JP3541168B2 - Core with coating layer - Google Patents

Core with coating layer Download PDF

Info

Publication number
JP3541168B2
JP3541168B2 JP2000244978A JP2000244978A JP3541168B2 JP 3541168 B2 JP3541168 B2 JP 3541168B2 JP 2000244978 A JP2000244978 A JP 2000244978A JP 2000244978 A JP2000244978 A JP 2000244978A JP 3541168 B2 JP3541168 B2 JP 3541168B2
Authority
JP
Japan
Prior art keywords
core
coating layer
coating
layer
core substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000244978A
Other languages
Japanese (ja)
Other versions
JP2002059244A (en
Inventor
雅文 西田
憲広 天野
裕二 岡田
雅則 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2000244978A priority Critical patent/JP3541168B2/en
Publication of JP2002059244A publication Critical patent/JP2002059244A/en
Application granted granted Critical
Publication of JP3541168B2 publication Critical patent/JP3541168B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Mold Materials And Core Materials (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ダイカスト等の高圧鋳造において好適に用いられる塗型層付中子に関する。
【0002】
【従来の技術】
ダイカスト等の高圧鋳造においては、中子への溶湯のめざしを防止するために、砂からなる中子基体の表面に塗型層を設けた塗型層付中子を用いることが知られている。
【0003】
【発明が解決しようとする課題】
従来、中子基体用の砂としては、一般に平均粒子径250〜270μm程度のものが用いられている。そして、この中子基体の表面に形成される塗型層を形成するにあたっては、中子基体を構成する砂粒子の隙間から中子基体の深部まで塗型粒子が充填されることを防ぐために、まず比較的粗い粒子からなる塗型下層を形成し、次いでこの塗型下層の表面に微細な粒子からなる塗型上層を形成することが行われている。
しかし、このように複数の層からなる塗型層は、製造のために多数の工程を要するうえ、塗型層が厚くなることから鋳造時の加圧による変形量が大きくなり、鋳造物の寸法精度が低下するという問題があった。
【0004】
また、特開平7−100585号公報には、図5に示すように、粒径1〜10μmの耐火物粒子911と粒径0.1〜1μmの耐火物微粒子912とを含有し、一回の塗布・乾燥工程により形成可能な塗型層(表面層)91を備えた崩壊性中子9が開示されている。
しかしこの崩壊性中子9によると、溶湯3の中子基体92への侵入は防止できても、塗型層91への侵入までは防止できず、細かなめざし3aが生じる。また、耐火物粒子911と耐火物微粒子912とが均一に混合されていない場合には、図6に示すように、その箇所から中子基体92に溶湯3が侵入して大きなめざし3aが発生するおそれもある。
【0005】
本発明の目的は、一回の塗布・乾燥工程により形成可能であって高圧鋳造に用いられた場合にも溶湯の侵入が防止された塗型層を備え、寸法精度のよい鋳造物を与える塗型層付中子を提供することにある。
【0006】
【課題を解決するための手段】
上記課題を解決するために、本発明の塗型層付中子は、平均粒子径20〜300μmの砂からなる中子基体と、上記中子基体の表面に形成され平均粒子径0.1〜0.5μmの耐火物粒子からなる塗型層とを備え、上記塗型層は上記中子基体の表面から50〜200μmの深さまで浸透しており、上記塗型層のうち中子への浸透部分を除いた厚さは50〜300μmであり、かつ該厚さは上記中子基体の表面からの浸透深さよりも大きいことを特徴とする。
【0007】
上記塗型層は上記中子基体の表面に塗型スラリーを塗布して形成され、該塗型スラリーは上記耐火物粒子5〜8重量部に対して水2〜5重量部を含有し、常温における粘度が3700〜4000cpsであることが好ましい。
【0008】
以下、本発明を詳しく説明する。
本発明に用いられる「中子基体」は、砂と通常は有機バインダとからなる。有機バインダとしては、ビニル系、セルロース系、フェノール系等の従来公知の樹脂を使用することができる。中子基体を構成する砂の平均粒子径は20〜300μmであり、好ましくは100〜200μm、より好ましくは125〜175μmである。砂の平均粒子径が300μmを超えると、塗型スラリーが中子基体の深部にまで浸透するため、塗型層の厚さや浸透性を制御することが困難となる。一方、砂の平均粒子径が20μm未満であると中子の崩壊性が低下する。
【0009】
塗型層を構成する「耐火物粒子」は、アルミナ、ジルコン等の比熱の大きな材質からなることが好ましく、使用する耐火物粒子全体の90%以上(より好ましくは95%以上)がアルミナ粒子であることが好ましい。この耐火物粒子の平均粒子径は0.1〜0.5μmであり、0.2〜0.4μmであることが好ましい。耐火物粒子の平均粒子径が0.5μmを超えると、溶湯の塗型層への浸透を十分に防止することができない。一方、耐火物粒子の平均粒子径が0.1μm未満であると、塗型スラリーが中子基体の深部にまで浸透するため、塗型層の厚さや浸透性を制御することが困難となる。また、平均粒子径0.1μm未満の耐火物粒子は入手も困難である。
【0010】
この「塗型層」は、図1に示すように、中子基体の表面から50〜200μm(より好ましくは50〜100μm)の深さまで浸透されている。浸透深さが小さすぎると、鋳造時の圧力により中子基体を構成する砂粒子の間から塗型層が中子基体内に陥落し、塗型層が破損する恐れがある。一方、浸透深さが大きすぎると、塗型層を形成するために多くの耐火物粒子を要し、また中子の崩壊性が低下する。
【0011】
塗型層全体の厚さ(中子への浸透部分を含む)は、60〜500μmであることが好ましく、より好ましくは75〜300μm、さらに好ましくは100〜250μmである。塗型層が厚すぎると、溶湯の圧力による塗型層付中子の変形量が大きくなるため鋳造物の寸法精度が低下する。また、中子基体の表面に塗布された塗型スラリーを加熱乾燥させる際に塗型層にひび割れが発生しやすく、このひび割れから中子基体の内部へと溶湯が浸透する恐れがある。一方、塗型層が薄すぎると、塗型層の強度が不足して溶湯の侵入を防止できない場合がある。
また、塗型層のうち中子への浸透部分を除いた厚さは、50〜300μmであ、より好ましくは50〜250μm、さらに好ましくは75〜200μmである。更に、該厚さは上記中子基体の表面からの浸透深さよりも大きい。
なお、塗型層全体の厚さ、および中子基体に浸透した塗型層の厚さは、例えば塗型層形成後の中子断面を観察することにより測定することができる。
【0012】
中子基体の表面に塗型層を形成する方法は特に限定されないが、通常はこの中子基体の表面に塗型スラリーを塗布する方法によることが好ましい。この塗型スラリーは通常、上記耐火物粒子と有機バインダとを溶媒(好ましくは水)に分散・溶解させることにより調整される。有機バインダとしては、ビニル系、セルロース系、フェノール系等の従来公知の樹脂を使用することができる。塗型スラリーの塗布方法は特に限定されず、例えば塗型スラリー中に中子基体を浸すディッピング法等を好適に用いることができる。上述した好ましい厚さの塗型層をディッピング法により形成するためには、塗型スラリーを耐火物粒子5〜8重量部に対して水2〜5重量部(より好ましくは耐火物粒子6〜7.5重量部に対して水2.5〜4重量部)を含有する組成とし、この塗型スラリーの常温における粘度を3700〜4000cps(3.7〜4.0Pa・s)とすることが好ましい。塗型スラリーの粘度は、3750〜3850cps(3.75〜3.85Pa・s)とすることがさらに好ましく、最も好ましい粘度は3800cps(3.8Pa・s)である。
【0013】
本発明の塗型層付中子は、鋳造圧力20MPa以上(より好ましくは50MPa以上、上限は特に限定されないが通常は200MPa以下)の高圧鋳造に用いられる中子として好適である。
【0014】
【発明の実施の形態】
以下、実験例により本発明を更に具体的に説明する。
(実験例1)
図1に示す塗型層付中子1を作製し、その性能を評価した。
(1)中子基体の作製
中子基体12を構成する砂粒子121としては、平均粒子径150μmの球状ムライト質粒子を用いた。この砂と、砂に対して1.5重量%のフェノール樹脂(有機バインダ)122と、フェノール樹脂に対して15重量%のヘキサメチレンテトラミン(30重量%濃度の水溶液として添加)と、砂に対して0.1重量%のステアリン酸カルシウムとを混合してシェルモールド用砂を調整し、これを250℃で2分間加熱焼成して厚さ10mmの中子基体12を作製した。
【0015】
(2)塗型スラリーの調整および塗型層の形成
塗型層11を構成する耐火物粒子111としては、平均粒子径0.5μmのアルミナ粒子を用いた。このアルミナ粒子10重量部、バインダとしてのセルロース0.03重量部(アルミナ粒子に対して0.3重量%)、および水4重量部を混合して、アルミナ粒子濃度71重量%、常温における粘度3700〜4000cpsの塗型スラリーを調整した。
この塗型スラリー中に、上記(1)の工程で作製した中子基体12を2秒間浸した後、130℃で20分間乾燥させて厚さ325μmの塗型層11を形成し、塗型層付中子1を得た。なお、この塗型層11の厚さのうち175μmは中子基材12に浸透している。
【0016】
(3)ダイカスト試験
得られた塗型層付中子1を用いて、以下のダイカスト条件によりダイカスト鋳造試験を行った。
〔ダイカスト条件〕
使用装置:800T横型ダイカストマシン
溶湯組成:ADC10
溶湯温度:650℃
鋳造圧力:60MPa
射出速度:0.5m/秒
型温度 :150℃
装置内の溶湯を冷却して凝固させ、型を取り外した後、エアハンマーを用いて鋳造物および塗型層付中子に振動を与え、この振動により塗型層付中子を崩壊させて鋳造物を得た。得られた鋳造物には塗型層付中子が残っていなかった。
得られた鋳造物の表面を400倍の光学顕微鏡により観察したところ、図2に示すように、めざし層は観察されなかった。すなわち、図1に示すように、鋳造時において溶湯3の塗型層11への侵入が防止されていた。
【0017】
(実験例2)
耐火物粒子として平均粒子径の異なる種々のアルミナ粒子を使用した点以外は実験例1と同様の組成により、粘度3700〜4000cpsの塗型スラリーを調整した。これらの塗型スラリーを用いて、実験例1の(1)の工程で作製した中子基体の表面に、実験例1と同様の方法により厚さ325μmの塗型層を形成して塗型層付中子を作製した。
これらの塗型層付中子につき、鋳造圧力をそれぞれ60MPaおよび20MPaの二種類とし、他の点については実験例1と同様のダイカスト条件により鋳造を行った。得られた鋳造物の表面を400倍の光学顕微鏡により観察してめざし層の有無を調べ、めざし層が存在した場合にはその厚さを測定した。このめざし層の厚さは、塗型層の表面から塗型付中子の内部への溶湯浸透距離に相当する。得られた結果を、塗型層を構成するアルミナ粒子の平均粒子径と溶湯浸透距離との関係として図3に示す。鋳造圧力20MPaでは平均粒子径2μm以下、鋳造圧力60MPaでは平均粒子径0.5μm以下のアルミナ粒子を用いた場合に、塗型層への溶湯の浸透を防止することができた。
【0018】
(実験例3)
塗型層の厚さと型の変形率との関係
実験例1の塗型スラリーの組成から水の添加量を増減することにより、粘度の異なる複数種の塗型スラリーを調整した。実験例1で用いた厚さ10mmの中子基体の表面に、実験例1と同様の方法によりこれらの塗型スラリーを塗布した。これにより、塗型スラリーの粘度等に応じて種々の厚さの塗型層が形成された塗型層付中子を得た。
この塗型層付中子に対し、実験例1と同様の条件でダイカスト試験を行って線収縮率を測定し、塗型層付中子の変形率を求めた。その結果を、塗型層の厚さと塗型層付中子の変形率との関係として図4に示す。塗型層の厚さが300μm以下の場合には、塗型層付中子の変形率が6%以下であり、寸法精度のよい鋳造物が得られることが判る。なお、この変形率のうち約6%は中子基体の収縮に起因する変形である。すなわち、塗型層の厚さが300μm以下であれば、塗型層による収縮分は無視できるほど小さくなる。
【0019】
なお、上記実施例では本発明の塗型層付中子を高圧鋳造に用いたが、本発明の塗型層付中子は他の鋳造方法、例えば低圧鋳造、重力鋳造等にも使用することができる。
【0020】
【発明の効果】
本発明の塗型層付中子は、従来に比べて平均粒子径の小さい耐火物粒子からなる塗型層を備えるため、高圧鋳造等に用いられた場合において、中子基体のみならず塗型層への溶湯の侵入をも防止することができる。したがって、本発明の塗型層付中子によると、めざしのない表面状態の良好な鋳造物を得ることができる。この塗型層は、塗型スラリーを用いて一回の塗布・乾燥工程により形成可能であることから生産性がよく、また粗粒子からなる塗型下層と微粒子からなる塗型上層とからなる従来の塗型層に比べて薄くすることができるので、鋳造時における塗型層の収縮変形が少ない。これにより、本発明の塗型層付中子によると寸法精度のよい鋳造物を得ることができる。
【図面の簡単な説明】
【図1】実験例1で作製した塗型層付中子を示す模式的断面図である。
【図2】実験例1により得られた鋳造物の表面を光学顕微鏡で観察した図である。
【図3】実験例2において、塗型層を構成するアルミナ粒子の平均粒子径と溶湯浸透距離との関係を示す特性図である。
【図4】実験例3において、塗型層の厚さと鋳造時における塗型層付中子の変形率との関係を示す特性図である。
【図5】従来の塗型層付中子を示す模式的断面図である。
【図6】従来の塗型層付中子を示す模式的断面図である。
【符号の説明】
1 塗型層付中子
11 塗型層
111 耐火物粒子
12 中子基体
121 砂粒子(砂)
3 溶湯
3a めざし
9 崩壊性中子
91 塗型層
92 中子基体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a core with a coating layer which is suitably used in high-pressure casting such as die casting.
[0002]
[Prior art]
In high-pressure casting such as die casting, it is known to use a core with a coating layer provided with a coating layer on the surface of a core substrate made of sand in order to prevent the molten metal from being aimed at the core. .
[0003]
[Problems to be solved by the invention]
Conventionally, sand having an average particle diameter of about 250 to 270 μm is generally used as sand for a core substrate. Then, in forming the coating layer formed on the surface of the core substrate, in order to prevent filling of the coating particles from the gap between the sand particles constituting the core substrate to the deep portion of the core substrate, First, a coating lower layer made of relatively coarse particles is formed, and then a coating upper layer made of fine particles is formed on the surface of the coating lower layer.
However, such a mold layer composed of a plurality of layers requires a large number of steps for manufacturing, and since the mold layer is thick, the amount of deformation due to pressure during casting is large, and the size of the casting is large. There was a problem that the accuracy was reduced.
[0004]
Further, as shown in FIG. 5, Japanese Patent Application Laid-Open No. 7-100585 includes refractory particles 911 having a particle size of 1 to 10 μm and refractory fine particles 912 having a particle size of 0.1 to 1 μm. A collapsible core 9 having a coating layer (surface layer) 91 that can be formed by a coating / drying process is disclosed.
However, according to the collapsible core 9, even if it is possible to prevent the intrusion into the core substrate 92 of the molten metal 3, it is not possible to prevent the intrusion into the coating layer 91, and a fine aim 3a is generated. Further, when the refractory particles 911 and the refractory fine particles 912 are not uniformly mixed, as shown in FIG. 6, the molten metal 3 enters the core base 92 from that location to generate a large aim 3a. There is also a risk.
[0005]
SUMMARY OF THE INVENTION An object of the present invention is to provide a coating that can be formed by a single coating and drying process and that has a coating mold layer that prevents the intrusion of molten metal even when used in high-pressure casting, and that provides a cast with good dimensional accuracy. An object of the present invention is to provide a core with a mold layer.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the core with a coating layer of the present invention includes a core substrate made of sand having an average particle size of 20 to 300 μm, and an average particle size of 0.1 to 0.1 formed on the surface of the core substrate. A mold layer made of refractory particles of 0.5 μm, wherein the mold layer penetrates from the surface of the core substrate to a depth of 50 to 200 μm, and penetrates into the core of the mold layer. The thickness excluding the portion is 50 to 300 μm, and the thickness is larger than the penetration depth from the surface of the core substrate .
[0007]
The coating layer is formed by applying a coating slurry on the surface of the core substrate, and the coating slurry contains 2 to 5 parts by weight of water with respect to 5 to 8 parts by weight of the refractory particles, Is preferably 3700 to 4000 cps.
[0008]
Hereinafter, the present invention will be described in detail.
The "core substrate" used in the present invention comprises sand and usually an organic binder. As the organic binder, a conventionally known resin such as a vinyl resin, a cellulose resin, and a phenol resin can be used. The average particle diameter of the sand constituting the core substrate is 20 to 300 μm, preferably 100 to 200 μm, and more preferably 125 to 175 μm. If the average particle diameter of the sand exceeds 300 μm, the coating slurry will penetrate deep into the core substrate, making it difficult to control the thickness and permeability of the coating layer. On the other hand, when the average particle diameter of the sand is less than 20 μm, the core disintegration is reduced.
[0009]
The "refractory particles" constituting the coating layer are preferably made of a material having a large specific heat, such as alumina or zircon, and 90% or more (more preferably 95% or more) of the entire refractory particles used are alumina particles. Preferably, there is. The average particle size of the refractory particles is 0.1 to 0.5 μm, preferably 0.2 to 0.4 μm. If the average particle diameter of the refractory particles exceeds 0.5 μm, it is not possible to sufficiently prevent the molten metal from penetrating into the coating layer. On the other hand, if the average particle size of the refractory particles is less than 0.1 μm, the coating slurry will penetrate deep into the core substrate, making it difficult to control the thickness and permeability of the coating layer. Also, it is difficult to obtain refractory particles having an average particle diameter of less than 0.1 μm.
[0010]
As shown in FIG. 1, this "coating layer" has penetrated to a depth of 50 to 200 [ mu] m (more preferably 50 to 100 [ mu] m) from the surface of the core substrate. If the penetration depth is too small, the mold layer falls into the core substrate from between the sand particles constituting the core substrate due to the pressure during casting, and the mold layer may be damaged. On the other hand, if the penetration depth is too large, many refractory particles are required to form the coating layer, and the core disintegration is reduced.
[0011]
The thickness of the entire coating layer (including the portion penetrating into the core) is preferably from 60 to 500 μm, more preferably from 75 to 300 μm, and still more preferably from 100 to 250 μm. If the coating layer is too thick, the deformation of the core with the coating layer due to the pressure of the molten metal increases, and the dimensional accuracy of the casting decreases. Further, when the coating slurry applied to the surface of the core substrate is dried by heating, cracks are easily generated in the coating layer, and the molten metal may penetrate into the core substrate from the cracks. On the other hand, if the mold wash layer is too thin, the strength of the mold wash layer may be insufficient to prevent intrusion of the molten metal.
The thickness excluding the penetration portion of the core of the mold wash layer, 50 to 300 [mu] m der is, more preferably 50 to 250 [mu] m, more preferably from 75~200Myuemu. Further, the thickness is larger than the penetration depth from the surface of the core substrate.
The thickness of the entire coating layer and the thickness of the coating layer permeating the core substrate can be measured, for example, by observing the core cross section after the formation of the coating layer.
[0012]
The method of forming the coating layer on the surface of the core substrate is not particularly limited, but it is usually preferable to apply a coating slurry to the surface of the core substrate. The coating slurry is usually prepared by dispersing and dissolving the refractory particles and an organic binder in a solvent (preferably water). As the organic binder, a conventionally known resin such as a vinyl resin, a cellulose resin, and a phenol resin can be used. The method of applying the coating slurry is not particularly limited, and for example, a dipping method in which the core substrate is immersed in the coating slurry can be suitably used. In order to form the above-mentioned coating layer having a preferable thickness by the dipping method, the coating slurry is used in an amount of 2 to 5 parts by weight of water (more preferably 6 to 7 parts by weight) with respect to 5 to 8 parts by weight of the refractory particles. (2.5 to 4 parts by weight of water with respect to 0.5 part by weight), and the viscosity of the coating slurry at room temperature is preferably 3700 to 4000 cps (3.7 to 4.0 Pa · s). . The viscosity of the coating slurry is more preferably 3750 to 3850 cps (3.75 to 3.85 Pa · s), and the most preferred viscosity is 3800 cps (3.8 Pa · s).
[0013]
The core with a coating layer of the present invention is suitable as a core used for high-pressure casting at a casting pressure of 20 MPa or more (more preferably, 50 MPa or more, and the upper limit is not particularly limited, but is usually 200 MPa or less).
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described more specifically with reference to experimental examples.
(Experimental example 1)
The core 1 with a coating layer shown in FIG. 1 was produced, and its performance was evaluated.
(1) Production of Core Substrate As the sand particles 121 constituting the core substrate 12, spherical mullite particles having an average particle diameter of 150 μm were used. This sand, 1.5% by weight of phenol resin (organic binder) 122 with respect to the sand, 15% by weight of hexamethylenetetramine (added as a 30% by weight aqueous solution) with respect to the phenol resin, and The mixture was mixed with 0.1% by weight of calcium stearate to prepare sand for shell molding, and this was heated and baked at 250 ° C. for 2 minutes to produce a core substrate 12 having a thickness of 10 mm.
[0015]
(2) Preparation of Coating Slurry and Formation of Coating Layer Alumina particles having an average particle size of 0.5 μm were used as the refractory particles 111 constituting the coating layer 11. 10 parts by weight of the alumina particles, 0.03 parts by weight of cellulose as binder (0.3% by weight based on the alumina particles), and 4 parts by weight of water were mixed to obtain an alumina particle concentration of 71% by weight and a viscosity of 3700 at room temperature. A coating slurry of ~ 4000 cps was prepared.
The core substrate 12 prepared in the above step (1) is immersed in the coating slurry for 2 seconds, and then dried at 130 ° C. for 20 minutes to form a 325 μm-thick coating layer 11. An attached core 1 was obtained. In addition, 175 μm of the thickness of the coating layer 11 has penetrated into the core substrate 12.
[0016]
(3) Die casting test Using the obtained core 1 with a coating layer, a die casting test was performed under the following die casting conditions.
[Die casting conditions]
Applicable equipment: 800T horizontal die casting machine Melt composition: ADC10
Melt temperature: 650 ° C
Casting pressure: 60MPa
Injection speed: 0.5 m / sec Mold temperature: 150 ° C
After cooling and solidifying the molten metal in the device and removing the mold, vibration is applied to the casting and the core with a coating layer using an air hammer, and the vibration causes the core with the coating layer to collapse and cast. I got something. No core with a coating layer remained in the obtained casting.
When the surface of the obtained casting was observed with a 400-fold optical microscope, no aiming layer was observed as shown in FIG. That is, as shown in FIG. 1, the molten metal 3 was prevented from entering the coating layer 11 during casting.
[0017]
(Experimental example 2)
A coating slurry having a viscosity of 3700 to 4000 cps was prepared in the same composition as in Experimental Example 1 except that various alumina particles having different average particle diameters were used as the refractory particles. Using these coating slurry, a 325 μm-thick coating layer was formed on the surface of the core substrate prepared in the step (1) of Experimental Example 1 by the same method as in Experimental Example 1. An attached core was produced.
With respect to these cores with a coating layer, two kinds of casting pressures of 60 MPa and 20 MPa were used, and the other points were cast under the same die casting conditions as in Experimental Example 1. The surface of the obtained casting was observed under an optical microscope of 400 times to check for the presence of a target layer, and when the target layer was present, its thickness was measured. The thickness of the aiming layer corresponds to the permeation distance of the molten metal from the surface of the coating layer to the inside of the core with coating. FIG. 3 shows the obtained results as a relationship between the average particle diameter of the alumina particles constituting the coating layer and the permeation distance of the molten metal. When alumina particles having an average particle diameter of 2 μm or less at a casting pressure of 20 MPa and alumina particles having an average particle diameter of 0.5 μm or less at a casting pressure of 60 MPa were used, the permeation of the molten metal into the coating layer could be prevented.
[0018]
(Experimental example 3)
Relationship between Thickness of Coating Layer and Deformation Rate of Mold A plurality of types of coating slurries having different viscosities were prepared by increasing or decreasing the amount of water added from the composition of the coating slurry of Experimental Example 1. These coating slurries were applied to the surface of the core substrate having a thickness of 10 mm used in Experimental Example 1 in the same manner as in Experimental Example 1. Thus, a core with a coating layer having a coating layer of various thicknesses was obtained according to the viscosity of the coating slurry.
The core with the coating layer was subjected to a die casting test under the same conditions as in Experimental Example 1 to measure the linear shrinkage, and the deformation rate of the core with the coating layer was obtained. The results are shown in FIG. 4 as a relationship between the thickness of the mold layer and the deformation rate of the core with the mold layer. When the thickness of the coating layer is 300 μm or less, the deformation rate of the core with the coating layer is 6% or less, and it can be seen that a casting with good dimensional accuracy can be obtained. In addition, about 6% of this deformation rate is a deformation caused by shrinkage of the core substrate. That is, when the thickness of the mold wash layer is 300 μm or less, the shrinkage due to the mold wash layer becomes negligibly small.
[0019]
In the above embodiment, the core with a coating layer of the present invention was used for high-pressure casting, but the core with a coating layer of the present invention may be used for other casting methods, for example, low-pressure casting, gravity casting, and the like. Can be.
[0020]
【The invention's effect】
Since the core with a coating layer of the present invention has a coating layer made of refractory particles having a smaller average particle diameter than the conventional one, when used in high pressure casting or the like, not only the core substrate but also the coating mold is used. Intrusion of the molten metal into the layer can also be prevented. Therefore, according to the core with a coating layer of the present invention, it is possible to obtain a casting having a good surface state without any aim. This coating layer can be formed by a single coating and drying process using a coating slurry, so that productivity is good, and a conventional coating layer composed of a coating lower layer composed of coarse particles and a coating upper layer composed of fine particles. Can reduce the shrinkage deformation of the mold layer during casting. Thereby, according to the core with a coating layer of the present invention, a cast with good dimensional accuracy can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a core with a coating layer manufactured in Experimental Example 1.
FIG. 2 is a diagram obtained by observing the surface of a casting obtained in Experimental Example 1 with an optical microscope.
FIG. 3 is a characteristic diagram showing a relationship between an average particle diameter of alumina particles forming a coating layer and a molten metal permeation distance in Experimental Example 2.
FIG. 4 is a characteristic diagram showing the relationship between the thickness of a mold wash layer and the deformation rate of a core with a mold wash layer during casting in Experimental Example 3.
FIG. 5 is a schematic sectional view showing a conventional core with a coating layer.
FIG. 6 is a schematic sectional view showing a conventional core with a coating layer.
[Explanation of symbols]
Reference Signs List 1 core with coating layer 11 coating layer 111 refractory particles 12 core substrate 121 sand particles (sand)
3 Melt 3a Aiming 9 Collapsible core 91 Coating layer 92 Core substrate

Claims (2)

平均粒子径20〜300μmの砂からなる中子基体と、上記中子基体の表面に形成され平均粒子径0.1〜0.5μmの耐火物粒子からなる塗型層とを備え、
上記塗型層は上記中子基体の表面から50〜200μmの深さまで浸透しており、上記塗型層のうち中子への浸透部分を除いた厚さは50〜300μmであり、かつ該厚さは上記中子基体の表面からの浸透深さよりも大きいことを特徴とする塗型層付中子。
A core substrate made of sand having an average particle size of 20 to 300 μm, and a coating layer formed of refractory particles having an average particle size of 0.1 to 0.5 μm formed on the surface of the core substrate,
The coating layer has penetrated from the surface of the core substrate to a depth of 50 to 200 μm, and the thickness of the coating layer excluding the portion penetrating into the core is 50 to 300 μm. A core having a coating layer, wherein the core has a depth greater than a penetration depth from the surface of the core substrate .
上記塗型層は上記中子基体の表面に塗型スラリーを塗布して形成され、該塗型スラリーは上記耐火物粒子5〜8重量部に対して水2〜5重量部を含有し、常温における粘度が3700〜4000cpsである請求項1記載の塗型層付中子。 The coating layer is formed by applying a coating slurry on the surface of the core substrate, and the coating slurry contains 2 to 5 parts by weight of water with respect to 5 to 8 parts by weight of the refractory particles, 2. The core with a coating layer according to claim 1 , wherein the viscosity is 3700 to 4000 cps .
JP2000244978A 2000-08-11 2000-08-11 Core with coating layer Expired - Fee Related JP3541168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000244978A JP3541168B2 (en) 2000-08-11 2000-08-11 Core with coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000244978A JP3541168B2 (en) 2000-08-11 2000-08-11 Core with coating layer

Publications (2)

Publication Number Publication Date
JP2002059244A JP2002059244A (en) 2002-02-26
JP3541168B2 true JP3541168B2 (en) 2004-07-07

Family

ID=18735585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000244978A Expired - Fee Related JP3541168B2 (en) 2000-08-11 2000-08-11 Core with coating layer

Country Status (1)

Country Link
JP (1) JP3541168B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160175923A1 (en) * 2012-04-09 2016-06-23 General Electric Company Composite core for casting processes, and processes of making and using the same

Also Published As

Publication number Publication date
JP2002059244A (en) 2002-02-26

Similar Documents

Publication Publication Date Title
US10471497B2 (en) Three-dimensional printed metal-casting molds and methods for making the same
US9126264B2 (en) Method for manufacturing monolithic hollow bodies by means of a casting or injection moulding process
JPH01293939A (en) Manufacture of mold for investment casting
Zhang et al. Binder jetting 3D printing process optimization for rapid casting of green parts with high tensile strength
JP3541168B2 (en) Core with coating layer
CN105592955B (en) The manufacture method of wet type casting mold and its manufacture method and iron system casting
CN107737880A (en) A kind of Water-soluble ceramic core and preparation method thereof
Son et al. Mechanical integrity and erosion resistance of 3D sand printing materials
JP3629640B2 (en) Method for producing collapsible sand core for casting and sand core thereof
JP4485343B2 (en) Method and apparatus for forming water-soluble core
CN115837445A (en) Preparation method of sand mold/core for titanium alloy casting based on 3D printing
US20160114384A1 (en) Precision-casting core, precision-casting core manufacturing method, and precision-casting mold
JPS6224172B2 (en)
JP2017087226A (en) Manufacturing method of ceramic casting mold
RU2760029C1 (en) Method for making ceramic molds and rods according to permanent patterns
RU2412778C1 (en) Method of fixing layers of liquid-glass coating in investment casting
KR101761047B1 (en) Core for precision casting, production method therefor, and mold for precision casting
CN111992674B (en) Preparation process of high-strength, high-toughness and easy-removal composite ceramic core for light alloy casting
JP7557409B2 (en) Ceramic Core
CN108044073A (en) A kind of chill with exhaust level and preparation method thereof, the preparation method of casting
JPH0237937A (en) Precision casting method for casting having narrow mouth hollow part
JPH06292940A (en) Manufacture of mold for precision investment casting
JP3264564B2 (en) Disintegrating core
KR20020055054A (en) preparation method of high-pressure casting core and casting method of engine piston containing oil gallery
JPH11320075A (en) Molding for cylinder block and its production

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees