JP3538385B2 - Culture solution purification apparatus and method for cleaning filtration membrane thereof - Google Patents

Culture solution purification apparatus and method for cleaning filtration membrane thereof

Info

Publication number
JP3538385B2
JP3538385B2 JP2001006643A JP2001006643A JP3538385B2 JP 3538385 B2 JP3538385 B2 JP 3538385B2 JP 2001006643 A JP2001006643 A JP 2001006643A JP 2001006643 A JP2001006643 A JP 2001006643A JP 3538385 B2 JP3538385 B2 JP 3538385B2
Authority
JP
Japan
Prior art keywords
membrane
filtration
hypochlorite
flow rate
filtration membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001006643A
Other languages
Japanese (ja)
Other versions
JP2002204933A (en
Inventor
克敏 細井
歩 岸
吉昭 渋谷
利信 徳丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagome Co Ltd
Original Assignee
Kagome Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagome Co Ltd filed Critical Kagome Co Ltd
Priority to JP2001006643A priority Critical patent/JP3538385B2/en
Publication of JP2002204933A publication Critical patent/JP2002204933A/en
Application granted granted Critical
Publication of JP3538385B2 publication Critical patent/JP3538385B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • Y02P60/216

Landscapes

  • Hydroponics (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、養液栽培培養液を
膜ろ過により浄化する培養液浄化装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a culture solution purifying apparatus for purifying a nutrient solution culture solution by membrane filtration.

【0002】[0002]

【従来の技術】最近、トマトなどを中心に養液栽培が広
く行われるようになってきた。このような養液栽培に用
いられる養液は、清水(水道水、井水)に窒素、りん、
カリウム等の肥料成分を溶解したものであり、供給され
た培養液の多くは栽培植物に吸収されるが、全てが吸収
されるのではなく、吸収されなかった養液は廃液として
排出されるのが一般的であった。この養液の有効活用を
目的に、養液の循環使用が試みられ、実用化されてい
る。このような養液の循環使用には、養液内の不純物を
取り去り、あるいは、細菌類を除去して病気などの問題
の発生を防止することが必要であり、中空糸膜などによ
る膜ろ過が行われてる。
2. Description of the Related Art Recently, hydroponic cultivation of tomatoes and the like has been widely performed. The nutrient solution used for such nutrient solution cultivation includes fresh water (tap water, well water) in nitrogen, phosphorus,
Fertilizer components such as potassium are dissolved, and most of the supplied culture solution is absorbed by cultivated plants, but not all is absorbed, and the unabsorbed nutrient solution is discharged as waste liquid. Was common. For the purpose of making effective use of the nutrient solution, circulation use of the nutrient solution has been attempted and put to practical use. In order to recycle such nutrient solution, it is necessary to remove impurities in the nutrient solution or to remove bacteria to prevent problems such as illness. It is being done.

【0003】しかしながら、中空糸膜は非常に高価であ
り、その交換コストは栽培作物の価格に転嫁されるた
め、その低減化が求められる。ここで、このような中空
糸膜の洗浄方法として、中空糸膜に対して空気などの泡
を接触させて洗浄するエアスクラビング処理や次亜塩素
酸塩などの薬剤溶液によって洗浄するによる薬洗処理が
行われてきた。しかし、エアスクラビング処理では、長
期における性能低下は防止できない。
[0003] However, hollow fiber membranes are very expensive, and their replacement costs are passed on to the price of cultivated crops. Here, as such a method of cleaning the hollow fiber membrane, an air scrubbing treatment in which bubbles such as air are brought into contact with the hollow fiber membrane for cleaning, or a chemical washing treatment in which the hollow fiber membrane is washed with a chemical solution such as hypochlorite. Has been done. However, the air scrubbing process cannot prevent long-term performance degradation.

【0004】一方、次亜塩素酸塩処理は、使用する次亜
塩素酸塩のコストが必要となる他、廃液をそのまま排出
したときには環境の生態系を乱す恐れがあり、あるい
は、次亜塩素酸塩廃液の中和処理のランニングコストが
必要となると云った欠点がある。
[0004] On the other hand, the hypochlorite treatment requires the cost of hypochlorite to be used, and if the waste liquid is discharged as it is, it may disturb the ecological system of the environment. There is a disadvantage that the running cost of the neutralization treatment of the salt waste liquid is required.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記した従
来の問題点を改善する、すなわち、養液栽培養液を膜ろ
過により浄化する培養液浄化装置のろ過膜の交換頻度を
著しく低下させ、長期間に亘って安定的に運転可能な培
養液浄化装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems, that is, it significantly reduces the frequency of replacing a filtration membrane of a culture solution purifying device for purifying a nutrient solution by membrane filtration. It is another object of the present invention to provide a culture solution purifying apparatus that can be stably operated for a long period of time.

【0006】[0006]

【課題を解決するための手段】本発明の培養液浄化装置
は上記課題を解決するため、請求項1に記載の通り、養
液栽培培養液を膜ろ過により浄化する培養液浄化装置に
おいて、ろ過膜の上流と下流との差圧を検出する差圧検
出手段、ろ過流量を検出する流量検出手段、ろ過膜に対
してエアスクラビング処理を行うエアスクラビング処理
手段、ろ過膜に対して次亜塩素酸塩溶液による次亜塩素
酸塩処理を行う次亜塩素酸塩処理手段、ろ過膜の上流と
下流との差圧が所定の圧力以上となり、かつ、ろ過流量
が所定の流量以上である場合に前記エアスクラビング処
理手段にエアスクラビング処理を行なわせるエアスクラ
ビング処理判断手段とろ過膜の上流と下流との差圧が所
定の圧力以上となり、かつ、ろ過流量が所定の流量未満
である場合に前記次亜塩素酸塩処理手段に次亜塩素酸塩
処理を行なわせる次亜塩素酸塩処理判断手段とを有する
ことを特徴とする培養液浄化装置である。
According to a first aspect of the present invention, there is provided a culture solution purifying apparatus for purifying a nutrient solution culture membrane by membrane filtration. Differential pressure detection means for detecting the differential pressure between the upstream and downstream of the membrane, flow rate detection means for detecting the filtration flow rate, air scrubbing processing means for performing air scrubbing on the filtration membrane, and hypochlorous acid for the filtration membrane The hypochlorite treatment means for performing hypochlorite treatment with a salt solution, the differential pressure between the upstream and downstream of the filtration membrane is equal to or higher than a predetermined pressure, and the filtration flow rate is equal to or higher than a predetermined flow rate. When the differential pressure between the upstream and downstream of the air scrubbing processing means and the filtration membrane that causes the air scrubbing processing means to perform the air scrubbing processing is equal to or higher than a predetermined pressure, and the filtration flow rate is lower than a predetermined flow rate, A culture purifying apparatus, comprising a hypochlorite processing determination means for causing the hypochlorite treatment chlorite processing means.

【0007】このような培養装置により、請求項3に記
載の本発明の培養液浄化装置のろ過膜洗浄方法、すなわ
ち、養液栽培培養液を膜ろ過により浄化する培養液浄化
装置のろ過膜の洗浄方法において、ろ過膜の上流と下流
との差圧が所定の圧力以上となり、かつ、ろ過流量が所
定の流量以上である場合にろ過膜に対してエアスクラビ
ング処理を行ない、ろ過膜の上流と下流との差圧が所定
の圧力以上となり、かつ、ろ過流量が所定の流量未満で
ある場合にろ過膜に対して次亜塩素酸塩溶液による次亜
塩素酸塩処理を行う培養液浄化装置のろ過膜の洗浄方法
を容易に実施することができる。
[0007] With such a culture apparatus, a method for cleaning a filtration membrane of a culture solution purifying apparatus according to the present invention according to claim 3, ie, a method for purifying a culture solution purifying a nutrient solution culture membrane by membrane filtration. In the cleaning method, the differential pressure between the upstream and downstream of the filtration membrane is equal to or higher than a predetermined pressure, and when the filtration flow rate is equal to or higher than the predetermined flow rate, an air scrubbing process is performed on the filtration membrane. A culture fluid purifying apparatus that performs hypochlorite treatment with a hypochlorite solution on a filtration membrane when a pressure difference between the downstream and a predetermined pressure is equal to or higher than a predetermined pressure and a filtration flow rate is less than a predetermined flow rate. The method for washing the filtration membrane can be easily implemented.

【0008】このような培養液浄化装置のろ過膜の洗浄
方法により、非常に少ない次亜塩素酸塩溶液の使用量
で、極めて長期間に亘って安定したろ過膜のろ過性能、
ろ過流量を維持することができる。
[0008] By such a method for cleaning the filtration membrane of the culture solution purifying apparatus, the filtration performance of the filtration membrane can be stabilized for an extremely long period with a very small amount of hypochlorite solution used.
The filtration flow rate can be maintained.

【0009】上記培養液浄化装置のろ過膜の洗浄方法に
おいて、請求項4に記載したように、次亜塩素酸塩処理
において、膜を通過することなく膜上流側に接しながら
洗浄を行う次亜塩素酸塩溶液の量と膜を通過して洗浄を
行う次亜塩素酸塩溶液の量との比が、5:5〜9:1と
することにより、さらに効率の良いろ過膜の洗浄が可能
となる。このため、次亜塩素酸塩処理手段が、次亜塩素
酸塩処理で、膜を通過することなく膜上流側に接しなが
ら洗浄を行う次亜塩素酸塩溶液の量と膜を通過して洗浄
を行う次亜塩素酸塩溶液の量との比を調整する上流/下
流流量比調整手段を備え、この上流/下流流量比調整手
段により所望の上記上流/下流流量比に調整することが
できる。
[0009] In the method for cleaning a filtration membrane of the culture solution purifying apparatus, as described in claim 4, in the hypochlorite treatment, the hypochlorous acid is washed while being in contact with the upstream side of the membrane without passing through the membrane. The ratio of the amount of the chlorate solution to the amount of the hypochlorite solution passing through the membrane for washing is set to 5: 5 to 9: 1, so that the filtration membrane can be more efficiently washed. It becomes. For this reason, the hypochlorite treatment means, in the hypochlorite treatment, the amount of the hypochlorite solution to be washed while being in contact with the upstream side of the membrane without passing through the membrane and the washing through the membrane Upstream / downstream flow ratio adjusting means for adjusting the ratio of the amount of hypochlorite solution to the amount of the hypochlorite solution, and the desired upstream / downstream flow ratio can be adjusted by the upstream / downstream flow ratio adjusting means.

【0010】[0010]

【発明の実施の形態】本発明は、トマト、ピーマン、メ
ロン、ズッキーニ、キュウリ、レタス、サラダナ、クレ
ソンあるいはホウレンソウなどの野菜類の養液培養にお
いて、ろ過膜による膜分離を行う全ての循環培養液浄化
装置に応用することができる。このようなろ過膜として
は、中空糸、チューブラ、スパイラルの各タイプのろ過
膜などが挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to all circulating culture solutions in which a membrane is separated by a filtration membrane in a nutrient solution culture of vegetables such as tomato, pepper, melon, zucchini, cucumber, lettuce, saladana, watercress and spinach. It can be applied to purification equipment. Examples of such a filtration membrane include hollow fiber, tubular, and spiral filtration membranes.

【0011】本発明が特に有効であるのは、これらろ過
膜の細孔が0.45μm以下の、細菌を除去できる中空
糸タイプのろ過膜である。本発明において、スクラビン
グ処理は空気の泡をろ過膜の上流側に接触させてその表
面に付着したごみ、細菌などを除去することを云う(本
発明におけるろ過膜の「上流側」及び「下流側」は、ろ
過対象の培養液の流れを基準にろ過膜を挟んで、要処理
培養液がろ過膜に供給される方向を「上流」、ろ過膜に
ろ過されたろ過処理培養液が再度、培養植物に供給され
る方向を「下流」と云う)。
The present invention is particularly effective for hollow fiber type filtration membranes having pores of 0.45 μm or less and capable of removing bacteria. In the present invention, the scrubbing treatment means that air bubbles are brought into contact with the upstream side of the filtration membrane to remove dirt, bacteria and the like attached to the surface thereof ("upstream" and "downstream side" of the filtration membrane in the present invention). ”Means“ upstream ”the direction in which the required culture medium is supplied to the filtration membrane, with the filtration medium as a reference, based on the flow of the culture medium to be filtered, and the filtration culture medium filtered by the filtration membrane is cultured again. The direction supplied to the plant is called "downstream").

【0012】スクラビング処理は、ろ過膜を損傷しない
程度に激しく行うことが望ましい。すなわち、エア圧力
0.1MPa、エア量として膜面積1m2当たり1.5
NL/min程度であり、処理時間は通常5分〜10分
である。
The scrubbing treatment is desirably performed vigorously so as not to damage the filtration membrane. That is, the air pressure is 0.1 MPa, and the air amount is 1.5 per m 2 of the membrane area.
The processing time is usually about 5 to 10 minutes.

【0013】このようなスクラビング処理は、ろ過膜の
上流と下流との差圧が所定の圧力以上となったときに行
うことが必要である。所定の圧力とは、培養液の場合、
初期差圧に0.01MPa以上0.03MPa以下を加
算したものであり、この範囲になった場合、スクラビン
グ処理を行う。
Such a scrubbing process needs to be performed when the pressure difference between the upstream and downstream of the filtration membrane becomes equal to or higher than a predetermined pressure. The predetermined pressure is, in the case of a culture solution,
This is a value obtained by adding 0.01 MPa or more and 0.03 MPa or less to the initial differential pressure. When the pressure falls within this range, a scrubbing process is performed.

【0014】ここで、本発明の培養液浄化装置のろ過膜
に対する培養液の供給時の圧力は通常0.15MPa以
上0.25MPa以下である。上記のような適宜のスク
ラビング処理により、通常のゴミ、細菌は、ろ過膜表面
から脱離し、液相内に分散するため、これらゴミ、細菌
が分散した液を排出する。
Here, the pressure at the time of supplying the culture solution to the filtration membrane of the culture solution purifying apparatus of the present invention is usually 0.15 MPa or more and 0.25 MPa or less. By the above-described appropriate scrubbing treatment, ordinary dust and bacteria are detached from the surface of the filtration membrane and dispersed in the liquid phase, so that the liquid in which the dust and bacteria are dispersed is discharged.

【0015】このようなスクラビング処理によってろ過
膜前後の差圧は減少するが、培養液内に存在する一般細
菌(107〜108ヶ/mL)のうちの一部の細菌類によ
って形成されたスライム等がろ過膜にこびりつき、その
細孔を閉塞させた場合にはあまり効果がなく、ろ過膜前
後の差圧が高くなると同時に、ろ過膜を通過する培養液
の流量が低下する。そこで、ろ過膜前後の差圧が所定の
圧力以上で、かつ、この培養液のろ過流量が所定の流量
未満である場合にろ過膜に対して次亜塩素酸塩溶液によ
る次亜塩素酸塩処理を行う。
Although the pressure difference before and after the filtration membrane is reduced by such a scrubbing treatment, it is formed by some of the general bacteria (10 7 to 10 8 cells / mL) present in the culture solution. There is not much effect when slime or the like sticks to the filtration membrane and closes the pores thereof, and the pressure difference between before and after the filtration membrane increases, and at the same time, the flow rate of the culture solution passing through the filtration membrane decreases. Therefore, when the differential pressure before and after the filtration membrane is equal to or higher than a predetermined pressure, and the filtration flow rate of the culture solution is less than the predetermined flow rate, the hypochlorite treatment of the filtration membrane with a hypochlorite solution is performed on the filtration membrane. I do.

【0016】次亜塩素酸塩処理とは、次亜塩素酸ナトリ
ウム、次亜塩素酸カリウムなどの次亜塩素酸塩の水溶液
によりろ過膜を洗浄することであり、この処理によりろ
過膜の閉塞を解消することができる。同時にこれら薬剤
の効果によりろ過膜付近の殺菌により、スライム形成性
細菌の殺菌も行うことができ、再度の細孔の閉塞の防止
も可能となる。
[0016] The hypochlorite treatment is to wash the filtration membrane with an aqueous solution of hypochlorite such as sodium hypochlorite and potassium hypochlorite. Can be eliminated. At the same time, the slime-forming bacteria can be sterilized by sterilizing the vicinity of the filtration membrane by the effect of these agents, and the pore can be prevented from being blocked again.

【0017】このような次亜塩素酸塩溶液中の有効塩素
濃度は通常70mg/L以上200mg/L以下であ
り、70mg/L未満であると効果が少なく、一方20
0mg/Lを超えた濃度では濃度の上昇による効果がほ
ぼ横這いとなると共に、取扱性がわるく、また、ろ過膜
や周辺材料の劣化を引き起こす場合があり、さらに廃液
の処理が大きなコストアップ要因となる。
The effective chlorine concentration in such a hypochlorite solution is usually 70 mg / L or more and 200 mg / L or less, and less than 70 mg / L is less effective.
If the concentration exceeds 0 mg / L, the effect due to the increase in concentration is almost flat, the handling property is deteriorated, and the filter membrane and the surrounding materials may be deteriorated. Become.

【0018】次亜塩素酸塩処理において、次亜塩素酸塩
溶液はろ過膜の上流側に接し、その表面を洗浄すると共
に、その一部はろ過膜を通過して下流側に流れることが
好ましい。このとき膜を通過することなく膜の上流側に
接しながら洗浄を行う次亜塩素酸塩溶液の量と膜を通過
して洗浄を行う次亜塩素酸塩溶液(洗浄液)の量との比
が、5:5〜9:1であると特に効果的な洗浄が可能と
なる。これは洗浄液がろ過膜の表裏に最適に作用するた
めと推定される。
In the hypochlorite treatment, it is preferable that the hypochlorite solution is in contact with the upstream side of the filtration membrane and cleans the surface thereof, and a part of the hypochlorite solution flows downstream through the filtration membrane. . At this time, the ratio of the amount of the hypochlorite solution to be washed while contacting the upstream side of the membrane without passing through the membrane and the amount of the hypochlorite solution (washing solution) to be washed through the membrane is When the ratio is 5: 5 to 9: 1, particularly effective cleaning becomes possible. This is presumed to be due to the fact that the cleaning liquid optimally acts on the front and back of the filtration membrane.

【0019】このような次亜塩素酸塩処理は通常1〜2
時間行う。その後、次亜塩素酸塩溶液を除去した後、ろ
過膜及びその周辺を清澄な水で充分に洗浄し、排水後、
ろ過膜に培養液を導入し、ろ過を開始する。このような
構成により、従来の培養液浄化装置のろ過膜の洗浄方法
では達成できなかった、長時間の安定した運転が可能と
なる。
Such hypochlorite treatment is usually carried out in the range of 1 to 2
Do time. Then, after removing the hypochlorite solution, the filtration membrane and its surroundings are thoroughly washed with clear water, and after draining,
The culture solution is introduced into the filtration membrane, and filtration is started. With such a configuration, stable operation for a long time, which cannot be achieved by the conventional method for cleaning a filtration membrane of a culture solution purifying apparatus, can be achieved.

【0020】図1に本発明の培養液浄化装置のブロック
図を示す。図1中符号αは栽培槽であり、その培養液は
ラインβとポンプγとによって、本発明の培養液浄化装
置δのろ過膜Aを通過して、浄化されて循環されてい
る。このとき、ろ過膜Aの上流と下流との差圧は差圧計
などの差圧検出手段Bによって検出され、その差圧が所
定の圧力以上であり、かつ、流量計などの流量検出手段
Cで検出されるろ過流量が所定の流量以上である場合に
は、エアスクラビング処理判断手段Dがエアスクラビン
グ処理手段Eにろ過膜Aに対してエアスクラビング処理
を行なわせる。
FIG. 1 shows a block diagram of a culture solution purifying apparatus of the present invention. In FIG. 1, reference numeral α denotes a cultivation tank, and the culture solution is purified and circulated through a filtration membrane A of a culture solution purification device δ of the present invention by a line β and a pump γ. At this time, the differential pressure between the upstream and downstream of the filtration membrane A is detected by a differential pressure detecting means B such as a differential pressure gauge, and the differential pressure is equal to or higher than a predetermined pressure and detected by a flow rate detecting means C such as a flow meter. When the detected filtration flow rate is equal to or more than the predetermined flow rate, the air scrubbing processing determining means D causes the air scrubbing processing means E to perform the air scrubbing processing on the filtration membrane A.

【0021】また、差圧検出手段Bによって検出される
差圧が所定の圧力以上となり、かつ、流量検出手段Cで
検出されるろ過流量が所定の流量未満である場合には次
亜塩素酸塩処理判断手段Fが次亜塩素酸塩処理手段Gに
ろ過膜Aに対して次亜塩素酸塩処理を行なわせる。
If the differential pressure detected by the differential pressure detecting means B is equal to or higher than a predetermined pressure and the filtration flow rate detected by the flow rate detecting means C is less than the predetermined flow rate, hypochlorite is used. The processing determining means F causes the hypochlorite processing means G to perform hypochlorite processing on the filtration membrane A.

【0022】この次亜塩素酸塩処理手段Gには上記次亜
塩素酸塩処理において、膜を通過することなく膜上流側
に接しながら洗浄を行う次亜塩素酸塩溶液の量と膜を通
過して洗浄を行う次亜塩素酸塩溶液の量との比を調整す
る上流/下流流量比調整手段Hが付属している。なお、
この例では示していないが必要に応じて培養液浄化装置
がポンプγのオン/オフを制御してもよい。
In this hypochlorite treatment means G, the amount of the hypochlorite solution to be washed while being in contact with the membrane upstream without passing through the membrane and passing through the membrane in the above-mentioned hypochlorite treatment Upstream / downstream flow ratio adjusting means H for adjusting the ratio to the amount of the hypochlorite solution to be washed with water is attached. In addition,
Although not shown in this example, the culture solution purifying device may control the on / off of the pump γ as necessary.

【0023】このような培養液浄化装置の制御は例えば
マイクロコンピュータを用いて制御することができる。
図2(a)には本発明の培養液浄化装置の一例につい
て、その配管配線図を示した。ろ過膜Fの上流側の栽培
槽からのラインには電磁弁V1(スクラビング処理時及
び次亜塩素酸塩処理などの廃液が栽培槽方向への逆流を
防止する)とポンプPoとがあり、電磁弁V1とポンプ
Poとの間には分岐があって薬液ライン及び清水ライン
が接続されている。
The control of the culture solution purifying apparatus can be controlled by using, for example, a microcomputer.
FIG. 2A shows a piping diagram of an example of the culture solution purifying apparatus of the present invention. The line from the cultivation tank on the upstream side of the filtration membrane F has a solenoid valve V 1 (to prevent a waste liquid such as a scrubbing treatment and a hypochlorite treatment from flowing back toward the cultivation tank) and a pump Po. chemical lines and fresh water lines are connected to a branch between the solenoid valve V 1 and the pump Po.

【0024】薬液ラインには電磁弁V6と、電磁弁V6
上流には薬液槽Kが設けられている。また、次亜塩素酸
塩処理後にろ過膜周辺を洗浄する洗浄水を供給するため
の清水ラインは電磁弁V9を介して水道に接続されてい
The electromagnetic valve V 6 is the chemical lines, chemical tank K is provided upstream of the solenoid valve V 6. Also, Shimizu line for supplying washing water to clean the filtration membrane surrounding after hypochlorite process is connected to the water supply via a solenoid valve V 9

【0025】ろ過膜Fの入り側、出側には差圧計M1
設けられ、ろ過膜Fの上流と下流との差圧を検出するよ
うになっている。ろ過膜Fの上流側下方には電磁弁
7、次亜塩素酸塩処理時のろ過膜不通過液量を調整す
るための流量計M3及び流量調整弁V7’とを有し、薬液
タンクKに薬液が戻るようになっている上流側次亜塩素
酸環流ライン、電磁弁V5を有するろ過膜周辺の排水用
排水ライン、及び、電磁弁V3を介してエアスクラビン
グ処理用の圧縮空気供給ラインが接続されている。
The inlet side of the filtration membrane F, the differential pressure gauge M 1 is the outlet side is provided so as to detect a differential pressure between upstream and downstream of the filtration membrane F. An electromagnetic valve V 7 , a flow meter M 3 for adjusting the amount of liquid that does not pass through the filtration membrane during hypochlorite treatment, and a flow control valve V 7 ′ are provided below the upstream side of the filtration membrane F. upstream hypochlorite reflux line adapted chemical solution is returned to tank K, filtration membranes surrounding drainage drain line having an electromagnetic valve V 5, and compression for air scrubbing process through the solenoid valve V 3 The air supply line is connected.

【0026】ろ過膜F上流側上方には、電磁弁V4を有
する排気・吸気用のベントラインが設けられている。さ
らにろ過膜F下流側下方には、電磁弁V8、次亜塩素酸
塩処理時のろ過膜通過液量を調整するための流量計M4
及び流量調整弁V8’とを有する下流側次亜塩素酸環流
ラインが設けられていて、薬液タンクKに薬液が戻るよ
うになっている。
[0026] filtration membrane F upstream upward, vent line for the exhaust-air having a solenoid valve V 4 is provided. Further, below the filtration membrane F, a solenoid valve V 8 and a flow meter M 4 for adjusting the amount of liquid passing through the filtration membrane during hypochlorite treatment are provided.
And a downstream-side hypochlorous acid reflux line having a flow control valve V 8 ′ and a chemical solution returning to the chemical solution tank K.

【0027】ろ過膜Fの出口には電磁弁V2が設けら
れ、スクラビング処理時及び次亜塩素酸塩処理などの廃
液が栽培槽方向に流れることを防止する。これら電磁弁
1〜V9はそれぞれマイクロコンピュータMPの出力ポ
ートO1〜O7に接続され、これら出力ポートのそれぞれ
に信号「ON」が出力されると開き、信号「OFF」が
出力されると閉じるようになっている。
The solenoid valve V 2 is provided at the outlet of the filtration membrane F is waste such as scrubbing process during and hypochlorite process is prevented from flowing in the culture tank direction. These solenoid valves V 1 ~V 9 are respectively connected to the output port O 1 ~ O 7 microcomputer MP, open the signal "ON" is output to each of these output ports, signal "OFF" is output And closes.

【0028】またポンプPoはマイクロコンピュータM
Pの出力ポートO10に接続され、出力ポートO10に信
号「ON」が出力されると稼働し、信号「OFF」が出
力されると止まるようになっている。これら電磁弁、ポ
ンプは初期値として「OFF」となっていて、装置動作
開始前は電磁弁は閉まっていて、ポンプは停止してい
る。
The pump Po is a microcomputer M
Are connected to P output ports O10, running the signal "ON" is output to the output port O 10, so that the stops when the signal "OFF" is output. These solenoid valves and pumps are "OFF" as initial values, and the solenoid valves are closed and the pumps are stopped before the operation of the apparatus is started.

【0029】また、差圧計M1の出力及び流量計M2の出
力はそれぞれマイクロコンピュータMPの入力ポートI
1及びI2を通じてマイクロコンピュータMP内に取り込
まれるようになっている。
The output of the differential pressure gauge M 1 and the output of the flow meter M 2 are connected to the input port I of the microcomputer MP, respectively.
It is adapted to be taken into the microcomputer MP through 1 and I 2.

【0030】マイクロコンピュータMPには、このほか
に、中央制御回路CPU、タイマ変数T1、T2及びT3
などを有する、読み書き可能なメモリRAM(図2
(b)及び、予め設定した、所定の差圧のデータa1
所定の流量のデータa2、エアスクラビング処理時間の
データt1、次亜塩素酸塩処理時間のデータt2、及び、
ろ過膜周辺の排水に要する時間のデータt3、水洗時間
のデータt4等、あるいは中央制御回路CPUのプログ
ラムなどが書き込まれた読み出し専用メモリ(図2
(c))を有する。
The microcomputer MP also includes a central control circuit CPU, timer variables T 1 , T 2 and T 3.
Readable and writable memory RAM (FIG. 2
(B) and data a 1 of a predetermined differential pressure set in advance,
Predetermined flow rate data a 2 , air scrubbing time t 1 , hypochlorite time t 2 , and
A read-only memory (FIG. 2) in which data t 3 of the time required for drainage around the filtration membrane, data t 4 of the washing time, etc., or a program of the central control circuit CPU is written.
(C)).

【0031】このような培養液浄化装置の動きについ
て、図3のフローチャートを用いて説明する。スタート
後、ステップS1にて出力ポートO1、O2及びO10に信
号「ON」が出力され、電磁弁V1及びV2が開くと共
に、ポンプPoが稼働して、培養液の循環浄化が開始さ
れる。
The operation of such a culture solution purifying device will be described with reference to the flowchart of FIG. After the start, the output of the signal "ON" to the output port O 1, O 2 and O 10 in step S 1, the electromagnetic valve V 1 and V 2 are opened, the pump Po is running, circulating cleaning of culture Is started.

【0032】ステップS2ではろ過膜の上流と下流との
差圧を検出する差圧検出手段である差圧計Mからの差圧
データである入力ポートI1の値が所定の圧力a1に達し
ていないか調べ、所定の圧力a1未満であるときはステ
ップS2を繰り返し、所定の圧力a1以上であるときには
ステップS3に進む。
[0032] reaches a pressure a 1 value of the input port I 1 is a differential pressure data is given from the differential pressure gauge M is a differential pressure detecting means for detecting a differential pressure between upstream and downstream of the step S 2 in the filtration membrane Check for a, when it is less than a predetermined pressure a 1 repeats the steps S 2, the process proceeds to step S 3 when the predetermined pressure a 1 or more.

【0033】ステップS3ではろ過流量を検出する流量
検出手段である流量計M2からのろ過流量データである
入力ポートI2の値が所定の流量a2に達していないか調
べ、所定の流量a2以上であるときはステップS10に進
み、所定の流量a2未満であるときにはステップS20
進む。
[0033] investigated whether the value of the input port I 2 is a filtration flow rate data from the flow meter M 2 which is a flow rate detecting means for detecting the filtered flow in step S 3 has not reached the predetermined flow rate a 2, a predetermined flow rate the process proceeds to step S 10 when it is a 2 or more, the process proceeds to step S 20 when it is less than the predetermined flow rate a 2.

【0034】ステップS10では出力ポートO1、O2及び
10に信号「OFF」が出力され、バルブV1及びV2
閉じられて、この培養液浄化装置が培養液ラインから切
り離され、同時にポンプPoが停止する。
The signal "OFF" is output in step S 10 output ports O 1, O 2 and O 10, valves V 1 and V 2 are closed, the culture solution purification device is disconnected from the culture fluid line, At the same time, the pump Po stops.

【0035】次いでステップS11で出力ポートO3及び
4に信号「ON」が出力され、バルブV3及びV4が開
いて、ろ過膜Fの上流側に圧縮空気が供給されて、エア
スクラビング処理が開始される。
[0035] Then the signal "ON" to the output port O 3 and O 4 in step S 11 is outputted, the valve V 3 and V 4 are opened, and compressed air is supplied to the upstream side of the filtration membrane F, air scrubbing Processing is started.

【0036】ステップS12ではタイマT1がリセットさ
れた後スタートし、ステップS14では予め定められたエ
アスクラビング処理時間であるt1に達するまで処理が
継続される。
The timer T 1 in step S 12 is started after being reset, the process to reach t 1 is air scrubbing process a predetermined time in step S 14 is continued.

【0037】タイマT1が予め定められたエアスクラビ
ング処理時間であるt1に達した後ステップS14で出力
ポートO3に信号「OFF」が出力され、バルブV3が閉
じられ、エアスクラビング処理が終了する。次いで、ス
テップS15で出力ポートO5に信号「ON」が出力さ
れ、バルブV5が開いて、エアスクラビングによってろ
過膜から脱離したごみ、汚れなどが分散したろ過膜周辺
の培養液が排出される。
After the timer T 1 has reached the predetermined air scrubbing processing time t 1 , a signal “OFF” is output to the output port O 3 in step S 14 , the valve V 3 is closed, and the air scrubbing processing is performed. Ends. Then, the signal "ON" is output to the output port O 5 in step S 15, the valve V 5 is opened, dust detached from the filtration membrane by air scrubbing, broth filtration membrane surrounding the like are dispersed dirt discharge Is done.

【0038】ステップS16でタイマーT2がリセットさ
れた後スタートし、ステップS17では予め定められた排
液時間であるt2に達するまで弁の状態が維持された
後、ステップS18で出力ポートO4及びO5に信号「OF
F」が出力され、バルブV4及びV5が閉じられ、次いで
ステップS1に戻り、再度、培養液の循環ろ過が開始さ
れる。
[0038] Starting after the timer T 2 is reset in step S 16, after the state of the valve to reach t 2 is maintained a drainage predetermined time in step S 17, output in step S 18 signal to port O 4 and O 5 "OF
F "is outputted, the valve V 4 and V 5 are closed, then the process returns to step S 1, again, the circulation filtration is started cultures.

【0039】一方、ステップS3からステップS20に進
んだ場合には、出力ポートO1及びO 2に信号「OFF」
が出力され、バルブV1及びV2が閉じられてこの培養
液浄化装置が培養液ラインから切り離される。
On the other hand, step SThreeTo step S20Proceed to
Output port O1And O TwoSignal "OFF"
Is output, the valves V1 and V2 are closed, and this culture is performed.
The liquid purifier is disconnected from the culture solution line.

【0040】ステップS21で出力ポートO6、O7及びO
8に信号「ON」が出力され、バルブV6、V7及びV8
開いて、薬液タンクK内に予め調整された次亜塩素酸塩
溶液がろ過膜に循環供給されて次亜塩素酸塩処理が実施
される。このとき、ろ過膜を通過することなく膜上流側
に接しながら洗浄を行う次亜塩素酸塩溶液(すなわちバ
ルブV7通過液量)の量と膜を通過して洗浄を行う次亜
塩素酸塩溶液(すなわちバルブV8通過液量)の量との
比が、5:5〜9:1となるように、バルブV7’及び
8’を調整しておく。
The output port O 6 in step S 21, O 7 and O
8 , a signal “ON” is output, valves V 6 , V 7 and V 8 are opened, and the hypochlorite solution prepared in advance in the chemical solution tank K is circulated and supplied to the filtration membrane, and hypochlorous acid is added. Salt treatment is performed. At this time, the hypochlorite for cleaning through the amount and film hypochlorite solution for cleaning in contact therewith without film upstream (i.e. valve V 7 passing liquid amount) passing through the filtration membrane The valves V 7 ′ and V 8 ′ are adjusted so that the ratio to the amount of the solution (that is, the amount of liquid passing through the valve V 8 ) is 5: 5 to 9: 1.

【0041】ステップS22でタイマーT3がリセットさ
れた後スタートし、ステップS23では予め定められた次
亜塩素酸塩処理時間であるt3に達するまで次亜塩素塩
処理が続行される。
[0041] Starting after the timer T 3 is reset in step S 22, hypochlorous salt treatment is continued until the t 3 is a hypochlorite treatment predetermined time in step S 23.

【0042】ステップS24で出力ポートO6及びO10
信号「OFF」が出力され、バルブV6が閉じられて、
かつ、ポンプPoが停止する。次のステップS25で出力
ポートO4に信号「ON」が出力され、バルブV4が開い
て、ろ過膜周辺の次亜塩素酸塩養液が下流側次亜塩素酸
環流ライン及び上流側次亜塩素酸環流ラインから薬液タ
ンクに回収される。
The signal "OFF" is outputted to the output port O 6 and O 10 in step S 24, the valve V 6 is closed,
At the same time, the pump Po stops. The signal "ON" to the output port O 4 in the next step S 25 is outputted, the valve V 4 is opened, hypochlorite nutrient solution downstream hypochlorite reflux line and the upstream side near the filtration membrane following Collected from the chlorite reflux line into the chemical tank.

【0043】ステップS26でタイマーT2がリセットさ
れた後スタートし、ステップS27では予め定められた排
液時間であるt2に達するまで弁の状態が維持される。
ステップS28では出力ポートO4、O7及びO8に信号
「OFF」が出力され、バルブV4、V7及びV8が閉じ
られ、次いで、ステップS29で出力ポートO5、O 9及び
10に信号「ON」が出力され、バルブV5及びV9が開
き、さらにポンプPoが稼働してろ過膜の水洗が行われ
る。
Step S26With timer TTwoIs reset
Start after step S27Then, the predetermined
T is the liquid timeTwoThe state of the valve is maintained until it reaches.
Step S28Then output port OFour, O7And O8Signal
“OFF” is output and the valve VFour, V7And V8Is closed
And then step S29Output port OFive, O 9as well as
OTen"ON" is output to the valve VFiveAnd V9Is open
Then, the pump Po operates and the filter membrane is washed with water.
You.

【0044】ステップS30でタイマーT4がリセットさ
れた後スタートし、ステップS31ではタイマーT4が予
め定められた水洗時間であるt4に達するまで弁及びポ
ンプの状態が維持される。
The process starts after the timer T 4 is reset in step S 30. In step S 31 , the state of the valve and the pump is maintained until the timer T 4 reaches a predetermined washing time t 4 .

【0045】予め定められた水洗処理時間であるt4
達した後ステップS32で出力ポートO9及びO10に信号
「OFF」が出力され、バルブV9が閉じられるととも
にポンプPoが停止し、水洗処理が終了する。次いで、
ステップS33で出力ポートO4に信号「ON」が出力さ
れ、バルブV4が開いて、ろ過膜周辺の水洗水が排出さ
れる。
After reaching a predetermined washing time t 4 , a signal “OFF” is output to the output ports O 9 and O 10 in step S 32 , the valve V 9 is closed and the pump Po is stopped. Then, the water washing process ends. Then
The output port O 4 in step S 33 the signal "ON" is output, the valve V 4 is opened, washing water around the filtration membrane is discharged.

【0046】ステップS34でタイマーT2がリセットさ
れた後スタートし、ステップS35ではタイマーT2が予
め定められた排液時間であるt2に達するまで弁の状態
が維持された後、ステップS35で出力ポートO4及び
5に信号「OFF」が出力され、バルブV4及びV5
が閉じられ、次いでステップS1に戻り、再度、培養液
の循環ろ過が開始される。
After the timer T 2 is reset in step S 34 , the process is started. In step S 35 , the state of the valve is maintained until the timer T 2 reaches a predetermined drainage time t 2. S35 signal "OFF" is outputted to the output ports O 4 and O 5, the valve V4 and V5
Is closed, and then the process returns to step S1, and circulation filtration of the culture solution is started again.

【0047】このような装置の各所の働きから明らかな
ように、差圧計M1はろ過膜の上流と下流との差圧を検
出する差圧検出手段、流量計M2はろ過流量を検出する
流量検出手段であり、ろ過膜の上流と下流との差圧が所
定の圧力以上となり、かつ、ろ過流量が所定の流量以上
である場合に前記エアスクラビング処理手段にエアスク
ラビング処理を行なわせるエアスクラビング処理判断手
段とろ過膜の上流と下流との差圧が所定の圧力以上とな
り、かつ、ろ過流量が所定の流量未満である場合に前記
次亜塩素酸塩処理手段に次亜塩素酸塩処理を行なわせる
次亜塩素酸塩処理判断手段とはマイクロコンピュータM
Pにそれぞれ該当し、また、圧縮空気供給ライン、配管
及び各弁がろ過膜に対してエアスクラビング処理を行う
エアスクラビング処理手段に、薬液タンクK、ポンプP
o配管及び各弁がろ過膜に対して次亜塩素酸塩溶液によ
る次亜塩素酸塩処理を行う次亜塩素酸塩処理手段に、ま
た、流量計M3及びM4と流量調整弁V7’及びV8’と
が次亜塩素酸塩処理において膜を通過することなく膜上
流側に接しながら洗浄を行う次亜塩素酸塩溶液の量と膜
を通過して洗浄を行う次亜塩素酸塩溶液の量との比を調
整する上流/下流流量比調整手段にそれぞれ該当する
As is apparent from various parts of the action of such devices, the differential pressure gauge M 1 is the differential pressure detecting means for detecting a differential pressure between upstream and downstream of the filtration membrane, the flow meter M 2 detects the filtration flow Air scrubbing, which is a flow rate detection means, and causes the air scrubbing processing means to perform an air scrubbing process when a differential pressure between the upstream and downstream of the filtration membrane is equal to or higher than a predetermined pressure and the filtration flow rate is equal to or higher than a predetermined flow rate. The hypochlorite treatment is performed by the hypochlorite treatment means when the pressure difference between the upstream and downstream of the processing determination means and the filtration membrane is equal to or higher than a predetermined pressure, and the filtration flow rate is less than the predetermined flow rate. Hypochlorite treatment determining means to be performed is microcomputer M
P, and the compressed air supply line, piping, and valves perform air scrubbing on the filtration membrane.
o The hypochlorite treatment means in which the piping and each valve perform hypochlorite treatment with a hypochlorite solution on the filtration membrane, as well as the flow meters M3 and M4 and the flow control valve V 7 ′ The amount of hypochlorite solution to be cleaned while V 8 ′ is in contact with the upstream side of the membrane without passing through the membrane in the hypochlorite treatment, and the hypochlorite solution to be cleaned by passing through the membrane Corresponding to upstream / downstream flow ratio adjusting means for adjusting the ratio with the amount of water

【0048】[0048]

【実施例】以下に本発明の培養液浄化装置による培養液
浄化について具体的に説明する。図2に配管・回路図を
示した培養液浄化装置を用いて以下の実験を行った。培
養液は、トマト水耕栽培用培養液であり、ろ過膜は東レ
製CP−2020(膜ろ過精度:分画分子量10000
0)を用い、循環ろ過を行った。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The purification of a culture solution by the culture solution purification apparatus of the present invention will be specifically described below. The following experiment was performed using the culture solution purifying apparatus whose piping and circuit diagram is shown in FIG. The culture solution is a culture solution for tomato hydroponics, and the filtration membrane is CP-2020 manufactured by Toray (membrane filtration accuracy: molecular weight cut off 10,000).
Using 0), circulation filtration was performed.

【0049】本発明に係る実施例(エアスクラビング処
理及び次亜塩素酸塩処理併用実施)では、ろ過膜の上流
と下流との初期差圧が0.18MPaに対し、この差圧
が0.20MPa(上記例における「a1」)以上で、
かつ、流量が初期値1600L/hに対して、1400
L/h(上記例における「a2」)以上のときにエアス
クラビング処理を、ろ過膜の上流と下流との初期差圧が
0.18MPaに対し、この差圧が0.20MPa(上
記例における「a1」)以上で、かつ、流量が1400
L/h未満のときに次亜塩素酸塩処理を行った。
In the embodiment according to the present invention (the combined use of the air scrubbing treatment and the hypochlorite treatment), the initial pressure difference between the upstream and downstream of the filtration membrane was 0.18 MPa, and the pressure difference was 0.20 MPa. (“A 1 ” in the above example)
And, the flow rate is 1,400 L / h with respect to the initial value of 1,600 L / h.
L / h (“a 2 ” in the above example) or more, the air scrubbing treatment was performed, and the initial pressure difference between the upstream and downstream of the filtration membrane was 0.18 MPa, and the differential pressure was 0.20 MPa (the above example). "A 1 ") or more and the flow rate is 1400
When it was less than L / h, hypochlorite treatment was performed.

【0050】一方、比較のため培養液の循環ろ過は実施
例と同様に行い、従来技術に係る膜洗浄として比較例1
としてエアスクラビング処理のみを単独実施した例で
は、ろ過膜の上流と下流との差圧(初期差圧:0.18
MPa)が0.20MPaに達したときにエアスクラビ
ング処理をおこなった。また比較例2として培養液の循
環ろ過は実施例と同様に行い、膜洗浄に当たって次亜塩
素酸塩処理のみを単独実施した例では、ろ過流量が14
00L/h以下となったときに次亜塩素酸塩処理を行っ
た。
On the other hand, for the sake of comparison, the circulating filtration of the culture solution was carried out in the same manner as in the example, and the membrane cleaning according to the prior art was carried out in comparative example 1
In the example in which only the air scrubbing treatment was performed alone, the differential pressure between the upstream and downstream of the filtration membrane (initial differential pressure: 0.18
When the pressure (MPa) reached 0.20 MPa, an air scrubbing treatment was performed. In Comparative Example 2, the circulating filtration of the culture solution was performed in the same manner as in the example, and in the example in which only the hypochlorite treatment was performed alone for membrane washing, the filtration flow rate was 14%.
The hypochlorite treatment was performed when the water content became 00 L / h or less.

【0051】エアスクラビング処理は10分間に亘り、
ろ過膜の上流側にエア供給圧力0.1MPa、エア供給
量20NL/minの条件でエアスクラビング処理を行
った。一方、次亜塩素酸塩処理は100mg/Lの次亜
塩素酸ナトリウム水溶液(常温)を500L/hの速度
で膜に対して1時間に亘って供給して行った。なお、こ
の次亜塩素酸塩処理において、膜を通過することなく膜
上流側に接しながら洗浄を行う次亜塩素酸塩溶液の量と
膜を通過して洗浄を行う次亜塩素酸塩溶液の量との比
(上流/下流流量比)を、6:4として設定して行っ
た。
The air scrubbing process is performed for 10 minutes,
An air scrubbing treatment was performed on the upstream side of the filtration membrane under the conditions of an air supply pressure of 0.1 MPa and an air supply amount of 20 NL / min. On the other hand, the hypochlorite treatment was performed by supplying a 100 mg / L aqueous solution of sodium hypochlorite (normal temperature) to the membrane at a rate of 500 L / h for one hour. In this hypochlorite treatment, the amount of the hypochlorite solution to be washed while being in contact with the membrane upstream without passing through the membrane and the hypochlorite solution to be washed through the membrane The ratio with the amount (upstream / downstream flow ratio) was set at 6: 4.

【0052】このときのろ過流量の経時変化を図4に併
せて示す(エアスクラビング処理時間、次亜塩素酸塩処
理時間は省いてある)。図3のそれぞれにおいて、鋸歯
状の各ピークは各洗浄処理後に流量が回復したことを示
す。なお「●」を付した箇所では次亜塩素酸塩処理を行
ったことを示す。
FIG. 4 also shows the change over time of the filtration flow rate at this time (the air scrubbing treatment time and the hypochlorite treatment time are omitted). In each of FIG. 3, each serrated peak indicates that the flow rate was restored after each cleaning treatment. In addition, the places marked with “●” indicate that the hypochlorite treatment was performed.

【0053】図4より、本発明の実施例では次亜塩素酸
塩処理単独の比較例2と比べると次亜塩素酸塩処理の頻
度は1/4程度となっていることが判る。またスクラビ
ング処理単独実施の比較例1では徐々に透過液量が減少
していくのに比べ、極めて安定していることが判る。
From FIG. 4, it can be seen that the frequency of hypochlorite treatment in the example of the present invention is about 1/4 as compared with Comparative Example 2 in which hypochlorite treatment alone is used. In Comparative Example 1 in which only the scrubbing treatment was performed, it can be seen that the amount of the permeated liquid is extremely stable as compared with the case where the amount of the permeated liquid gradually decreases.

【0054】なお、図5に上記実施例の処理を継続して
長期間実施したときの透過水量を示した。図5より、長
期間に亘り安定した処理が可能であることが判る。な
お、次亜塩素酸塩処理単独の比較例2の場合には徐々に
透過水量が減少し、15日程度でろ過膜を交換しなけれ
ばならなかった。
FIG. 5 shows the amount of permeated water when the process of the above embodiment was continued for a long period of time. FIG. 5 shows that stable processing can be performed over a long period of time. In the case of Comparative Example 2 in which the treatment with hypochlorite alone was performed, the amount of permeated water gradually decreased, and the filtration membrane had to be replaced in about 15 days.

【0055】次に次亜塩素酸塩処理において、膜を通過
することなく膜上流側に接しながら洗浄を行う次亜塩素
酸塩溶液の量と膜を通過して洗浄を行う次亜塩素酸塩溶
液の量との比(上流/下流流量比)について検討を行っ
た。なお、上流/下流流量比は図2における流量計M3
及びM4の指示を見ながら流量調整弁V7’及びV8’を
調整することにより調整することができる。
Next, in the hypochlorite treatment, the amount of the hypochlorite solution to be washed while being in contact with the upstream side of the membrane without passing through the membrane and the hypochlorite to be washed through the membrane The ratio to the amount of the solution (upstream / downstream flow ratio) was examined. Note that the upstream / downstream flow ratio is the flow meter M 3 in FIG.
By adjusting the flow control valves V 7 ′ and V 8 ′ while watching the instructions of M 4 and M 4 .

【0056】上記実施例1と同様に、ただし、図2にお
ける流量計M3及びM4の指示を見ながら流量調整弁
7’及びV8’を調整して上流/下流流量比を変えて装
置を運転し、使用・洗浄処理を次亜塩素酸塩処理を5回
繰り返したときの透過水量を調べた。初期透過水量の値
を100%としたときの回復率を表1に示す。
As in the first embodiment, the flow rate adjusting valves V 7 ′ and V 8 ′ are adjusted while observing the instructions of the flow meters M 3 and M 4 in FIG. 2 to change the upstream / downstream flow rate ratio. The apparatus was operated, and the amount of permeated water when the use / washing treatment was repeated five times with hypochlorite treatment was examined. Table 1 shows the recovery rate when the value of the initial permeated water amount is 100%.

【0057】[0057]

【表1】 [Table 1]

【0058】表1より、次亜塩素酸塩処理において、膜
を通過することなく膜上流側に接しながら洗浄を行う次
亜塩素酸塩溶液の量と膜を通過して洗浄を行う次亜塩素
酸塩溶液の量との比(上流/下流流量比)が、5:5〜
9:1であると極めて高い回復率を示すことが判る。
As shown in Table 1, in the hypochlorite treatment, the amount of the hypochlorite solution to be washed while being in contact with the upstream side of the membrane without passing through the membrane and the hypochlorite to be washed by passing through the membrane Ratio to the amount of acid salt solution (upstream / downstream flow ratio) is 5: 5
It turns out that when it is 9: 1, an extremely high recovery rate is shown.

【0059】[0059]

【発明の効果】本発明の培養液浄化装置は、優れた培養
液浄化装置である。
The culture solution purifying device of the present invention is an excellent culture solution purifying device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の培養液浄化装置のブロック図である。FIG. 1 is a block diagram of a culture solution purifying apparatus of the present invention.

【図2】本発明の培養液浄化装置の一例の配管・配線図
である。
FIG. 2 is a piping and wiring diagram of an example of the culture solution purifying apparatus of the present invention.

【図3】図2の装置の動作を説明するためのフローチャ
ートである。
FIG. 3 is a flowchart for explaining the operation of the apparatus of FIG. 2;

【図4】本発明の培養液浄化装置の洗浄方法の効果を示
すグラフである。
FIG. 4 is a graph showing the effect of the method for cleaning a culture solution purifying device of the present invention.

【図5】本発明の培養液浄化装置の洗浄方法で長期に渡
って安定したろ過が可能であることを示すグラフであ
る。
FIG. 5 is a graph showing that stable filtration can be performed over a long period of time by the method for cleaning a culture solution purifying device of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渋谷 吉昭 茨城県つくば市緑ケ原4−4 アクアス 株式会社 つくば総合研究所内 (72)発明者 徳丸 利信 茨城県つくば市緑ケ原4−4 アクアス 株式会社 つくば総合研究所内 (56)参考文献 特開 平7−275671(JP,A) 特開 平9−107826(JP,A) 特開 平9−253645(JP,A) 特開 平9−29070(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01D 61/00 - 61/58 A01G 31/00 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Yoshiaki Shibuya 4-4 Midorigahara, Tsukuba, Ibaraki Prefecture Aquas Co., Ltd. Tsukuba Research Institute (72) Inventor Toshinobu Tokumaru 4-4 Midorigahara, Tsukuba City, Ibaraki Prefecture In-house (56) References JP-A-7-275671 (JP, A) JP-A-9-107826 (JP, A) JP-A-9-253645 (JP, A) JP-A-9-29070 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) B01D 61/00-61/58 A01G 31/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 養液栽培培養液を膜ろ過により浄化する
培養液浄化装置において、 ろ過膜の上流と下流との差圧を検出する差圧検出手段、 ろ過流量を検出する流量検出手段、 ろ過膜に対してエアスクラビング処理を行うエアスクラ
ビング処理手段、 ろ過膜に対して次亜塩素酸塩溶液による次亜塩素酸塩処
理を行う次亜塩素酸塩処理手段、 ろ過膜の上流と下流との差圧が所定の圧力以上となり、
かつ、ろ過流量が所定の流量以上である場合に前記エア
スクラビング処理手段にエアスクラビング処理を行なわ
せるエアスクラビング処理判断手段とろ過膜の上流と下
流との差圧が所定の圧力以上となり、かつ、ろ過流量が
所定の流量未満である場合に前記次亜塩素酸塩処理手段
に次亜塩素酸塩処理を行なわせる次亜塩素酸塩処理判断
手段とを有することを特徴とする培養液浄化装置。
1. A culture solution purifying device for purifying a nutrient solution culture solution by membrane filtration, comprising: a differential pressure detecting means for detecting a differential pressure between upstream and downstream of a filtration membrane; a flow rate detecting means for detecting a filtration flow rate; Air scrubbing means for performing air scrubbing treatment on the membrane; hypochlorite treatment means for performing hypochlorite treatment with a hypochlorite solution on the filtration membrane; and upstream and downstream of the filtration membrane. When the differential pressure exceeds a predetermined pressure,
And, when the filtration flow rate is equal to or more than a predetermined flow rate, the differential pressure between the upstream and downstream of the air scrubbing determination means and the filtration membrane that causes the air scrubbing processing means to perform the air scrubbing processing is equal to or higher than a predetermined pressure, and A culture solution purifying apparatus, comprising: hypochlorite treatment determining means for causing the hypochlorite processing means to perform hypochlorite treatment when the filtration flow rate is less than a predetermined flow rate.
【請求項2】 上記次亜塩素酸塩処理手段が、膜を通過
することなく膜上流側に接しながら洗浄を行う次亜塩素
酸塩溶液の量と膜を通過して洗浄を行う次亜塩素酸塩溶
液の量との比を調整する上流/下流流量比調整手段を有
することを特徴とする請求項1に記載の培養液浄化装
置。
2. The method according to claim 1, wherein the hypochlorite treatment means is configured to perform the cleaning while passing through the membrane and the amount of the hypochlorite solution for cleaning while contacting the upstream side of the membrane without passing through the membrane. The culture solution purifying apparatus according to claim 1, further comprising an upstream / downstream flow rate ratio adjusting means for adjusting a ratio with respect to the amount of the salt solution.
【請求項3】 養液栽培培養液を膜ろ過により浄化する
培養液浄化装置のろ過膜の洗浄方法において、 ろ過膜の上流と下流との差圧が所定の圧力以上となり、
かつ、ろ過流量が所定の流量以上である場合にろ過膜に
対してエアスクラビング処理を行ない、ろ過膜の上流と
下流との差圧が所定の圧力以上となり、かつ、ろ過流量
が所定の流量未満である場合にろ過膜に対して次亜塩素
酸塩溶液による次亜塩素酸塩処理を行うことを特徴とす
る培養液浄化装置のろ過膜の洗浄方法。
3. A method for cleaning a filtration membrane of a culture solution purifying device for purifying a nutrient culture solution by membrane filtration, wherein a differential pressure between upstream and downstream of the filtration membrane is equal to or higher than a predetermined pressure,
And, when the filtration flow rate is equal to or higher than a predetermined flow rate, an air scrubbing process is performed on the filtration membrane, and the differential pressure between the upstream and downstream of the filtration membrane is equal to or higher than a predetermined pressure, and the filtration flow rate is lower than the predetermined flow rate. A method for cleaning a filtration membrane of a culture solution purifying apparatus, wherein the filtration membrane is subjected to hypochlorite treatment with a hypochlorite solution.
【請求項4】 上記次亜塩素酸塩処理において、膜を通
過することなく膜上流側に接しながら洗浄を行う次亜塩
素酸塩溶液の量と膜を通過して洗浄を行う次亜塩素酸塩
溶液の量との比が、5:5〜9:1であることを特徴と
する請求項3に記載の培養液浄化装置のろ過膜の洗浄方
法。
4. In the hypochlorite treatment, the amount of the hypochlorite solution to be washed while being in contact with the upstream side of the membrane without passing through the membrane and the hypochlorous acid to be washed through the membrane The method according to claim 3, wherein a ratio of the amount of the salt solution to the amount of the salt solution is 5: 5 to 9: 1.
JP2001006643A 2001-01-15 2001-01-15 Culture solution purification apparatus and method for cleaning filtration membrane thereof Expired - Lifetime JP3538385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001006643A JP3538385B2 (en) 2001-01-15 2001-01-15 Culture solution purification apparatus and method for cleaning filtration membrane thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001006643A JP3538385B2 (en) 2001-01-15 2001-01-15 Culture solution purification apparatus and method for cleaning filtration membrane thereof

Publications (2)

Publication Number Publication Date
JP2002204933A JP2002204933A (en) 2002-07-23
JP3538385B2 true JP3538385B2 (en) 2004-06-14

Family

ID=18874501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001006643A Expired - Lifetime JP3538385B2 (en) 2001-01-15 2001-01-15 Culture solution purification apparatus and method for cleaning filtration membrane thereof

Country Status (1)

Country Link
JP (1) JP3538385B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007216102A (en) * 2006-02-14 2007-08-30 Mitsubishi Heavy Ind Ltd Filtering device, and membrane washing method of this filtering device
JP5767876B2 (en) * 2011-06-30 2015-08-26 株式会社ユアサメンブレンシステム Disinfection device for hydroponics culture using membrane filtration and method thereof
JP5780518B2 (en) * 2011-08-11 2015-09-16 鹿島建設株式会社 Treatment method and apparatus for hydroponics wastewater
JP7088493B2 (en) * 2018-12-28 2022-06-21 株式会社 太陽 How to clean the hollow fiber membrane

Also Published As

Publication number Publication date
JP2002204933A (en) 2002-07-23

Similar Documents

Publication Publication Date Title
Konieczny et al. Using activated carbon to improve natural water treatment by porous membranes
CA2174847C (en) Method and apparatus for recovering water from a sewer main
Guglielmi et al. Sub-critical fouling in a membrane bioreactor for municipal wastewater treatment: experimental investigation and mathematical modelling
US20220145596A1 (en) Residential grey water recycling system
EP2473256A1 (en) Water purification system
JP2009183825A (en) Water treatment apparatus
EP0669159A1 (en) Back wash method for filtration modules using internally pressurized hollow fibers
JP3538385B2 (en) Culture solution purification apparatus and method for cleaning filtration membrane thereof
JP5321450B2 (en) Water treatment equipment water supply pipe cleaning method
CA2672316A1 (en) Water treatment process
JPH11169851A (en) Water filter and its operation
JPH06238136A (en) Method for washing filter membrane module
Botes et al. Long-term evaluation of a UF pilot plant for potable water production
US11072547B2 (en) Method for atomizer-based liquid disinfection
JPH11179173A (en) Operation method of membrane separator and membrane separator
CN110947303B (en) Water purifying device and operation method thereof
Cramer et al. Optimization and fouling mechanism of a thermophile submerged MBR (TSMBR) pilot plant for wastewater treatment in a paper mill
JP2015163869A (en) Device for evaluation of biofilm formation potential
JPH10296060A (en) Prevention method for contamination of separation membrane
JP2004009032A (en) Method of manufacturing deionized water, and hydroponics method and apparatus
JP2016190203A (en) Wastewater treatment method and wastewater treatment device
JP7149702B2 (en) Wastewater treatment method and wastewater recycling method
JP3514828B2 (en) Operation method of water purification system and water purification device
CN211111496U (en) A quality of water clean system for plant is grown seedlings
JP6860205B2 (en) Nutrient solution filtration device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040319

R150 Certificate of patent or registration of utility model

Ref document number: 3538385

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term