JP3538475B2 - Field grounding relay - Google Patents

Field grounding relay

Info

Publication number
JP3538475B2
JP3538475B2 JP11053595A JP11053595A JP3538475B2 JP 3538475 B2 JP3538475 B2 JP 3538475B2 JP 11053595 A JP11053595 A JP 11053595A JP 11053595 A JP11053595 A JP 11053595A JP 3538475 B2 JP3538475 B2 JP 3538475B2
Authority
JP
Japan
Prior art keywords
circuit
voltage
level
field
ground fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11053595A
Other languages
Japanese (ja)
Other versions
JPH08308089A (en
Inventor
年男 田中
Original Assignee
ティーエム・ティーアンドディー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ティーエム・ティーアンドディー株式会社 filed Critical ティーエム・ティーアンドディー株式会社
Priority to JP11053595A priority Critical patent/JP3538475B2/en
Publication of JPH08308089A publication Critical patent/JPH08308089A/en
Application granted granted Critical
Publication of JP3538475B2 publication Critical patent/JP3538475B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Protection Of Generators And Motors (AREA)
  • Control Of Eletrric Generators (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は界磁地絡継電器に係り、
特に発電電動機等を含む発電機の界磁回路の地絡を検出
する界磁地絡継電器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a field grounding relay,
In particular, the present invention relates to a field ground relay for detecting a ground fault in a field circuit of a generator including a generator motor and the like.

【0002】[0002]

【従来の技術】従来の界磁地絡継電器は、発電機界磁回
路のN側と大地間に所定の直流電圧を抵抗を介して供給
し、出力端に流れる電流の大きさにより地絡の有無を判
定していた。
2. Description of the Related Art A conventional field grounding relay supplies a predetermined DC voltage between the N side of a generator field circuit and the ground via a resistor, and generates a ground fault according to the magnitude of a current flowing to an output terminal. The presence or absence was determined.

【0003】上記した従来技術によれば、出力端に流れ
る電流の大きさのみで地絡判定しているが、電流の大き
さの判定をピーク値検出により実施した場合、サイリス
タ励磁方式の界磁回路では、界磁電圧として直流電圧以
外に高調波電圧が発生するので、高調波電圧が浮遊容量
により界磁地絡継電器の出力端に誘導され、出力端に流
れる電流が断続電流となり、地絡も断続して検出され
る。
According to the above-mentioned prior art, the ground fault is determined only by the magnitude of the current flowing to the output terminal. However, when the magnitude of the current is determined by detecting the peak value, the thyristor excitation type field is used. In the circuit, a harmonic voltage other than a DC voltage is generated as a field voltage, so that the harmonic voltage is induced by the stray capacitance to the output terminal of the field grounding relay, and the current flowing through the output terminal becomes an intermittent current, and a ground fault occurs. Is also intermittently detected.

【0004】[0004]

【発明が解決しようとする課題】この結果、所定の復帰
遅延タイマがない場合は、地絡が発生しても正常に検出
することができ、また復帰遅延タイマを設けた場合に
は、浮遊容量に流れる電流により誤検出するという問題
があった。
As a result, if there is no predetermined return delay timer, it can not be detected normally even if a ground fault occurs. There is a problem that the detection is erroneous due to the current flowing through the capacitor.

【0005】さらに、電流の大きさのみによる地絡判定
のため、高信頼度の界磁地絡継電器とすることができ
ず、界磁地絡継電器の出力は遮断指令としては扱われ
ず、警報指令として扱われていた。
Further, since the ground fault is determined only based on the magnitude of the current, a highly reliable field ground relay cannot be provided, and the output of the field ground relay is not treated as a cutoff command, but an alarm command is issued. Was treated as

【0006】本発明は、上記事情に鑑みてなされたもの
で、その目的はサイリスタ励磁方式の界磁回路に適用し
た場合でも、誤検出・誤不検出の問題が発生しない高性
能の界磁地絡継電器を提供することにある。また、本発
明の他の目的は、その出力を直接遮断指令として扱える
高信頼度の界磁地絡継電器を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to provide a high-performance field circuit which does not cause erroneous detection and erroneous non-detection even when applied to a thyristor excitation type field circuit. An object of the present invention is to provide a relay. Another object of the present invention is to provide a highly reliable field grounding relay that can handle its output as a direct cutoff command.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1は、発電機の界磁巻線と励磁回路
が接続される界磁回路の地絡を検出する界磁地絡継電器
において、前記界磁回路の負極側と大地間に所定の抵抗
を介して接続する直流電圧電源と、前記抵抗の両端電圧
より直流電圧を抽出する第1フィルタ回路と、前記界磁
回路の負極側と大地間の電圧より直流電圧を抽出する第
2フィルタ回路と、前記第1フィルタ回路の出力電圧と
前記第2フィルタ回路の出力電圧との比から地絡故障発
生の有無を判定する第1判定回路と、前記第1フィルタ
回路の出力電圧レベルから地絡故障発生の有無を判定す
る第2判定回路と、前記第1判定回路と前記第2判定回
路のそれぞれの判定結果を入力する論理積回路とから構
成されることを特徴とする。
In order to achieve the above object, a first aspect of the present invention is a field detecting device for detecting a ground fault in a field circuit in which a field winding of a generator and an excitation circuit are connected. In a ground fault relay, a DC voltage power supply connected between a negative electrode side of the field circuit and the ground via a predetermined resistor, a first filter circuit for extracting a DC voltage from a voltage across the resistor, and the field circuit A second filter circuit for extracting a DC voltage from a voltage between the negative electrode side and the ground, and determining whether a ground fault has occurred based on a ratio of an output voltage of the first filter circuit to an output voltage of the second filter circuit. A first judgment circuit, a second judgment circuit for judging the occurrence of a ground fault from the output voltage level of the first filter circuit, and respective judgment results of the first judgment circuit and the second judgment circuit are input. And logical AND circuit. To.

【0008】本発明の請求項2は、請求項1記載の界磁
地絡継電器において、前項論理積回路以外に第1の判定
回路と第2の判定回路のそれぞれの判定結果を入力とす
る論理和回路を備えることを特徴とする。
According to a second aspect of the present invention, there is provided the field grounding relay according to the first aspect, further comprising a logic that receives respective determination results of the first determination circuit and the second determination circuit in addition to the AND circuit. It is characterized by having a sum circuit.

【0009】本発明の請求項3は、請求項1記載の界磁
地絡継電器において、前記第1判定回路は、前記第2フ
ィルタ回路の出力電圧を前記第1フィルタ回路の出力電
圧で割算する割算回路と、前記割算回路の出力レベルが
所定値以下となった場合に地絡と判定するレベル判定回
路でから構成されることを特徴とする。
According to a third aspect of the present invention, in the field earth fault relay according to the first aspect, the first determination circuit divides an output voltage of the second filter circuit by an output voltage of the first filter circuit. And a level determining circuit that determines that a ground fault has occurred when the output level of the dividing circuit has fallen below a predetermined value.

【0010】本発明の請求項4は、請求項1記載の界磁
地絡継電器において、前記第1判定回路は、前記第1フ
ィルタ回路の出力電圧を前記第2フィルタ回路の出力電
圧で割算する割算回路と、前記割算回路の出力レベルが
所定値以上となった場合に地絡と判定するレベル判定回
路とから構成されることを特徴とする。
According to a fourth aspect of the present invention, in the field earth fault relay according to the first aspect, the first determination circuit divides an output voltage of the first filter circuit by an output voltage of the second filter circuit. And a level judging circuit for judging a ground fault when the output level of the dividing circuit exceeds a predetermined value.

【0011】本発明の請求項5は、請求項1記載の界磁
地絡継電器において、前記第1判定回路は、前記第1フ
ィルタ回路の出力電圧を所定レベルに増幅する増幅回路
と、前記増幅回路の出力電圧と前記第2フィルタ回路の
出力電圧の出力レベルを比較し、前記増幅回路の出力電
圧が前記第2フィルタ回路の出力電圧以上となった場合
に地絡と判定するレベル判定回路とから構成されること
を特徴とする。
According to a fifth aspect of the present invention, in the field grounding relay according to the first aspect, the first determination circuit amplifies an output voltage of the first filter circuit to a predetermined level; A level determining circuit that compares an output voltage of the circuit with an output level of the output voltage of the second filter circuit, and determines that a ground fault occurs when the output voltage of the amplifier circuit is equal to or higher than the output voltage of the second filter circuit; Characterized by the following.

【0012】本発明の請求項6は、請求項1記載の界磁
地絡継電器において、前記第1判定回路は、前記第2フ
ィルタ回路の出力電圧を所定レベルに増幅する増幅回路
と、前記増幅回路の出力電圧と前記第1フィルタ回路の
出力電圧の出力レベルを比較し、前記増幅回路の出力電
圧が前記第1フィルタ回路の出力電圧以下となった場合
に地絡と判定するレベル判定回路とから構成されること
を特徴とする。
According to a sixth aspect of the present invention, in the field grounding relay according to the first aspect, the first determination circuit amplifies an output voltage of the second filter circuit to a predetermined level; A level determining circuit that compares an output voltage of a circuit with an output level of an output voltage of the first filter circuit, and determines that a ground fault occurs when an output voltage of the amplifier circuit becomes equal to or less than an output voltage of the first filter circuit; Characterized by the following.

【0013】[0013]

【0014】[0014]

【0015】[0015]

【0016】[0016]

【作用】本発明の請求項1〜請求項6によると、サイリ
スタ励磁方式の界磁回路に適用した場合でも、励磁電圧
に含まれる高調波電圧の影響を受けることなく、誤検出
・誤不検出のない高性能な界磁地絡継電器を提供でき
る。
According to the first to sixth aspects of the present invention, even when the present invention is applied to a thyristor excitation type field circuit, erroneous detection and erroneous detection are not affected by the harmonic voltage contained in the excitation voltage. It is possible to provide a high-performance field-to-ground grounding relay without any problem.

【0017】[0017]

【実施例】以下、本発明の実施例を図について説明す
る。図1は本発明の第1実施例(請求項1及び請求項2
対応)の回路構成図である。同図おいて、Aは発電機、
Bは発電機界磁巻線、Cは励磁回路であり、励磁回路C
と発電機界磁巻線B間にはP側の界磁回路DとN側の界
磁回路Eが接続されている。発電機界磁回路の地絡を検
出する界磁地絡継電器Ry1 は界磁回路Eと大地との間
に接続されている。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. FIG. 1 shows a first embodiment of the present invention (claims 1 and 2).
FIG. In the figure, A is a generator,
B is a generator field winding, C is an excitation circuit, and an excitation circuit C
A P-side field circuit D and an N-side field circuit E are connected between the motor and the generator field winding B. A field ground relay Ry1 for detecting a ground fault in the generator field circuit is connected between the field circuit E and the ground.

【0018】界磁地絡継電器Ry1 は、所定の直流電圧
1と直列に接続された抵抗2と、抵抗2の両端電圧を入
力するローパスフィルタ3-1と、N側界磁回路Eと大地
間への出力端電圧を入力するローパスフィルタ3-2と、
それぞれのローパスフィルタ3-1、3-2より出力される
電圧を入力するレベル比判定回路4と、ローパスフィル
タ3-1より出力される電圧を入力するレベル判定回路5
と、レベル比判定回路4の判定結果とレベル判定回路5
の判定結果を入力する論理積回路6とより構成されてお
り、論理積回路6より外部に地絡検出結果を出力する。
The field grounding relay Ry1 includes a resistor 2 connected in series with a predetermined DC voltage 1, a low-pass filter 3-1 for inputting a voltage between both ends of the resistor 2, a N-side field circuit E and a ground-to-ground connection. A low-pass filter 3-2 for inputting the output terminal voltage to
Level ratio determination circuit 4 for inputting the voltage output from each low-pass filter 3-1, 3-2, and level determination circuit 5 for inputting the voltage output from low-pass filter 3-1
And the determination result of the level ratio determination circuit 4 and the level determination circuit 5
And a logical product circuit 6 for inputting the result of the determination. The logical product circuit 6 outputs a ground fault detection result to the outside.

【0019】次に、本実施例の作用について説明する。
今、N側の界磁回路Eに地絡が発生した場合、直流電圧
1を抵抗2と地絡抵抗の加算値で割った電流が流れ、N
側の界磁回路Eと大地間の電圧は、この電流と地絡抵抗
の積で定まる電圧レベルとなり、抵抗2の両端電圧はこ
の電流と抵抗2の積で定まる電圧レベルとなる。
Next, the operation of this embodiment will be described.
If a ground fault occurs in the N-side field circuit E, a current obtained by dividing the DC voltage 1 by the sum of the resistance 2 and the ground fault resistance flows.
The voltage between the field circuit E on the side and the ground has a voltage level determined by the product of the current and the ground fault resistance, and the voltage across the resistor 2 has a voltage level determined by the product of the current and the resistance 2.

【0020】ここで、直流電圧1をV、抵抗2をR、地
絡抵抗をRg、N側界磁回路Eと大地間電圧をV1、抵
抗2の両端電圧をV2とすると、V1およびV2は下記
式で表される。
Here, assuming that the DC voltage 1 is V, the resistor 2 is R, the ground fault resistance is Rg, the voltage between the N-side field circuit E and the ground is V1, and the voltage across the resistor 2 is V2, V1 and V2 are It is represented by the following equation.

【0021】[0021]

【数1】 (Equation 1)

【0022】しかして抵抗2の両端電圧はローパスフィ
ルタ3-1により直流電圧とされ、N側の界磁回路Eと大
地間の電圧はローパスフィルタ3-2により直流電圧とさ
れ、それぞれレベル比判定回路4によりレベル比が判定
される。
The voltage across the resistor 2 is converted to a DC voltage by the low-pass filter 3-1, and the voltage between the N-side field circuit E and the ground is converted to a DC voltage by the low-pass filter 3-2. The circuit 4 determines the level ratio.

【0023】このレベル比判定回路4の判定基準とし
て、抵抗2は予め決められた抵抗値であり、検出すべき
地絡抵抗値を抵抗2のn倍以下となった場合に地絡発生
と判定させるものとすれば、ローパスフィルタ3-1より
入力される抵抗2の両端直流電圧を基準に、ローパスフ
ィルタ3-2より入力されるN側の界磁回路Eと大地間の
直流電圧がn倍以下となった場合に地絡発生と判定し、
判定結果をロジック信号として出力する。
As a criterion for the level ratio determination circuit 4, the resistance 2 is a predetermined resistance value. When the resistance value of the ground fault to be detected becomes n times or less of the resistance 2, it is determined that a ground fault has occurred. In this case, the DC voltage between the N-side field circuit E input from the low-pass filter 3-2 and the ground is n times as large as the DC voltage across the resistor 2 input from the low-pass filter 3-1. It is determined that a ground fault has occurred if
The result of the determination is output as a logic signal.

【0024】例えば、地絡が発生していない定常時はロ
ジック『0』を出力し、地絡発生と判定した場合にロジ
ック『1』を出力する。さらに、抵抗2の両端電圧を入
力とするローパスフィルタ3-1より出力される直流電圧
は、レベル判定回路5によりレベル判定される。レベル
判定回路5は予め定められた電圧レベル以上の電圧が入
力され場合に地絡発生と判定し、判定結果をレベル比判
定回路4と同様にロジック信号として出力する。
For example, a logic "0" is output during a steady state where no ground fault has occurred, and a logic "1" is output when it is determined that a ground fault has occurred. Further, the level of the DC voltage output from the low-pass filter 3-1 to which the voltage across the resistor 2 is input is determined by the level determination circuit 5. The level determination circuit 5 determines that a ground fault has occurred when a voltage equal to or higher than a predetermined voltage level is input, and outputs a determination result as a logic signal, similarly to the level ratio determination circuit 4.

【0025】また、レベル判定回路5の入力電圧は、直
流電圧1の電圧値と抵抗2の抵抗値は予め明らかな値で
あるので、地絡抵抗により定まる電流に比例した直流電
圧が入力され、判定基準としては地絡抵抗に流れる電流
が所定値以上の場合に地絡発生と判定することとなる。
As the input voltage of the level determination circuit 5, since the voltage value of the DC voltage 1 and the resistance value of the resistor 2 are apparent values in advance, a DC voltage proportional to the current determined by the ground fault resistance is input. As a criterion, when the current flowing through the ground fault resistance is equal to or more than a predetermined value, it is determined that a ground fault has occurred.

【0026】ただ、抵抗2の両端電圧およびN側の界磁
回路Eと大地間の電圧は、基本的には直流となるが、励
磁回路Cがサイリスタ励磁方式の場合、界磁電圧として
直流電圧以外に高調波電圧が発生し、浮遊容量によりN
側の界磁回路Eと大地間の電圧に交流電圧が誘導され
る。この誘導された交流電圧の影響により抵抗2および
地絡抵抗を流れる電流にも直流電流以外に交流電流が含
まれ、抵抗2の両端電圧およびN側の界磁回路Eと大地
間の電圧は、完全な直流電圧とはならない。この電圧を
直流電圧としてレベル比判定およびレベル判定させるた
めに、ローパスフィルタ3-1および3-2を用いている。
However, the voltage across the resistor 2 and the voltage between the N-side field circuit E and the ground are basically DC, but when the excitation circuit C is of the thyristor excitation type, the DC voltage is used as the field voltage. In addition, harmonic voltage is generated and N
An AC voltage is induced in the voltage between the field circuit E on the side and the ground. Due to the influence of the induced AC voltage, the current flowing through the resistor 2 and the ground fault resistor includes an AC current in addition to the DC current, and the voltage across the resistor 2 and the voltage between the N-side field circuit E and the ground are: It does not become a complete DC voltage. The low-pass filters 3-1 and 3-2 are used to determine the level ratio and the level using this voltage as a DC voltage.

【0027】また、論理積回路6はレベル比判定回路4
のロジック出力およびレベル判定回路5のロジック出力
が共に『1』の場合のみ地絡発生状態として地絡検出結
果を外部に出力する。
The AND circuit 6 includes a level ratio determination circuit 4
And the logic output of the level determination circuit 5 is both "1", the ground fault occurrence state is output to the outside as a ground fault occurrence state.

【0028】さらに、P側の界磁回路Dおよび発電機界
磁巻線B部分に地絡が発生した場合、地絡点での励磁電
圧と直流電圧1の加算電圧を抵抗2と地絡抵抗の加算値
で割った電流が流れ、抵抗2の両端電圧はこの電流と抵
抗2の積で定まる電圧となり、N側の界磁回路Eと大地
間の電圧は、この電流と地絡抵抗の積で定まる電圧より
地絡点での励磁電圧を差し引いた電圧となる。
Further, when a ground fault occurs in the P-side field circuit D and the generator field winding B, the sum of the excitation voltage at the ground fault point and the DC voltage 1 is applied to the resistor 2 and the ground fault resistor. And the voltage across the resistor 2 becomes a voltage determined by the product of the current and the resistor 2. The voltage between the N-side field circuit E and the ground is the product of this current and the ground fault resistance. Is obtained by subtracting the excitation voltage at the ground fault point from the voltage determined by.

【0029】つまり、抵抗2の両端電圧とN側の界磁回
路Eと大地間の電圧の比は、抵抗2と地絡抵抗の比と等
しくならず、N側の界磁回路Eと大地間の電圧が地絡点
での励磁電圧分低くなるため、レベル比判定回路4の判
定レベルはN側の界磁回路Eの地絡に比べ高感度とな
る。
That is, the ratio between the voltage between both ends of the resistor 2 and the voltage between the N-side field circuit E and the ground is not equal to the ratio between the resistor 2 and the ground fault resistance. Is lower by the excitation voltage at the ground fault point, the determination level of the level ratio determination circuit 4 is higher in sensitivity than the ground fault of the N-side field circuit E.

【0030】図2は本発明の第2の実施例(請求項3及
び請求項4対応)の回路構成図である。同図に示すよう
に、本実施例が図1の実施例と異なる点は、図1の界磁
地絡継電器Ry1 の代りに界磁地絡継電器Ry2 を用い
た点であり、その他の点は同一であるので、同一部分に
は同一符号を付して重複説明は省略する。
FIG. 2 is a circuit diagram of a second embodiment (corresponding to claims 3 and 4) of the present invention. As shown in the drawing, this embodiment differs from the embodiment of FIG. 1 in that a field grounding relay Ry2 is used in place of the field grounding relay Ry1 of FIG. Since they are the same, the same portions are denoted by the same reference numerals, and redundant description will be omitted.

【0031】本実施例の界磁地絡継電器Ry2 は、所定
の直流電圧1とこの直流電圧1と直列に抵抗2を接続
し、この抵抗2を介してN側の界磁回路Eと大地間に直
流電圧1を供給させ、抵抗2の両端電圧をローパスフィ
ルタ3-1に入力し、N側界磁回路Eと大地間への出力端
電圧をローパスフィルタ3-2に入力し、それぞれのロー
パスフィルタ3-1,3-2より出力される電圧を割算回路
4-1に入力し、割算回路4-1の出力をレベル判定回路4
-2に入力し、ローパスフィルタ3-1より出力される電圧
をレベル判定回路5に入力し、レベル判定回路4-2の判
定結果とレベル判定回路5の判定結果を論理積回路6に
入力し、論理積回路6により外部に地絡検出結果を出力
するように構成されている。
The field grounding relay Ry2 of the present embodiment connects a predetermined DC voltage 1 and a resistor 2 in series with the DC voltage 1, and connects the N-side field circuit E to the ground via the resistor 2. To the low-pass filter 3-1 and the output terminal voltage between the N-side field circuit E and the ground is input to the low-pass filter 3-2. The voltages output from the filters 3-1 and 3-2 are input to a division circuit 4-1 and the output of the division circuit 4-1 is output to a level determination circuit 4.
-2, the voltage output from the low-pass filter 3-1 is input to the level determination circuit 5, and the determination result of the level determination circuit 4-2 and the determination result of the level determination circuit 5 are input to the AND circuit 6. The AND circuit 6 is configured to output a ground fault detection result to the outside.

【0032】次に、本実施例の作用について説明する。
今、N側の界磁回路Eに地絡が発生した場合、直流電圧
1を抵抗2と地絡抵抗の加算値で割った電流が流れ、N
側の界磁回路Eと大地間の電圧は、この電流と地絡抵抗
の積で定まる電圧レベルとなり、抵抗2の両端電圧はこ
の電流と抵抗2の積で定まる電圧レベルとなる。
Next, the operation of the present embodiment will be described.
If a ground fault occurs in the N-side field circuit E, a current obtained by dividing the DC voltage 1 by the sum of the resistance 2 and the ground fault resistance flows.
The voltage between the field circuit E on the side and the ground has a voltage level determined by the product of the current and the ground fault resistance, and the voltage across the resistor 2 has a voltage level determined by the product of the current and the resistance 2.

【0033】ここで、直流電圧1をV、抵抗2をR、地
絡抵抗をRg、N側の界磁回路Eと大地間電圧をV1、
抵抗2の両端電圧をV2とすると、V1およびV2は下
記式で表される。
Here, the DC voltage 1 is V, the resistance 2 is R, the ground fault resistance is Rg, the voltage between the N-side field circuit E and the ground is V1,
Assuming that the voltage between both ends of the resistor 2 is V2, V1 and V2 are represented by the following equations.

【0034】[0034]

【数2】 (Equation 2)

【0035】しかして抵抗2の両端電圧はローパスフィ
ルタ3-1により直流電圧とされ、N側の界磁回路Eと大
地間の電圧はローパスフィルタ3-2により直流電圧とさ
れ、それぞれ割算回路4-1に入力される。
The voltage between both ends of the resistor 2 is converted to a DC voltage by the low-pass filter 3-1, and the voltage between the N-side field circuit E and the ground is converted to a DC voltage by the low-pass filter 3-2. Input to 4-1.

【0036】この割算回路4-1でローパスフィルタ3-2
より入力されるN側の界磁回路Eと大地間の直流電圧
を、ローパスフィルタ3-1により入力される抵抗2の両
端直流電圧で割算し、割算後の電圧をレベル判定回路4
-2によりレベル判定する。
The dividing circuit 4-1 uses a low-pass filter 3-2.
The input DC voltage between the N-side field circuit E and the ground is divided by the DC voltage across the resistor 2 input by the low-pass filter 3-1.
Judge level by -2.

【0037】レベル判定回路4-2のレベル判定基準とし
て抵抗2は、予め明らかな抵抗値であるので、検出すべ
き地絡抵抗値の抵抗2のn倍以下となった場合、地絡発
生と判定させるとすれば、割算回路4-1の出力電圧であ
る割算値V1/V2がnの電圧レベル以下となった場合
(V1/V2≦n)に地絡発生と判定し、判定結果をロ
ジック信号として出力する。
As the level judgment reference of the level judgment circuit 4-2, the resistance 2 has an apparent resistance value in advance. If the determination is made, when the division value V1 / V2, which is the output voltage of the division circuit 4-1, falls below the voltage level of n (V1 / V2 ≦ n), it is determined that a ground fault has occurred, and the determination result is obtained. Is output as a logic signal.

【0038】例えば、地絡が発生していない定常時はロ
ジック『0』を出力し、地絡発生と判定した場合はロジ
ック『1』を出力する。さらに、抵抗2の両端電圧を入
力とするローパスフィルタ3-1より出力される直流電圧
は、レベル判定回路5によりレベル判定される。
For example, a logic "0" is output during a steady state where no ground fault has occurred, and a logic "1" is output when it is determined that a ground fault has occurred. Further, the level of the DC voltage output from the low-pass filter 3-1 to which the voltage across the resistor 2 is input is determined by the level determination circuit 5.

【0039】このレベル判定回路5は予め定められた電
圧レベル以上の電圧が入力され場合に地絡発生と判定
し、判定結果をレベル判定回路4-2と同様にロジック信
号として出力する。
The level determination circuit 5 determines that a ground fault has occurred when a voltage equal to or higher than a predetermined voltage level is input, and outputs the determination result as a logic signal as in the level determination circuit 4-2.

【0040】通常、直流電圧1の電圧値および抵抗2の
抵抗値は予め明らかな値であるので、レベル判定回路5
の入力電圧は地絡抵抗により定まる電流に比例した直流
電圧が入力されることになり、判定基準としては地絡抵
抗に流れる電流が所定値以上の場合に地絡発生と判定す
る。
Normally, the voltage value of the DC voltage 1 and the resistance value of the resistor 2 are obvious values in advance.
Is input as a DC voltage proportional to the current determined by the ground fault resistance, and it is determined that a ground fault has occurred when the current flowing through the ground fault resistance is equal to or greater than a predetermined value.

【0041】ここで、抵抗2の両端電圧およびN側の界
磁回路Eと大地間の電圧は、基本的には直流となるが、
励磁回路Cがサイリスタ励磁方式の場合、界磁電圧とし
て直流電圧以外に高調波電圧が発生し、浮遊容量により
N側の界磁回路Eと大地間の電圧に交流電圧が誘導され
る。
Here, the voltage across the resistor 2 and the voltage between the N-side field circuit E and the ground are basically DC,
When the excitation circuit C is of a thyristor excitation type, a harmonic voltage other than a DC voltage is generated as a field voltage, and an AC voltage is induced by the stray capacitance to a voltage between the N-side field circuit E and the ground.

【0042】この誘導された交流電圧の影響により、抵
抗2および地絡抵抗を流れる電流も直流電流以外に交流
電流が含まれ、抵抗2の両端電圧およびN側界磁回路E
と大地間の電圧は、完全な直流電圧とはならない。この
電圧を直流電圧としてレベル比判定およびレベル判定さ
せるために、ローパスフィルタ3-1および3-2を用いて
いる。
Due to the influence of the induced AC voltage, the current flowing through the resistor 2 and the ground fault resistor includes an AC current in addition to the DC current, and the voltage across the resistor 2 and the N-side field circuit E
The voltage between the ground and the ground is not a complete DC voltage. The low-pass filters 3-1 and 3-2 are used to determine the level ratio and the level using this voltage as a DC voltage.

【0043】ここで、ローパスフィルタ3-1,3-2の回
路例を図3に示す。図3に示すように、ローパスフィル
タは抵抗3aとコデンサ3bと演算増幅器3cを組み合
わせた3次ローパスフィルタであり、遮断周波数を10
Hz以下とした場合、入力電圧Vinに含まれる100
Hz以上の交流成分は−60dB以下に減衰されるが、
直流成分は減衰されずに出力電圧Voutとして出力さ
れる。
Here, FIG. 3 shows a circuit example of the low-pass filters 3-1 and 3-2. As shown in FIG. 3, the low-pass filter is a third-order low-pass filter combining a resistor 3a, a capacitor 3b, and an operational amplifier 3c.
Hz or less, 100 included in the input voltage Vin
The AC component above Hz is attenuated below -60 dB,
The DC component is output as the output voltage Vout without being attenuated.

【0044】次に、ローパスフィルタ3-1,3-2の入出
力波形の一例を図4に示す。図4に示すように、入力電
圧Vinにはサイリスタ励磁により発生する商用周波数
の6倍調波成分を基本周期とした交流電圧と直流電圧が
含まれており、また出力電圧Voutは交流成分をカッ
トさせた直流電圧として出力されている。
Next, an example of input / output waveforms of the low-pass filters 3-1 and 3-2 is shown in FIG. As shown in FIG. 4, the input voltage Vin includes an AC voltage and a DC voltage whose fundamental cycle is a sixth harmonic component of the commercial frequency generated by thyristor excitation, and the output voltage Vout cuts the AC component. It is output as a DC voltage.

【0045】再び、図2において、論理積回路6はレベ
ル判定回路4-2のロジック出力およびレベル判定回路5
のロジック出力が共に『1』の場合のみ地絡発生状態と
して地絡検出結果を外部に出力する。
Referring again to FIG. 2, the logical product circuit 6 comprises the logic output of the level determination circuit 4-2 and the level determination circuit 5
Only when both of the logic outputs are "1", the ground fault occurrence state is output to the outside as a ground fault occurrence state.

【0046】また、P側の界磁回路Dおよび発電機界磁
巻線B部分に地絡が発生した場合、地絡点での励磁電圧
と直流電圧1の加算電圧を、抵抗2と地絡抵抗の加算値
で割った電流が流れ、抵抗2の両端電圧はこの電流と抵
抗2の積で定まる電圧となり、N側の界磁回路Eと大地
間の電圧は、この電流と地絡抵抗の積で定まる電圧より
地絡点での励磁電圧を差し引いた電圧となる。
When a ground fault occurs in the P-side field circuit D and the generator field winding B, the sum of the excitation voltage at the ground fault point and the DC voltage 1 is applied to the resistor 2 and the ground fault. The current divided by the added value of the resistance flows, the voltage between both ends of the resistance 2 becomes a voltage determined by the product of this current and the resistance 2, and the voltage between the N-side field circuit E and the ground is the current and the ground fault resistance. The voltage is obtained by subtracting the excitation voltage at the ground fault from the voltage determined by the product.

【0047】つまり、抵抗2の両端電圧とN側の界磁回
路Eと大地間の電圧の比は、抵抗2と地絡抵抗の比と等
しくならず、N側の界磁回路Eと大地間の電圧が地絡点
での励磁電圧分低くなるため、レベル比判定回路4-1の
判定レベルは、N側の界磁回路Eの地絡に比べ高感度と
なる。また、抵抗2に流れる電流も地絡点での励磁電圧
の影響により増加するので、レベル判定回路5の判定レ
ベルもN側の界磁回路Eの地絡に比べ高感度となる。
That is, the ratio between the voltage between both ends of the resistor 2 and the voltage between the N-side field circuit E and the ground is not equal to the ratio between the resistor 2 and the ground fault resistance. Is lower by the excitation voltage at the ground fault point, the determination level of the level ratio determination circuit 4-1 is more sensitive than the ground fault of the N-side field circuit E. Further, the current flowing through the resistor 2 also increases due to the effect of the excitation voltage at the ground fault point, so that the determination level of the level determination circuit 5 is higher in sensitivity than the ground fault of the N-side field circuit E.

【0048】上述したように本実施例によると、サイリ
スタ励磁方式の界磁回路に適用した場合でも、励磁電圧
に含まれる高調波電圧の影響を受けることなく、誤検出
・誤不検出のない高性能な界磁地絡継電器を実現でき
る。
As described above, according to this embodiment, even when the present invention is applied to a thyristor excitation type field circuit, it is not affected by the harmonic voltage included in the excitation voltage and has a high error-free and error-free detection. A high-performance field grounding relay can be realized.

【0049】また、地絡発生判断を所定の抵抗の両端電
圧と地絡抵抗の両端電圧の比により判定する相対値判定
結果と、所定の抵抗の両端電圧レベルによる地絡電流レ
ベルの絶対値判定結果とのAND条件を満たすことによ
り、誤検出の極めて少ない高信頼度の界磁地絡継電器を
実現することができ、さらに界磁地絡継電器の出力を直
接遮断指令として扱うことができる。
Further, a relative value judgment result for judging the occurrence of a ground fault by a ratio of a voltage between both ends of a predetermined resistor to a voltage between both ends of the ground fault resistor, and an absolute value judgment of a ground fault current level based on a voltage level between both ends of the predetermined resistor. By satisfying the AND condition with the result, it is possible to realize a highly reliable field grounding relay with extremely few erroneous detections, and it is possible to directly handle the output of the field grounding relay as a cutoff command.

【0050】なお、上記図2の第2実施例の割算回路4
-1の割算の代りに、ローパスフィルタ3-1より入力され
る抵抗2の両端電圧V2を、ローパスフィルタ3-2より
入力されるN側界磁回路Eと大地間の直流電圧V1で割
算して、レベル判定回路4-2を割算回路4-1より出力さ
れる電圧レベルが、所定レベル以上となった場合(V2
/V1≧1/n)に地絡発生と判定させ、論理積回路6
にロジック信号を出力することにより、第2実施例と同
様の効果を得ることができる。
The dividing circuit 4 of the second embodiment shown in FIG.
Instead of dividing by -1, the voltage V2 across the resistor 2 input from the low-pass filter 3-1 is divided by the DC voltage V1 between the N-side field circuit E input from the low-pass filter 3-2 and the ground. When the voltage level output from the dividing circuit 4-1 exceeds the predetermined level (V2
/ V1 ≧ 1 / n) to determine that a ground fault has occurred.
By outputting a logic signal to the second embodiment, the same effect as in the second embodiment can be obtained.

【0051】図5は本発明の第3の実施例(請求項5対
応)の回路構成図である。同図に示すように、本実施例
が図1の実施例と異なる点は、図1の界磁地絡継電器R
y1 の代りに界磁地絡継電器Ry3 を用いた点であり、
その他の点は同一であるので、同一部分には同一符号を
付して重複説明は省略する。
FIG. 5 is a circuit diagram of a third embodiment (corresponding to claim 5) of the present invention. As shown in the figure, this embodiment is different from the embodiment of FIG. 1 in that the field grounding relay R of FIG.
in that a field grounding relay Ry3 is used in place of y1.
Since the other points are the same, the same portions are denoted by the same reference numerals, and redundant description will be omitted.

【0052】本実施例の界磁地絡継電器Ry3 は、図1
の界磁地絡継電器Ry1 のレベル判定回路4の代りに増
幅回路4-3とレベル比較回路4-4を用いた点であり、そ
の他の構成は同一である。
The field grounding relay Ry3 of this embodiment is shown in FIG.
In this embodiment, an amplifier circuit 4-3 and a level comparison circuit 4-4 are used instead of the level determination circuit 4 of the field grounding relay Ry1, and the other configurations are the same.

【0053】次に、本実施例の作用について説明する。
ローパスフィルタ3-1より出力される抵抗2の両端直流
電圧V2を、増幅回路4-3により所定レベルに増幅さ
せ、この増幅回路4-3より出力される直流電圧n・V2
と、ローパスフィルタ3-2より出力されるN側の界磁回
路Eと大地間の直流電圧V1とを、レベル比較回路4-4
によりレベル比較する。増幅回路4-3より入力される抵
抗2の両端直流電圧を所定倍に増幅した電圧から、ロー
パスフィルタ3-2より入力されるN側界磁回路Eと大地
間の直流電圧以上となった場合(n・V2≧V1)に、
地絡発生と判定させ、論理積回路6にロジック信号を出
力することにより、図1の実施例と同様の効果を得るこ
とができる。ここで、増幅回路4-3の増幅度は地絡判定
を抵抗2のn倍以下で判定させるものとすると、n倍の
増幅度とすればよい。
Next, the operation of this embodiment will be described.
The DC voltage V2 across the resistor 2 output from the low-pass filter 3-1 is amplified to a predetermined level by an amplifier circuit 4-3, and the DC voltage n · V2 output from the amplifier circuit 4-3 is amplified.
And a DC voltage V1 between the N-side field circuit E output from the low-pass filter 3-2 and the ground, and a level comparison circuit 4-4.
To compare the levels. When a DC voltage between the N-side field circuit E input from the low-pass filter 3-2 and the ground becomes equal to or higher than a voltage obtained by amplifying the DC voltage at both ends of the resistor 2 input from the amplifier circuit 4-3 by a predetermined factor. (N · V2 ≧ V1)
By determining that a ground fault has occurred and outputting a logic signal to the AND circuit 6, the same effect as in the embodiment of FIG. 1 can be obtained. Here, if the amplification degree of the amplifier circuit 4-3 is determined to be n times or less of the resistance 2, the amplification degree may be n times as large.

【0054】図6は本発明の第4の実施例(請求項6対
応)の回路構成図である。同図に示すように、本実施例
が図1の実施例と異なる点は、図1の界磁地絡継電器R
y1 の代りに界磁地絡継電器Ry4 を用いた点であり、
その他の点は同一であるので、同一部分には同一符号を
付して重複説明は省略する。
FIG. 6 is a circuit diagram of a fourth embodiment (corresponding to claim 6) of the present invention. As shown in the figure, this embodiment is different from the embodiment of FIG. 1 in that the field grounding relay R of FIG.
in that a field grounding relay Ry4 is used in place of y1.
Since the other points are the same, the same portions are denoted by the same reference numerals, and redundant description will be omitted.

【0055】本実施例の界磁地絡継電器Ry4 は、図1
の界磁地絡継電器Ry1 のレベル判定回路4の代りに増
幅回路4-3とレベル比較回路4-4を用いた点であり、そ
の他の構成は同一である。
The field grounding relay Ry4 of this embodiment is shown in FIG.
In this embodiment, an amplifier circuit 4-3 and a level comparison circuit 4-4 are used instead of the level determination circuit 4 of the field grounding relay Ry1, and the other configurations are the same.

【0056】次に、本実施例の作用について説明する。
ローパスフィルタ3-2より出力されるN側の界磁回路E
と大地間の直流電圧V1を増幅回路4-3により所定レベ
ルに増幅(減衰)させ、この増幅回路4-3より出力され
る直流電圧V1/nとローパスフィルタ3-1より出力さ
れる抵抗2の両端直流電圧V2を、レベル比較回路4-4
によりレベル比較する。増幅回路4-3より入力されるN
側の界磁回路Eと大地間の直流電圧を所定倍の増幅(減
衰)した電圧が、ローパスフィルタ3-1より入力される
抵抗2の両端直流電圧以下となった場合(V1/n≦V
2)に、地絡発生と判定させ、論理積回路6にロジック
信号を出力することにより、図1の実施例と同様に効果
を得ることができる。ここで、増幅回路4-3の増幅度
は、地絡判定を抵抗2のn倍以下で判定させるものとす
ると、1/n倍の増幅度(減衰)とすればよい。
Next, the operation of the present embodiment will be described.
N-side field circuit E output from low-pass filter 3-2
Amplifying circuit 4-3 amplifies (attenuates) the DC voltage V1 between the power supply and the ground to a predetermined level, and outputs the DC voltage V1 / n output from the amplifying circuit 4-3 and the resistor 2 output from the low-pass filter 3-1. DC voltage V2 at both ends of the level comparison circuit 4-4
To compare the levels. N input from the amplifier circuit 4-3
When the voltage obtained by amplifying (attenuating) the DC voltage between the field circuit E on the side and the ground by a predetermined factor is equal to or less than the DC voltage across the resistor 2 input from the low-pass filter 3-1 (V1 / n ≦ V
In 2), it is determined that a ground fault has occurred, and a logic signal is output to the AND circuit 6, whereby the same effect as in the embodiment of FIG. 1 can be obtained. Here, the amplification degree of the amplifier circuit 4-3 may be 1 / n times the amplification degree (attenuation), assuming that the ground fault is determined by n times or less of the resistance 2.

【0057】図7は本発明の第5の実施例の回路構成図
である。 同図に示すように、本実施例が図1の実施例
と異なる点は、図1の界磁地絡継電器Ry1 の代りに界
磁地絡継電器Ry5 を用いた点であり、その他の点は同
一であるので、同一部分には同一符号を付して重複説明
は省略する。
FIG. 7 is a circuit diagram of a fifth embodiment of the present invention. As shown in the figure, the present embodiment is different from the embodiment of FIG. 1 in that a field grounding relay Ry5 is used instead of the field grounding relay Ry1 of FIG. Since they are the same, the same portions are denoted by the same reference numerals, and redundant description will be omitted.

【0058】本実施例の界磁地絡継電器Ry5 は、図1
の界磁地絡継電器Ry1 の回路構成に論理積回路7を追
加し、レベル比判定回路4のロジック出力信号とレベル
判定回路5のロジック出力信号を、論理積回路6以外に
論理和回路7に入力し、それぞれのロジック信号のいず
れか一方が『1』(地絡判定状態)であれば、論理和回
路7より外部に地絡発生の警報指令を出力させることが
でき、それぞれのロジック信号が共に『1』(地絡判定
状態)であれば、論理積回路6により外部に地絡発生に
よる遮断指令を出力するようにしたものである。本実施
例も図1の実施例と同様に効果を得ることができる。
The field grounding relay Ry5 of this embodiment is shown in FIG.
A logical AND circuit 7 is added to the circuit configuration of the field grounding relay Ry1 of the first embodiment, and the logical output signal of the level ratio determining circuit 4 and the logical output signal of the level determining circuit 5 are transmitted to the logical OR circuit 7 in addition to the logical AND circuit 6. If any one of the logic signals is "1" (ground fault determination state), the logical sum circuit 7 can output a ground fault alarm command to the outside, and the respective logic signals are output. If both are "1" (ground fault determination state), the logical product circuit 6 outputs a cutoff command to the outside due to the occurrence of ground fault. This embodiment can also obtain the same effects as the embodiment of FIG.

【0059】図8は本発明の第6の実施例の回路構成図
である。 同図に示すように、本実施例が図1の実施例
と異なる点は、図1の界磁地絡継電器Ry1 の代りに界
磁地絡継電器Ry6 を用いた点であり、その他の点は同
一であるので、同一部分には同一符号を付して重複説明
は省略する。
FIG. 8 is a circuit diagram of a sixth embodiment of the present invention. As shown in the figure, the present embodiment differs from the embodiment of FIG. 1 in that a field grounding relay Ry6 is used instead of the field grounding relay Ry1 of FIG. Since they are the same, the same portions are denoted by the same reference numerals, and redundant description will be omitted.

【0060】本実施例の界磁地絡継電器Ry6 は、図1
の界磁地絡継電器Ry1 の回路構成のうち、ローパスフ
ィルタ3-1とローパスフィルタ3-2を省略して、抵抗2
の両端電圧V2と、N側界磁回路Eと大地間の電圧V1
を直接レベル比判定回路4に入力させ、抵抗2の両端電
圧V2を直接レベル判定回路5に入力させる構成とさ
せ、レベル比判定回路4により抵抗2の両端電圧とN側
界磁回路Eと大地間の電圧をレベル比判定させ、レベル
判定回路5により抵抗2の両端電圧のレベル判定をさせ
るようにしたものである。
The field grounding relay Ry6 of this embodiment is similar to the one shown in FIG.
The low-pass filter 3-1 and the low-pass filter 3-2 are omitted from the circuit configuration of the field grounding relay Ry1 of FIG.
And the voltage V1 between the N-side field circuit E and the ground.
Is directly input to the level ratio determination circuit 4 and the voltage V2 across the resistor 2 is directly input to the level determination circuit 5, and the voltage across the resistor 2 and the N-side field circuit E and the ground The level ratio between the voltages between both ends of the resistor 2 is determined by the level determination circuit 5.

【0061】特に、レベル比判定回路4のレベル比判定
およびレベル判定回路5のレベル判定に、所定の動作・
復帰遅延時間を持たせることにより、レベル比判定回路
4およびレベル判定回路5の入力電圧に交流成分が含ま
れていた場合でも、レベル比判定回路4およびレベル判
定回路5の出力が断続出力とならないように動作させる
ことにより、図1の実施例と同様の効果を得ることもで
きる。なお、本発明は上述した各実施例及びその応用例
を適宜組み合わせて適用することができ、図1の実施例
と同様の効果を得ることができる。
In particular, when the level ratio determination of the level ratio determination circuit 4 and the level determination of the level
By providing a return delay time, even when an input voltage of the level ratio determination circuit 4 and the level determination circuit 5 includes an AC component, the output of the level ratio determination circuit 4 and the level determination circuit 5 does not become an intermittent output. By operating as described above, the same effect as the embodiment of FIG. 1 can be obtained. The present invention can be applied by appropriately combining the above-described embodiments and their application examples, and the same effects as those of the embodiment of FIG. 1 can be obtained.

【0062】[0062]

【発明の効果】以上説明したように、本発明の請求項1
請求項6によると、サイリスタ励磁方式の界磁回路に
適用した場合でも、励磁電圧に含まれる高調波電圧の影
響を受けることなく、誤検出・誤不検出のない高性能な
界磁地絡継電器を実現できる。また界磁地絡継電器の出
力を直接遮断指令として扱うことができる。
As described above, according to the first aspect of the present invention,
According to claim 6 , even when applied to a thyristor excitation type field circuit, a high-performance field ground fault free from erroneous detection and erroneous detection without being affected by the harmonic voltage included in the excitation voltage. A relay can be realized. Further, the output of the field grounding relay can be handled as a direct cutoff command.

【0063】また、本発明の請求項1、請求項3〜請求
項6によると、地絡発生判断を所定の抵抗の両端電圧と
地絡抵抗の両端電圧の比により判定する相対値判定結果
と、所定の抵抗の両端電圧レベルによる地絡電流レベル
の絶対値判定結果のAND条件により誤検出の極めて少
ない高信頼度の界磁地絡継電器を実現できる。
[0063] Also, according to claim 1 of the present invention, according to claim 3 wherein
According to item 6 , a relative value judgment result for judging the occurrence of a ground fault by a ratio between a voltage between both ends of a predetermined resistor and a voltage between both ends of the ground fault resistor, and an absolute value judgment of a ground fault current level based on a voltage level between both ends of the predetermined resistor A highly reliable field grounding relay with extremely few erroneous detections can be realized by the resulting AND condition.

【0064】さらに、本発明の請求項2によると、所定
の抵抗の両端電圧と地絡抵抗の両端電圧の比により判定
する相対値判定結果と、所定の抵抗の両端電圧レベルに
よる地絡電流レベルの絶対値判定結果のOR条件で、地
絡発生の警報指令を出力させることができ、いずれかの
地絡判定部に異常が発生した場合でも、地絡発生の警報
指令を出力可能となり、誤不検出の極めて少ない高信頼
度の界磁地絡継電器を実現できる。
Further, according to the second aspect of the present invention, a relative value determination result determined by a ratio between a voltage between both ends of a predetermined resistor and a voltage between both ends of a ground fault resistor, and a ground fault current level based on a voltage level between both ends of the predetermined resistor. The ground fault occurrence warning command can be output based on the OR condition of the absolute value determination result of, and even if any of the ground fault determination units becomes abnormal, the ground fault occurrence warning command can be output, and It is possible to realize a highly reliable field grounding relay with extremely few non-detections.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例の回路構成図。FIG. 1 is a circuit configuration diagram of a first embodiment of the present invention.

【図2】本発明の第2実施例の回路構成図。FIG. 2 is a circuit diagram of a second embodiment of the present invention.

【図3】本発明が適用されるローパスフィルタの回路
図。
FIG. 3 is a circuit diagram of a low-pass filter to which the present invention is applied.

【図4】本発明が適用されるローパスフィルタ回路の入
出力波形図。
FIG. 4 is an input / output waveform diagram of a low-pass filter circuit to which the present invention is applied.

【図5】本発明の第3実施例の回路構成図。FIG. 5 is a circuit diagram of a third embodiment of the present invention.

【図6】本発明の第4実施例の回路構成図。FIG. 6 is a circuit diagram of a fourth embodiment of the present invention.

【図7】本発明の第5実施例の回路構成図。FIG. 7 is a circuit diagram of a fifth embodiment of the present invention.

【図8】本発明の第6実施例の回路構成図。FIG. 8 is a circuit diagram of a sixth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

A…発電機、B…発電機界磁巻線、C…励磁回路、D…
P側の界磁回路、E…N側の界磁回路、Ry1 ,Ry2
,Ry3 ,Ry4 ,Ry5 ,Ry6 …界磁地絡継電
器、1…直流電圧、2…抵抗、3-1,3-2…ローパスフ
ィルタ、3a…抵抗、3b…コンデンサ、3c…演算増
幅器、4…レベル比判定回路、4-1…割算回路、4-2…
レベル判定回路、4-3…増幅回路、4-4…レベル比較回
路、5…レベル判定回路、6…論理積回路、7…論理和
回路。
A: generator, B: generator field winding, C: excitation circuit, D:
P-side field circuit, E ... N-side field circuit, Ry1, Ry2
, Ry3, Ry4, Ry5, Ry6 ... field earthing relay, 1 ... DC voltage, 2 ... resistor, 3-1, 3-2 ... low-pass filter, 3a ... resistor, 3b ... capacitor, 3c ... operational amplifier, 4 ... Level ratio judgment circuit, 4-1 ... division circuit, 4-2 ...
Level determining circuit, 4-3: amplifying circuit, 4-4: level comparing circuit, 5: level determining circuit, 6: logical product circuit, 7: logical sum circuit.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H02H 7/06 H02P 9/14,9/30 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H02H 7/06 H02P 9/14, 9/30

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 発電機の界磁巻線と励磁回路が接続され
る界磁回路の地絡を検出する界磁地絡継電器において、
前記界磁回路の負極側と大地間に所定の抵抗を介して接
続する直流電圧電源と、前記抵抗の両端電圧より直流電
圧を抽出する第1フィルタ回路と、前記界磁回路の負極
側と大地間の電圧より直流電圧を抽出する第2フィルタ
回路と、前記第1フィルタ回路の出力電圧と前記第2フ
ィルタ回路の出力電圧との比から地絡故障発生の有無を
判定する第1判定回路と、前記第1フィルタ回路の出力
電圧レベルから地絡故障発生の有無を判定する第2判定
回路と、前記第1判定回路と前記第2判定回路のそれぞ
れの判定結果を入力する論理積回路とから構成されるこ
とを特徴とする界磁地絡継電器。
A field grounding relay for detecting a ground fault in a field circuit to which a field winding of a generator and an excitation circuit are connected,
A DC voltage power supply connected between the negative electrode side of the field circuit and the ground via a predetermined resistor; a first filter circuit for extracting a DC voltage from a voltage across the resistor; A second filter circuit that extracts a DC voltage from a voltage between the first filter circuit and a first determination circuit that determines whether a ground fault has occurred based on a ratio between an output voltage of the first filter circuit and an output voltage of the second filter circuit. A second determination circuit that determines the presence or absence of a ground fault from the output voltage level of the first filter circuit, and an AND circuit that inputs respective determination results of the first determination circuit and the second determination circuit. Field earth fault relay characterized by being constituted.
【請求項2】 請求項1記載の界磁地絡継電器におい
て、前項論理積回路以外に第1の判定回路と第2の判定
回路のそれぞれの判定結果を入力とする論理和回路を備
えることを特徴とする界磁地絡継電器。
2. The field grounding relay according to claim 1, further comprising: an OR circuit that receives respective judgment results of the first judgment circuit and the second judgment circuit in addition to the AND circuit. Characteristic field grounding relay.
【請求項3】 請求項1記載の界磁地絡継電器におい
て、前記第1判定回路は、前記第2フィルタ回路の出力
電圧を前記第1フィルタ回路の出力電圧で割算する割算
回路と、前記割算回路の出力レベルが所定値以下となっ
た場合に地絡と判定するレベル判定回路でから構成され
ることを特徴とする界磁地絡継電器。
3. The field grounding relay according to claim 1, wherein the first determination circuit divides an output voltage of the second filter circuit by an output voltage of the first filter circuit, A field earth fault relay comprising a level judgment circuit for judging a ground fault when an output level of the division circuit becomes equal to or lower than a predetermined value.
【請求項4】 請求項1記載の界磁地絡継電器におい
て、前記第1判定回路は、前記第1フィルタ回路の出力
電圧を前記第2フィルタ回路の出力電圧で割算する割算
回路と、前記割算回路の出力レベルが所定値以上となっ
た場合に地絡と判定するレベル判定回路とから構成され
ることを特徴とする界磁地絡継電器。
4. The field grounding relay according to claim 1, wherein the first determination circuit divides an output voltage of the first filter circuit by an output voltage of the second filter circuit, And a level determining circuit for determining a ground fault when an output level of the dividing circuit is equal to or higher than a predetermined value.
【請求項5】 請求項1記載の界磁地絡継電器におい
て、前記第1判定回路は、前記第1フィルタ回路の出力
電圧を所定レベルに増幅する増幅回路と、前記増幅回路
の出力電圧と前記第2フィルタ回路の出力電圧の出力レ
ベルを比較し、前記増幅回路の出力電圧が前記第2フィ
ルタ回路の出力電圧以上となった場合に地絡と判定する
レベル判定回路とから構成されることを特徴とする界磁
地絡継電器。
5. The field grounding relay according to claim 1, wherein the first determination circuit amplifies an output voltage of the first filter circuit to a predetermined level; A level determination circuit that compares an output level of an output voltage of the second filter circuit and determines that a ground fault occurs when an output voltage of the amplifier circuit is equal to or higher than an output voltage of the second filter circuit. Characteristic field grounding relay.
【請求項6】 請求項1記載の界磁地絡継電器におい
て、前記第1判定回路は、前記第2フィルタ回路の出力
電圧を所定レベルに増幅する増幅回路と、前記増幅回路
の出力電圧と前記第1フィルタ回路の出力電圧の出力レ
ベルを比較し、前記増幅回路の出力電圧が前記第1フィ
ルタ回路の出力電圧以下となった場合に地絡と判定する
レベル判定回路とから構成されることを特徴とする界磁
地絡継電器。
6. The field grounding relay according to claim 1, wherein the first determination circuit amplifies an output voltage of the second filter circuit to a predetermined level; A level determination circuit that compares an output level of an output voltage of the first filter circuit and determines that a ground fault occurs when an output voltage of the amplifier circuit becomes equal to or less than an output voltage of the first filter circuit. Characteristic field grounding relay.
JP11053595A 1995-05-09 1995-05-09 Field grounding relay Expired - Fee Related JP3538475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11053595A JP3538475B2 (en) 1995-05-09 1995-05-09 Field grounding relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11053595A JP3538475B2 (en) 1995-05-09 1995-05-09 Field grounding relay

Publications (2)

Publication Number Publication Date
JPH08308089A JPH08308089A (en) 1996-11-22
JP3538475B2 true JP3538475B2 (en) 2004-06-14

Family

ID=14538281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11053595A Expired - Fee Related JP3538475B2 (en) 1995-05-09 1995-05-09 Field grounding relay

Country Status (1)

Country Link
JP (1) JP3538475B2 (en)

Also Published As

Publication number Publication date
JPH08308089A (en) 1996-11-22

Similar Documents

Publication Publication Date Title
JP3468817B2 (en) Field ground fault detector
US6025980A (en) Earth leakage protective relay
US8390967B2 (en) Wiring device having leakage detection function
US10114064B2 (en) Error detection device
US3963963A (en) Ground-fault detection system
US4119918A (en) Auto zero circuit
JPH05180661A (en) Sensor-signal extracting circuit
US4063164A (en) Method and apparatus for detection of short circuits by phase monitoring traveling wave signals
JP3376834B2 (en) Ground fault detecting device and earth leakage breaker using this ground fault detecting device
GB1599131A (en) Apparatus for detecting subsynchronous current in power systems
US5548207A (en) Missing phase detector
JP3538475B2 (en) Field grounding relay
KR100199553B1 (en) Dc feeder ground-fault defector
US4873602A (en) Ripple attenuator for AC power transmission line protective relays
JPH07209366A (en) Insulation monitor for isolated neutral wiring line
CN113466526B (en) Residual current sensor circuit and circuit breaker
JP3656824B2 (en) Ground fault direction relay device
JPH0515046A (en) Ground fault detector
JPH0667103B2 (en) Ground fault detector
JPH069545Y2 (en) Protective relay
JPH05103417A (en) Directional-ground relay
JPH04285423A (en) Leak detection sensor
JPH0331230B2 (en)
JPH0577987B2 (en)
JPH04172915A (en) Earth leakage breaker

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040322

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080326

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees