JP3541258B2 - Space environment test equipment - Google Patents

Space environment test equipment Download PDF

Info

Publication number
JP3541258B2
JP3541258B2 JP00628395A JP628395A JP3541258B2 JP 3541258 B2 JP3541258 B2 JP 3541258B2 JP 00628395 A JP00628395 A JP 00628395A JP 628395 A JP628395 A JP 628395A JP 3541258 B2 JP3541258 B2 JP 3541258B2
Authority
JP
Japan
Prior art keywords
gas
shroud
path
refrigerant
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00628395A
Other languages
Japanese (ja)
Other versions
JPH08192800A (en
Inventor
郁夫 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP00628395A priority Critical patent/JP3541258B2/en
Publication of JPH08192800A publication Critical patent/JPH08192800A/en
Application granted granted Critical
Publication of JP3541258B2 publication Critical patent/JP3541258B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G7/00Simulating cosmonautic conditions, e.g. for conditioning crews
    • B64G2007/005Space simulation vacuum chambers

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、宇宙環境試験装置に関し、詳しくは、宇宙環境と略同等の高真空、極低温の環境を形成し、人工衛星等の宇宙空間で使用される各種機器の試験を行う宇宙環境試験装置であって、特に、その冷媒流路の構成に関するものである。
【0002】
【従来の技術】
図5に示すように、宇宙環境試験装置は、高真空に排気された真空容器1の内部に、宇宙の冷暗黒を模疑するため、内面は黒色に塗装され、液体窒素等の冷媒で、温度100K以下に冷却されるシュラウドと呼ばれる熱吸収壁(以下、シュラウドという)2を設けている。
【0003】
シュラウド2を液体窒素等の冷媒で冷却する場合、冷媒供給経路3から供給された冷媒は、シュラウド2を冷却してガス化し、低温ガスとして低温冷媒ガス放出経路4を通り、放液溜5を経由して低温のまま大気中に放出される。
【0004】
また、シュラウド2を常温に戻す時には、まず、シュラウド2内部の冷媒液を排出する必要があるが、排出された冷媒液は、冷媒液放出経路6を通り、放液溜5に一時的に溜められ、該放液溜5で大気温により自然蒸発して低温のまま大気中に放出される。
【0005】
さらに、シュラウド2を常温に戻すための加温は、送ガス機7で昇圧し、ヒーター8により加温した窒素ガス等の加温ガスを、シュラウド加温経路9を通してシュラウド2内に流し、ガス戻り経路10を通して循環させることによって行われる。
【0006】
【発明が解決しようとする課題】
シュラウド冷却時又は加温時に放出される低温冷媒ガス又は冷媒液の蒸発ガスは、低温のため、放出された周囲に濃霧を発生させ、視界を遮り、通路等が近い場合には作業安全上の考慮が必要であり、また、非常に低温であるため、周囲にある物品を冷却し、場合によっては凍結破損に至ることがあり、低温放出ガスの放出位置は、これらの危険のない所に離して配置するか、あるいは、常温付近まで加温する必要があった。しかし、前者の場合は、レイアウト上の制約が大きくなり、後者の場合は、別途に大きな加熱源が必要となるため、設備容量及びコストを上昇させていた。
【0007】
そこで本発明は、低温放出ガス加温専用の設備を付加することなく、低温の放出冷媒ガスを常温まで加温して放出することができ、低温放出ガスによる濃霧の発生を防止し、レイアウト上の制約を減ずるとともに、設備コストを低減した宇宙環境試験装置を提供することを目的としている。
【0008】
【課題を解決するための手段】
上記した目的を達成するため、本発明の宇宙環境試験装置は、真空容器内部に、該真空容器内を極低温に保持するシュラウドを備えた宇宙環境試験装置において、前記シュラウド冷却用冷媒の出口経路に、シュラウド冷却時の放出ガスを加温する加温装置を設けるとともに、その入口側にシュラウド冷却用冷媒液放出時の放出液の蒸発ガスを導入する経路を接続し、その出口側にシュラウド加温時の加温ガスをシュラウドに導入する経路を接続したことを特徴とするものであり、前記加温装置が、送ガス機及びヒーターを備えていることを特徴としている。
【0009】
すなわち、シュラウドの冷媒出口経路に、送ガス機及びヒーターからなる加温装置を設けるとともに、該加温装置の出口経路を分岐して一方を大気へ開放する経路とし、他方を前記シュラウドへの冷媒供給経路に合流させてシュラウドの加温経路を形成し、かつ、冷媒供給経路を分岐して、あるいは前記シュラウドの冷媒流路の下端部に冷媒液放出経路を設け、該冷媒液放出経路は放液溜を介して前記加温装置の前段で前記シュラウドの冷媒出口経路と合流するように構成したものである。
【0010】
また、前記加温装置は、送ガス機及びヒーターからなり、この順序又はヒーター、送ガス機の順序であることを含むものである。さらにヒーターのみの場合、さらにまた送ガス機が前記シュラウドの加温経路に配設されていることも含むものである。
【0011】
【作 用】
上記のごとく、加温装置をシュラウド用冷媒ガス出口経路に設け、シュラウド冷却時の放出ガス、加温時の被加温ガス及びシュラウド内冷媒液放出時の放出液の蒸発ガスが、いずれも前記加温装置を経るようにしたので、低温冷媒ガスを常温まで昇温して放出することができる。
【0012】
【実施例】
以下、本発明を、図面に示す一実施例に基づいてさらに詳細に説明する。
図1は、本発明の宇宙環境試験装置における冷媒流路の一実施例を示す概略系統図である。この宇宙環境試験装置は、真空容器11と、該真空容器11の内周に設けられたシュラウド12と、該シュラウド12に冷媒を供給する冷媒供給経路13と、シュラウド12の上部から冷媒ガスを導出する冷媒ガス出口経路14と、該冷媒ガス出口経路14に設けられた加温装置15と、該加温装置15から導出したガスを大気中に放出する大気放出経路16と、該大気放出経路16から分岐して前記冷媒供給経路13に合流するシュラウド加温経路17と、前記シュラウド12の下部から冷媒液を抜き出す冷媒液放出経路18と、該冷媒液放出経路18に抜き出した冷媒液を一時的に貯留する放液溜19と、該放液溜19で蒸発した冷媒ガスを前記加温装置15の上流で冷媒ガス出口経路14に合流させる蒸発ガス放出経路20と、これらの各経路に設けられて冷媒の導入・導出を制御するための弁13a,14a,16a,17a,18a,20aとにより構成されている。
【0013】
前記加温装置15は、低温で使用可能な送ガス機21と、電気,蒸気等を熱源として低温冷媒ガスを昇温するヒーター22とからなるもので、冷媒ガス出口経路14あるいは蒸発ガス放出経路20を経て導入される冷媒ガスをヒーター22で常温付近に加熱するように構成されており、また、送ガス機21により冷却又は加温を促進する。
【0014】
図2は、シュラウド冷却時の冷媒の流れを実線部分で示すもので、弁13a,14a,16aが開、弁17a,18a,20aが閉である。冷媒供給経路13から供給される冷媒、例えば液体窒素は、シュラウド12の冷媒流路12a,12aに導入され、シュラウド12を冷却する。シュラウド12を冷却することにより蒸発した冷媒ガス、即ち低温窒素ガスは、冷媒ガス出口経路14から弁14aを介して加温装置15に導入され、ヒーター22により略大気温度まで昇温された後、大気放出経路16から弁16aを介して大気に放出される。なお、冷媒供給経路13が長い場合等は、冷却の初期において弁18a,20aを一時的に開とする場合がある。
【0015】
図3は、シュラウド12内の冷媒液、例えば液体窒素を放出する時の冷媒液及びその蒸発ガスの流れを実線部分で示すもので、弁16a,18a,20aが開、弁13a,14a,17aが閉である。シュラウド12の冷媒流路12a内の液体窒素は,冷媒液放出経路18から弁18aを介して放液溜19に一時的に溜められ、大気温度で自然蒸発した低温窒素ガスは、蒸発ガス放出経路20から弁20aを介して冷媒ガス出口経路14に合流し、加温装置15に導入されて送ガス機21を経てヒーター22で略大気温度まで昇温された後、図2に示す場合と同様に、弁16aを介して大気放出経路16から大気中に放出される。
【0016】
図4は、シュラウド加温時の加温ガスの流れを実線部分で示すもので、弁14a,17aは開、弁13a,16a,18a,20aは閉である。シュラウド12の冷媒流路12aを通り,該シュラウド12を加温して導出される窒素ガスあるいは乾燥空気等の加温ガスは、冷媒ガス出口経路14から弁14aを介して加温装置15に導入され、送ガス機21で昇圧し、ヒーター22で昇温して導出後、大気放出経路16から分岐したシュラウド加温経路17を通り、弁17aを介して前記冷媒供給経路13に流入し、該冷媒供給経路13を流れてシュラウド12の下端の入口から前記冷媒流路12aに循環流入してシュラウド12を加温する。なお、このとき、必要に応じて系外からの加温ガス導入管(図示せず)をシュラウド加温経路17に接続してもよい。
【0017】
本実施例は、宇宙環境試験装置における冷媒側の基本的な系統を示すものであり、シュラウドの形状や分割数及び配管系の接続位置や個数、弁の取付け位置、送ガス機の要否及び送ガス機と加温器の相互位置関係等は適宜決定される設計事項であり、これに限定されるものではない。
【0018】
【発明の効果】
以上説明したように、本発明の宇宙環境試験装置は、シュラウドの冷媒ガス出口経路に加温装置を設け、加温装置導出後の経路を分岐し一方を大気放出経路とし、他方をシュラウドの加温ができるように冷媒供給経路に合流させ、かつ、シュラウド内冷媒液を抜き出して放液溜経由で導出する蒸発ガス放出経路を、前記シュラウド出口経路に設けた加温装置の前段に合流させるように構成したので、シュラウド冷却時の放出ガス、加温時の被加温ガス及びシュラウド内の冷媒液放出時の蒸発ガスが、いずれも前記加温装置を経ることになり、危険性のある放出低温冷媒ガスを常温まで昇温した後放出することができる。
【0019】
したがって、冷媒ガス放出口における濃霧の発生を防止し、作業上の安全性向上と低温による物品の破損の惧れを無くすることができ、レイアウト上の制約を減ずるとともに設備コストを低減することができる。
【図面の簡単な説明】
【図1】本発明の一実施例を示す宇宙環境試験装置の冷媒流路の概略系統図である。
【図2】シュラウド冷却時の冷媒の流れを示す系統図である。
【図3】シュラウド内冷媒液放出時の冷媒液及びその蒸発ガスの流れを示す系統図である。
【図4】シュラウド加温時の加温ガスの流れを示す系統図である。
【図5】従来の宇宙環境試験装置の冷媒流路の一例を示す概略系統図である。
【符号の説明】
11…真空容器、12…シュラウド、13…冷媒供給経路、14…冷媒ガス出口経路、15…加温装置、16…大気放出経路、17…シュラウド加温経路、18…冷媒液放出経路、19…放液溜、20…蒸発ガス放出経路、21…送ガス機、22…ヒーター
[0001]
[Industrial applications]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a space environment test apparatus, and more particularly, to a space environment test apparatus that forms various environments used in outer space such as artificial satellites by forming a high vacuum and cryogenic environment substantially equivalent to the space environment. In particular, the present invention relates to the configuration of the refrigerant flow path.
[0002]
[Prior art]
As shown in FIG. 5, the space environment test apparatus is configured such that the inside of the vacuum chamber 1 evacuated to a high vacuum is painted black to simulate the darkness and darkness of the universe. A heat absorbing wall (hereinafter, referred to as a shroud) 2 called a shroud that is cooled to a temperature of 100K or less is provided.
[0003]
When the shroud 2 is cooled with a refrigerant such as liquid nitrogen, the refrigerant supplied from the refrigerant supply path 3 cools the shroud 2 and gasifies it, passes through the low-temperature refrigerant gas discharge path 4 as low-temperature gas, and passes through the discharge reservoir 5. It is released into the atmosphere at low temperatures via the air.
[0004]
When returning the shroud 2 to normal temperature, it is necessary to first discharge the refrigerant liquid inside the shroud 2. The discharged refrigerant liquid passes through the refrigerant liquid discharge path 6 and is temporarily stored in the liquid discharge reservoir 5. Then, the liquid is spontaneously evaporated by the ambient temperature in the liquid discharge reservoir 5 and is discharged into the atmosphere at a low temperature.
[0005]
Further, the heating for returning the shroud 2 to the normal temperature is performed by raising the pressure in the gas feeder 7 and flowing a heating gas such as nitrogen gas heated by the heater 8 into the shroud 2 through the shroud heating path 9. This is done by circulating through the return path 10.
[0006]
[Problems to be solved by the invention]
Low-temperature refrigerant gas or refrigerant liquid evaporating gas released during shroud cooling or heating generates low-temperature fog around the discharged gas, obstructing the field of view, and impeding work safety when passages are close. Consideration must also be given and the very low temperatures can cool the surrounding items and in some cases lead to freezing damage. Or it was necessary to heat it to around normal temperature. However, in the case of the former, layout restrictions are increased, and in the case of the latter, a separate large heating source is required, which increases equipment capacity and cost.
[0007]
Therefore, the present invention is capable of heating a low-temperature released refrigerant gas to room temperature and releasing it without adding equipment dedicated to heating the low-temperature released gas, preventing the generation of dense fog due to the low-temperature released gas, and improving the layout. It is an object of the present invention to provide a space environment test apparatus in which the restrictions on the environment are reduced and the equipment cost is reduced.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a space environment test apparatus according to the present invention is a space environment test apparatus including a shroud for keeping the inside of the vacuum vessel at a very low temperature, wherein an outlet path of the shroud cooling refrigerant is provided. In addition, a heating device for heating the gas released during shroud cooling is provided, and a path for introducing the evaporative gas of the discharged liquid when the refrigerant liquid for shroud cooling is discharged is connected to the inlet side, and the shroud heater is connected to the outlet side. A path for introducing a heating gas at the time of warming into the shroud is connected, and the heating device is provided with a gas feeder and a heater.
[0009]
That is, a heating device including a gas feeder and a heater is provided in a refrigerant outlet path of the shroud, and an outlet path of the heating apparatus is branched to form a path for opening one to the atmosphere, and the other is a refrigerant for the shroud. The shroud is joined to the supply path to form a heating path for the shroud, and the refrigerant supply path is branched or a refrigerant liquid discharge path is provided at the lower end of the refrigerant flow path of the shroud. It is configured such that it joins with a refrigerant outlet path of the shroud at a preceding stage of the heating device via a liquid reservoir.
[0010]
Further, the heating device includes a gas feeder and a heater, and includes the order or the order of the heater and the gas feeder. Further, in the case of using only a heater, it also includes that a gas feeder is disposed in a heating path of the shroud.
[0011]
[Operation]
As described above, the heating device is provided in the shroud refrigerant gas outlet path, and the released gas at the time of shroud cooling, the gas to be heated at the time of heating, and the evaporating gas of the discharged liquid at the time of discharging the refrigerant liquid in the shroud, Since the heat is passed through the heating device, the low-temperature refrigerant gas can be discharged to the normal temperature by raising the temperature to normal temperature.
[0012]
【Example】
Hereinafter, the present invention will be described in more detail based on one embodiment shown in the drawings.
FIG. 1 is a schematic system diagram showing one embodiment of a refrigerant flow channel in the space environment test apparatus of the present invention. The space environment test apparatus includes a vacuum vessel 11, a shroud 12 provided on the inner periphery of the vacuum vessel 11, a coolant supply path 13 for supplying a coolant to the shroud 12, and a coolant gas derived from an upper portion of the shroud 12. Refrigerant gas outlet path 14, a heating device 15 provided in the refrigerant gas outlet path 14, an atmosphere release path 16 for releasing gas derived from the heating apparatus 15 into the atmosphere, and an atmosphere release path 16. A shroud heating path 17 that branches off from the refrigerant supply path 13 and joins the refrigerant supply path 13, a refrigerant liquid discharge path 18 that draws refrigerant liquid from a lower part of the shroud 12, and a refrigerant liquid that is drawn into the refrigerant liquid discharge path 18 is temporarily A effluent reservoir 19 stored in the effluent reservoir 19, and an evaporative gas discharge passage 20 for joining the refrigerant gas evaporated in the effluent reservoir 19 to the refrigerant gas outlet passage 14 upstream of the heating device 15. Valve 13a to be provided in each path to control the introduction and derivation of the coolant, 14a, 16a, 17a, 18a, is constituted by a 20a.
[0013]
The heating device 15 includes a gas feeder 21 that can be used at a low temperature, and a heater 22 that raises the temperature of a low-temperature refrigerant gas by using electricity, steam, or the like as a heat source. The refrigerant gas introduced via 20 is configured to be heated to around normal temperature by a heater 22, and cooling or heating is promoted by a gas feeder 21.
[0014]
FIG. 2 shows the flow of the refrigerant during the shroud cooling by solid lines, in which the valves 13a, 14a, 16a are open and the valves 17a, 18a, 20a are closed. Refrigerant, for example, liquid nitrogen, supplied from the refrigerant supply path 13 is introduced into the refrigerant channels 12 a of the shroud 12 and cools the shroud 12. The refrigerant gas evaporated by cooling the shroud 12, that is, the low-temperature nitrogen gas is introduced into the heating device 15 from the refrigerant gas outlet path 14 via the valve 14a, and after the temperature is raised to substantially the atmospheric temperature by the heater 22, The air is released from the atmosphere release path 16 to the atmosphere via the valve 16a. When the coolant supply path 13 is long, the valves 18a and 20a may be temporarily opened at the beginning of cooling.
[0015]
FIG. 3 shows the flow of the refrigerant liquid in the shroud 12, for example, the refrigerant liquid when discharging the liquid nitrogen, and the flow of the vaporized gas by solid lines. Is closed. Liquid nitrogen in the refrigerant flow path 12a of the shroud 12 is temporarily stored in a liquid discharge reservoir 19 from a refrigerant liquid discharge path 18 via a valve 18a. After joining from 20 to the refrigerant gas outlet path 14 via the valve 20a, being introduced into the heating device 15, passing through the gas feeder 21 and being heated to substantially the atmospheric temperature by the heater 22, the same as in the case shown in FIG. At the same time, the air is discharged into the atmosphere from the air discharge path 16 via the valve 16a.
[0016]
FIG. 4 shows the flow of the heating gas during the heating of the shroud by a solid line, in which the valves 14a and 17a are open and the valves 13a, 16a, 18a and 20a are closed. A heating gas, such as nitrogen gas or dry air, which passes through the refrigerant flow path 12a of the shroud 12 and is heated by heating the shroud 12, is introduced into the heating device 15 from the refrigerant gas outlet path 14 via the valve 14a. After the pressure is increased by the gas feeder 21, the temperature is increased by the heater 22, and the temperature is derived, the gas flows through the shroud heating path 17 branched from the atmosphere release path 16, flows into the refrigerant supply path 13 via the valve 17a, and After flowing through the coolant supply path 13, the shroud 12 is heated by circulating from the inlet at the lower end of the shroud 12 into the coolant channel 12 a. At this time, a heating gas introduction pipe (not shown) from outside the system may be connected to the shroud heating path 17 if necessary.
[0017]
The present embodiment shows a basic system on the refrigerant side in the space environment test apparatus, and includes the shape and number of divisions of the shroud, the connection position and number of the piping system, the mounting position of the valve, the necessity of the gas feeder, and The mutual positional relationship between the gas feeder and the heater is a design matter determined as appropriate, and is not limited to this.
[0018]
【The invention's effect】
As described above, in the space environment test apparatus of the present invention, a heating device is provided in the refrigerant gas outlet path of the shroud, the path after the heating apparatus is led out is branched, one of the paths is set to the atmosphere release path, and the other is set to the shroud heating path. The evaporative gas discharge path, which joins the refrigerant supply path so as to generate the temperature and draws out the refrigerant liquid in the shroud and passes through the liquid discharge reservoir, merges with the pre-heating device provided in the shroud outlet path. Therefore, all of the gas released during the cooling of the shroud, the gas to be heated at the time of heating, and the evaporative gas at the time of discharging the refrigerant liquid in the shroud pass through the heating device, thereby causing dangerous discharge. The low-temperature refrigerant gas can be released after the temperature is raised to room temperature.
[0019]
Accordingly, it is possible to prevent the occurrence of dense fog at the refrigerant gas discharge port, to improve the operational safety and eliminate the risk of damage to the articles due to low temperatures, to reduce layout restrictions and reduce equipment costs. it can.
[Brief description of the drawings]
FIG. 1 is a schematic system diagram of a refrigerant flow path of a space environment test apparatus showing one embodiment of the present invention.
FIG. 2 is a system diagram showing a flow of a refrigerant during shroud cooling.
FIG. 3 is a system diagram showing a flow of a refrigerant liquid and an evaporating gas when the refrigerant liquid in a shroud is discharged.
FIG. 4 is a system diagram showing a flow of a heating gas when the shroud is heated.
FIG. 5 is a schematic system diagram showing an example of a refrigerant flow path of a conventional space environment test apparatus.
[Explanation of symbols]
11 vacuum chamber, 12 shroud, 13 refrigerant supply path, 14 refrigerant gas outlet path, 15 heating device, 16 air release path, 17 shroud heating path, 18 refrigerant liquid discharge path, 19 ... Liquid discharge reservoir, 20: evaporative gas release path, 21: gas feeder, 22: heater

Claims (2)

真空容器内部に、該真空容器内を極低温に保持する熱吸収壁を備えた宇宙環境試験装置において、前記熱吸収壁冷却用冷媒の出口経路に、熱吸収壁冷却時の放出ガスを加温する加温装置を設けるとともに、その入口側に熱吸収壁冷却用冷媒液放出時の放出液の蒸発ガスを導入する経路を接続し、その出口側に熱吸収壁加温時の加温ガスを熱吸収壁に導入する経路を接続したことを特徴とする宇宙環境試験装置。In a space environment test apparatus provided with a heat absorbing wall for keeping the inside of the vacuum vessel at a very low temperature inside a vacuum vessel, a discharge gas at the time of cooling the heat absorbing wall is heated in an outlet path of the coolant for cooling the heat absorbing wall. In addition to the heating device, a path for introducing the evaporating gas of the discharged liquid at the time of discharging the cooling liquid for cooling the heat absorbing wall is connected to the inlet side, and the heated gas at the time of heating the heat absorbing wall is connected to the outlet side. A space environment test apparatus, wherein a path for introducing a heat absorbing wall is connected. 前記加温装置は、送ガス機及びヒーターを備えていることを特徴とする請求項1記載の宇宙環境試験装置。The space environment test apparatus according to claim 1, wherein the heating apparatus includes a gas feeder and a heater.
JP00628395A 1995-01-19 1995-01-19 Space environment test equipment Expired - Fee Related JP3541258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00628395A JP3541258B2 (en) 1995-01-19 1995-01-19 Space environment test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00628395A JP3541258B2 (en) 1995-01-19 1995-01-19 Space environment test equipment

Publications (2)

Publication Number Publication Date
JPH08192800A JPH08192800A (en) 1996-07-30
JP3541258B2 true JP3541258B2 (en) 2004-07-07

Family

ID=11634074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00628395A Expired - Fee Related JP3541258B2 (en) 1995-01-19 1995-01-19 Space environment test equipment

Country Status (1)

Country Link
JP (1) JP3541258B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200025577A (en) * 2018-08-31 2020-03-10 한국항공우주연구원 Preventing corrosion apparatus for cooling channel of blower for satellite thermal vacuum test chamber and corrosion preventing method using the same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101403066B1 (en) * 2012-07-25 2014-06-02 한국항공우주연구원 Cryogenic thermal environment test device using direct injection of liquid nitrogen
CN102818978A (en) * 2012-08-13 2012-12-12 北京合丰天成科技有限公司 Satellite travelling-wave tube thermovacuum testing system
CN104210678A (en) * 2014-09-17 2014-12-17 九江精密测试技术研究所 Two-dimensional turntable system under vacuum temperature change environment
CN104503505B (en) * 2014-12-02 2017-08-04 兰州华宇航天技术应用有限责任公司 A kind of back-heating type gas closed-loop refrigeration heats thermoregulating system
CN105675323B (en) * 2016-01-15 2018-04-10 北京空间飞行器总体设计部 A kind of ground test method of satellite structure heat endurance
CN105667843B (en) * 2016-04-15 2017-11-03 哈尔滨工业大学 Earth circular current Effect space plasma ground simulator
CN106184831B (en) * 2016-06-29 2018-04-13 上海微小卫星工程中心 Vacuum thermal test device for high heat flux density satellite
KR20180052276A (en) * 2016-11-10 2018-05-18 한국항공우주연구원 Closed Loop Thermal Control System Having Phase Separation Apparatus
JP6568889B2 (en) * 2017-03-22 2019-08-28 大陽日酸株式会社 Temperature control method for space environment test apparatus and space environment test apparatus
CN109855893A (en) * 2018-12-20 2019-06-07 上海微小卫星工程中心 A kind of spacecraft thermal test tooling
CN110758781B (en) * 2019-11-12 2021-05-11 上海卫星装备研究所 Thermal vacuum equipment with condensable volatile pollutant absorption function and use method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200025577A (en) * 2018-08-31 2020-03-10 한국항공우주연구원 Preventing corrosion apparatus for cooling channel of blower for satellite thermal vacuum test chamber and corrosion preventing method using the same
KR102115432B1 (en) * 2018-08-31 2020-05-26 한국항공우주연구원 Corrosion preventing method using preventing corrosion apparatus for cooling channel of blower for satellite thermal vacuum test chamber

Also Published As

Publication number Publication date
JPH08192800A (en) 1996-07-30

Similar Documents

Publication Publication Date Title
JP3541258B2 (en) Space environment test equipment
CN201896679U (en) Exhaust gas recirculation component
JP2015534260A (en) Cooling equipment for parts placed inside the switch cabinet
KR950014798A (en) Low temperature heat exchange system and freeze dryer
JP2015090334A (en) Wind tunnel test method and wind tunnel test device used therefor
JP2009074549A (en) Cooling circuit for enhancing turbine performance
KR920005255A (en) Vacuum processing equipment
US20030141039A1 (en) Apparatus for cooling electronics
JPH07208115A (en) Method and equipment for operating gas turbine by combined cycle of simple cycle and steam turbine
US5271454A (en) Method and apparatus for removing heat generated in a spacecraft
CN106091473B (en) A kind of big warm area refrigerating plant of satellite normal pressure heat test
US6637215B1 (en) Aircraft ground support air conditioning unit with heat exchanger bypass
KR102657255B1 (en) Heat pump system for vehicle
JP2009106850A (en) Compressed air dehumidifier
US3286765A (en) Method and apparatus for airconditioning a vehicle
JP2006046811A (en) Cooling device, and automatic vending machine
JPH0296633A (en) Environment apparatus
US11927279B2 (en) Device for cooling heat-sensitive control members of a pneumatic or electropneumatic valve, and valve equipped with such a cooling device
JP2782272B2 (en) Thermal control system for space shuttles Evaporator for exhaust heat
JPS58124009A (en) Main steam valve device
JPH09250706A (en) Heating-cooling device
JPS6028879Y2 (en) vacuum insulated container
JP4245524B2 (en) Windless cooling system
JP2006038385A (en) Cooling device
JPH09250707A (en) Heating-cooling device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees