein X 3 is -T- (CH 2 ) j -C (R 9 ) (2-k) (OZ 2 ) k -R 10
(Wherein T represents a group selected from CH 2 CH 2 , CHCHCH, or C≡C, j and k each independently represent an integer of 0, 1, or 2, and R 9 represents (2-k ) Hydrogen atoms, an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms, and R 10 represents an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, and 2 carbon atoms. Alkynyl group, phenyl group, phenoxy group of 10 to 10 (the phenyl group and phenoxy group are optionally substituted with a halogen atom, a trifluoromethyl group, an alkyl group having 1 to 6 carbon atoms or an alkoxy group having 1 to 6 carbon atoms) Or -BD (B is an alkylene group having 1 to 4 carbon atoms, D is a phenyl group, a phenoxy group, (the phenyl group and the phenoxy group are a halogen atom, a trifluoromethyl group, Alkyi having 1 to 6 carbon atoms Group, an alkoxy group having 1 to 6 carbon atoms, a phenyl group or phenoxy optionally may be substituted with a group.) Or a group represented by.) Showing a cycloalkyl group having a carbon number of 5 to 7, Z 2 represents a hydrogen atom or a hydroxyl-protecting group, provided that T is a group represented by C≡C, and represents a hydroxyl-protecting group, and M represents Li, Na, K, Mg, Ca, Ti, Zr, Ni, Cu, Zn , Al, Sn or a group containing the metal.)
Is shown. ]
Characterized by reacting with a nucleophile represented by
Formula [II]
Figure 0003541418
Wherein Z 1 , X 1 , X 2 and X 3 are the same as above. ] A method for producing a phenyl-substituted hydroxycyclopentanone represented by the formula:
JP05121794A 1994-02-24 1994-02-24 Phenyl-substituted hydroxycyclopentenones, method for producing the same, and method for producing phenyl-substituted hydroxycyclopentanone Expired - Fee Related JP3541418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05121794A JP3541418B2 (en) 1994-02-24 1994-02-24 Phenyl-substituted hydroxycyclopentenones, method for producing the same, and method for producing phenyl-substituted hydroxycyclopentanone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05121794A JP3541418B2 (en) 1994-02-24 1994-02-24 Phenyl-substituted hydroxycyclopentenones, method for producing the same, and method for producing phenyl-substituted hydroxycyclopentanone

Publications (2)

Publication Number Publication Date
JPH07238045A JPH07238045A (en) 1995-09-12
JP3541418B2 true JP3541418B2 (en) 2004-07-14

Family

ID=12880763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05121794A Expired - Fee Related JP3541418B2 (en) 1994-02-24 1994-02-24 Phenyl-substituted hydroxycyclopentenones, method for producing the same, and method for producing phenyl-substituted hydroxycyclopentanone

Country Status (1)

Country Link
JP (1) JP3541418B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2910366T3 (en) * 2014-12-18 2022-05-12 Corteva Agriscience Llc Compound of oxime and herbicide

Also Published As

Publication number Publication date
JPH07238045A (en) 1995-09-12

Similar Documents

Publication Publication Date Title
US8742143B2 (en) Process for the preparation of prostaglandin analogues
US4645854A (en) Process for preparing HMG-CoA reductase inhibitors with a 3,5-dihydroxypentanoate subunit
JP3541418B2 (en) Phenyl-substituted hydroxycyclopentenones, method for producing the same, and method for producing phenyl-substituted hydroxycyclopentanone
JP3541417B2 (en) Phenyl-substituted hydroxycyclopentenones, pentanones and phenyl-substituted prostaglandin I2 intermediates, and their production and optical resolution
CA1282425C (en) Process for preparing hmg-coa reductase inhibitors with a 3,5-dihydroxypentanoate subunit
US6066751A (en) Process for making epoxide intermediates
JP3719524B2 (en) Process for producing dihalogenated prostacyclins
US4767853A (en) Synthesis of 1-(allyloxycarbonyl)-methyl-3-(hydroxyethyl)-4-beta-naphthoxythiocarbonylthio-2-azetidinones and hydroxy protected analogs thereof
EP0080942B1 (en) Novel intermediates and process for preparing (s)-3-acylamino-4-substituted-2-azetidinones
JP3595025B2 (en) Vitamin D3 derivative and method for producing the same
JPH07238068A (en) Prostaglandin e1 analog
JPH025746B2 (en)
US5149835A (en) Substituted mevalonolactones, and methods for stereoselective preparation thereof and desmethyl homologues thereof
JP3403761B2 (en) 3,5-Dihydroxy-1-octen-7-ynes and method for producing the same
JP3185946B2 (en) γ, δ-unsaturated-β-amino acid derivative and method for producing the same
US4049697A (en) (DL)-13-Substituted sulfinyl-prostaglandin-like compounds and methods of making
JP2922943B2 (en) Imidazolidinone derivatives
JPH0638791A (en) Production of e type prostaglandins
JPS6131107B2 (en)
US5075438A (en) Synthesis of azetidinones
JPH1087568A (en) Production of optically active delta-hydroxy-betaketoester
JPH09241258A (en) 2-oxazolidinone derivative
JPH0725847A (en) Prostaglandin e1 analogue
JPH0645575B2 (en) 3-Methylene-2,6,7-trisubstituted bicyclo [3.3.0 octanes
JPS6377853A (en) Isocarbacyclines and production thereof

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040322

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees