JP3537169B2 - Manufacturing method of cylindrical index distribution type optical transmission body - Google Patents

Manufacturing method of cylindrical index distribution type optical transmission body

Info

Publication number
JP3537169B2
JP3537169B2 JP28625093A JP28625093A JP3537169B2 JP 3537169 B2 JP3537169 B2 JP 3537169B2 JP 28625093 A JP28625093 A JP 28625093A JP 28625093 A JP28625093 A JP 28625093A JP 3537169 B2 JP3537169 B2 JP 3537169B2
Authority
JP
Japan
Prior art keywords
refractive index
index distribution
optical transmission
transmission body
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28625093A
Other languages
Japanese (ja)
Other versions
JPH07120604A (en
Inventor
吉弘 魚津
暢彦 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP28625093A priority Critical patent/JP3537169B2/en
Publication of JPH07120604A publication Critical patent/JPH07120604A/en
Application granted granted Critical
Publication of JP3537169B2 publication Critical patent/JP3537169B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、解像度が高く、伝送画
像の周辺部の歪みが少なく、かつ、この光伝送体多数本
を平行に配列したレンズアレイとして用いる場合、いか
なる波長の光源を用いた場合でも各レンズ間のクロスト
ークによるノイズ発生による読取り画像の解像度低下を
きたさない円柱状の屈折率分布型光伝送体の製造方法
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light source of any wavelength when used as a lens array having a high resolution, a small distortion at the periphery of a transmission image, and a large number of such light transmission bodies arranged in parallel. The present invention relates to a method of manufacturing a columnar refractive index distribution type optical transmission body which does not cause a reduction in the resolution of a read image due to noise caused by crosstalk between lenses.

【0002】[0002]

【従来の技術】屈折率分布型光伝送体は、その構成素材
としてガラス製のものおよびプラスチック製のものが開
発され、複写機、ファクシミリ、LEDプリンターヘッ
ドなどの画像読取りセンサとして有用に用いられてい
る。これらの屈折率分布型光伝送体は、それぞれの製法
の差はあるものの、通常、該光伝送体の半径rに対し、
0.2r〜0.70rの範囲は[数2]で示す二次曲線にほぼ
近似した屈折率分布を有し、0.70r以内の中心部側の画
像伝送特性は良好であるが、その外側の部分の画側
2. Description of the Related Art Glass-index and plastic-type refractive index distribution type optical transmission bodies have been developed and are usefully used as image reading sensors for copying machines, facsimile machines, LED printer heads and the like. I have. Although these refractive index distribution type optical transmitters have a difference in their manufacturing methods, usually, with respect to the radius r of the optical transmitter,
The range of 0.2r to 0.70r has a refractive index distribution approximately similar to the quadratic curve represented by [Equation 2], and the image transmission characteristics on the center side within 0.70r are good, but the outer part of Image side

【数2】 部の結像性は不十分であり、4ラインペア/mmなる格子
像を該光伝送体を通してCCDラインセンサ上に結像さ
せ、その測定光量の最大値imaxと最小値iminを測定し、
[数3]にて算出したMTF値は60%未満と低いもので
ある。
(Equation 2) The image quality of the portion is insufficient, and a grid image of 4 line pairs / mm is formed on the CCD line sensor through the light transmitting body, and the maximum value i max and the minimum value i min of the measured light amount are measured. ,
The MTF value calculated by [Equation 3] is as low as less than 60%.

【数3】 また、このような屈折率分布型光伝送体多数本を平行配
列し、ロッドレンズアレイとして使用する場合、使用光
源の波長、とくに、LEDのごとき赤を主体とする長波
長の光源を用いると、平行配列した屈折率分布型光伝送
体間でクロストークが起こり、伝送画像にフレア光に起
因する不鮮明な部分が生じ、ロッドレンズアレイの解像
度を高めることはできなかった。
[Equation 3] In addition, when a large number of such refractive index distribution type optical transmission bodies are arranged in parallel and used as a rod lens array, the wavelength of the light source used, particularly when a long wavelength light source mainly composed of red light such as an LED is used, Crosstalk occurs between the parallel-arranged refractive index distribution type optical transmission bodies, and a blurred portion due to flare light occurs in a transmission image, and the resolution of the rod lens array cannot be increased.

【0003】屈折率分布型ガラス製光伝送体のフレア光
による解像度の低下を防止する方法として、屈折率分布
型光伝送体の側面を化学的にエッチングして粗面化し、
この粗面化面にカーボン粒子を含むアクリル樹脂層を設
けたフレア光の発生を低減した光伝送体に関する発明が
特開昭58−38901号公報に示されている。
[0003] As a method of preventing the deterioration of the resolution due to the flare light of the graded index type glass optical transmission body, the side surface of the graded index type optical transmission body is chemically etched to be roughened.
Japanese Patent Application Laid-Open No. 58-38901 discloses an invention relating to an optical transmission body in which the generation of flare light is reduced by providing an acrylic resin layer containing carbon particles on the roughened surface.

【0004】[0004]

【発明が解決しようとする課題】特開昭58−3890
1号公報に示された発明によるガラス製の屈折率分布型
光伝送体の側面は鋭利な凹凸面となっており、応力集中
により破損しやすいという難点を有しているとともに、
その解像度が必ずしも高くない。
Problems to be Solved by the Invention JP-A-58-3890
The side surface of the glass refractive index distribution type optical transmission body according to the invention disclosed in Japanese Patent Publication No. 1 has a sharp uneven surface, and has a disadvantage that it is easily broken by stress concentration,
Its resolution is not always high.

【0005】通常の方法によって作られた屈折率分布型
光伝送体断面内の屈折率分布は、その半径rに対し、
0.2r〜0.70rの範囲は理想二次曲線にほぼ近似した屈
折率分布曲線を有しており、0.70r以内の内部の部分の
画像伝送特性は良好である。しかし、0.70rを越える外
側の部分は理想二次曲線から大きくずれた屈折率分布と
なっているため、当該外側部位の結像性は極めて悪いも
のとなっている。
[0005] The refractive index distribution in the cross section of the refractive index distribution type optical transmission member produced by the usual method is represented by
The range of 0.2r to 0.70r has a refractive index distribution curve approximately similar to an ideal quadratic curve, and the image transmission characteristics of the internal portion within 0.70r are good. However, since the outer portion exceeding 0.70r has a refractive index distribution greatly deviating from the ideal quadratic curve, the image forming property of the outer portion is extremely poor.

【0006】そこで従来より、屈折率分布型光伝送体の
外周部を化学エッチング処理し、光伝送体外層を伝送す
る、結像に寄与しない光を散乱光として放出する手法が
とられてきたが、化学エッチング法にて上記屈折率分布
型光伝送体の屈折率分布が理想二次曲線からはずれる領
域ぎりぎりまでエッチングすることは難しく、上記した
ごとき、化学エッチング処理した屈折率分布型光伝送体
の外周部にカーボンブラックの黒色被覆層を設けても、
この光伝送体のMTFの向上はあまり改善されず、ま
た、フレア光による伝送画像の不鮮明性の改良も未だ十
分なものとなってはおらず、さらにこれらの点が改善さ
れたMTF値が高く、クロストークの起こらない屈折率
分布型光伝送体の開発が望まれている。
Therefore, conventionally, a method has been adopted in which the outer peripheral portion of the graded index optical transmission body is subjected to chemical etching treatment to transmit light that does not contribute to image formation as scattered light, which is transmitted through the outer layer of the optical transmission body. It is difficult to etch the refractive index distribution of the above-mentioned refractive index distribution type optical transmission body to an area where the refractive index distribution deviates from the ideal quadratic curve by a chemical etching method. Even if a black coating layer of carbon black is provided on the outer periphery,
The improvement of the MTF of the optical transmitter is not so much improved, and the improvement of the blur of the transmitted image by the flare light has not yet been sufficiently improved, and the MTF value at which these points have been improved is high. There is a demand for the development of a gradient index optical transmission body that does not cause crosstalk.

【0007】[0007]

【課題を解決するための手段】そこで、本発明者等は、
上述した要望を満たした屈折率分布型光伝送体を得るべ
く検討した結果、本発明を完成したものであり、その要
旨とするところは、 (1)円柱状の屈折率分布型光伝送体の外周部に膨潤部
を形成し、その膨潤部を取り除く、外周が光散乱層にて
覆われている円柱状の屈折率分布型光伝送体の製造方
法、 (2)膨潤部を形成する前の円柱状の屈折率分布型光伝
送体(半径L)が、中心軸から外周面へ向かって少なく
とも 0.25 L〜 0.85 Lの範囲が[数1]で規定する二次曲
線にほぼ近似の屈折率分布を備えており、
Means for Solving the Problems Accordingly, the present inventors have
As a result of studying to obtain a gradient index optical transmission body satisfying the above-mentioned demands, the present invention has been completed. The gist of the invention is as follows: (1) a columnar refractive index distribution type optical transmission body; Swollen part on outer periphery
Is formed and the swelling portion is removed.
How to make a covered columnar graded index optical transmitter
Law, (2) before the formation of the swelling portion cylindrical GRIN optical transmission
The feeder (radius L) decreases from the central axis toward the outer peripheral surface.
Both quadratic songs whose range from 0.25 L to 0.85 L is specified by [ Equation 1]
It has a refractive index distribution that is approximately similar to the line,

【数1】n(L)=n {1−(g/2)L (式中、n は光伝送体の中心部の屈折率、n(L)は
光伝送体の中心軸よりLの部位の屈折率、gは光伝送体
の屈折率分布定数、Lは光伝送体の中心部からの距離、
を示す。)かつ、 1.40≦n≦1.60 0.4mm≦L≦0.55mm 0.15mm−1≦g≦0.7mm−1 を満たす(1)記載の円柱状の屈折率分布型光伝送体の
製造方法、 にある。
N (L) = n 0 {1- (g / 2) L 2 } (where n 0 is the refractive index of the central portion of the optical transmission body, and n (L) is
The refractive index at a position L from the central axis of the optical transmitter, g is the optical transmitter
, L is the distance from the center of the optical transmitter,
Is shown. ) And satisfying 1.40 ≦ n 0 ≦ 1.60 0.4 mm ≦ L ≦ 0.55 mm 0.15 mm −1 ≦ g ≦ 0.7 mm −1 .
Manufacturing method .

【0008】本発明の少なくとも 0.2L〜0.85Lの範囲
の屈折率分布が[数4]で規定する二次曲線にほぼ近似
の分布を有する屈折率分布型光伝送体は、次のごとくし
て作るのが好ましい。まず、半径rなる円型断面の屈折
率分布型光伝送体プレカーサであり、該光伝送体プレカ
ーサの中心軸から外周部へ向って少なくとも0.25r〜0.
70rの範囲の屈折率分布が[数5]で規定する二次曲線
にほぼ近似の屈折率分布を有し、かつ、
[0008] The refractive index distribution type optical transmitter according to the present invention, having a refractive index distribution in at least the range of 0.2 L to 0.85 L having a distribution approximately similar to the quadratic curve defined by [Equation 4], is as follows. It is preferable to make. First, there is a refractive index distribution type optical transmitter precursor having a circular cross section having a radius of r, and at least 0.25r to 0 from the central axis of the optical transmitter precursor toward the outer periphery.
The refractive index distribution in the range of 70r has a refractive index distribution approximately similar to the quadratic curve defined by [Equation 5], and

【数5】 1.40≦n0≦1.60 0.4mm≦L≦0.55mm 0.15mm-1≦g≦0.7mm-1 なる特性を有する屈折率分布型光伝送体プレカーサの外
周部を切削し、少なくとも0.25r〜0.85rの範囲の屈折
率分布が、[数4]に示す曲線にほぼ近似の屈折率分布
を有するとともに、その外周部が網目状の亀裂層にて覆
われているものとするのがよい。
(Equation 5) 1.40 ≦ n 0 ≦ 1.60 0.4mm ≦ L ≦ 0.55mm 0.15mm −1 ≦ g ≦ 0.7mm -1 Cut the outer periphery of the gradient index optical transmitter precursor having the characteristic of at least 0.25r to 0.85r. It is preferable that the refractive index distribution in the range has a refractive index distribution approximately similar to the curve shown in [Equation 4] and the outer peripheral portion is covered with a mesh-like crack layer.

【0009】本発明を実施するに際して用いる屈折率分
布型光伝送体プレカーサは種々の方法で作ることができ
るが、とくに、該プレカーサがプラスチック製のもので
ある場合には次のごとくして作るのがよい。すなわち、
粘度が 103〜108 ポイズのN個の未硬化液状物質であっ
て、該物質を硬化したときの硬化物の屈折率がn1>n2
n3……>nNであるN個(ただし、N≧2)の未硬化液状
物質を、複合紡糸ノズルより、その中心から外周に向っ
て屈折率が順次低くなるような配置で同心円状に押出し
てストランドファイバ状に賦形し、該ストランドファイ
バの各層間の物質の相互拡散処理を施しながら、また
は、相互拡散処理を施した後に、未硬化ストランドファ
イバの硬化処理を施すことによって、本発明で用いる屈
折率分布型光伝送体プレカーサを得る。
[0009] The refractive index distribution type optical transmitter precursor used in practicing the present invention can be produced by various methods. In particular, when the precursor is made of plastic, it is produced as follows. Is good. That is,
N uncured liquid substances having a viscosity of 10 3 to 10 8 poise, and the cured product obtained by curing the substance has a refractive index of n 1 > n 2 >
n 3 ...> n N (where N ≧ 2) uncured liquid materials are concentrically arranged in such a manner that the refractive index gradually decreases from the center toward the outer periphery from the composite spinning nozzle. By extruding and shaping the fiber into a strand fiber shape, and performing the interdiffusion treatment of the material between the layers of the strand fiber, or after performing the interdiffusion treatment, the curing treatment of the uncured strand fiber is carried out. To obtain a refractive index distribution type optical transmitter precursor used in (1).

【0010】上記のごとくして得た半径0.58mmの光伝送
体プレカーサの屈折率分布を測定した結果を図1に示し
た。図1中、bは上記のごとくして作った光伝送体プレ
カーサの屈折率分布曲線であり、同図中aは屈折率分布
の理想二次曲線である。このプレカーサは半径の少なく
とも 0.1r〜0.7 rの範囲の屈折率分布曲線は、その理
想分布曲線とほぼ同一の分布を有しており、この範囲の
該プレカーサの画像伝送特性は極めて良好であるが、そ
の外側の屈折率分布は、その理想曲線より大幅にはずれ
たものとなっており、フレア光の発生原因となってい
る。
FIG. 1 shows the results of measuring the refractive index distribution of the optical transmitter precursor having a radius of 0.58 mm obtained as described above. In FIG. 1, b is a refractive index distribution curve of the optical transmitter precursor formed as described above, and a is an ideal quadratic curve of the refractive index distribution. In this precursor, the refractive index distribution curve having a radius in the range of at least 0.1r to 0.7r has almost the same distribution as its ideal distribution curve, and the image transmission characteristics of the precursor in this range are extremely good. The refractive index distribution on the outer side of the curve deviates significantly from the ideal curve, and causes flare light.

【0011】本発明においては、まず上記したごとき光
伝送体プレカーサの外周を削り、図1中のc点である外
径が4.3mm(L)となるまで削り込むことによって屈折率分
布型の光伝送体を作ると、その屈折率分布曲線は、同図
中のbに示すごとく、0.25L〜0.95Lの範囲まで[数
4]に示した二次曲線に近似の分布をとらせることがで
きるため、フレア光等の発生のない極めて良好な画像伝
送特性を備えたものとすることができる。また、かくす
ることにより、その外周部に光吸収層または光散乱層を
形成することができる。
In the present invention, first, the outer periphery of the optical transmission body precursor as described above is shaved, and the outer periphery, which is the point c in FIG. 1, is cut to 4.3 mm (L) to obtain a refractive index distribution type light. When a transmission body is made, its refractive index distribution curve can take a distribution approximate to the quadratic curve shown in [Equation 4] in the range of 0.25 L to 0.95 L as shown by b in FIG. Therefore, it is possible to provide an extremely good image transmission characteristic without generating flare light or the like. Further, by doing so, a light absorbing layer or a light scattering layer can be formed on the outer peripheral portion.

【0012】本発明を実施するに際して用いる光伝送体
プレカーサの外周部研削法としては、例えば溶剤を用い
た溶解研削法などを用いることができる。とくに、光伝
送体プレカーサを含水状態としたものを、水と親和性を
有する有機溶剤中に浸漬して、その外周部に膨潤層を形
成し、この膨潤層をシリコンゴム等の弾性体中にあけた
孔中を通して切削除去し、乾燥することにより、その外
表面に光吸収層を形成することができ、フレア光の起こ
りにくい光伝送体とすることができる。
As a method for grinding the outer peripheral portion of the optical transmitter precursor used in practicing the present invention, for example , a melting grinding method using a solvent or the like can be used. In particular, the hydrated optical transmitter precursor is immersed in an organic solvent having an affinity for water to form a swelling layer on its outer periphery, and this swelling layer is placed in an elastic material such as silicon rubber. By cutting and removing through a drilled hole and drying, a light absorbing layer can be formed on the outer surface of the hole, and a light transmission body in which flare light hardly occurs can be obtained.

【0013】溶剤研削に用いる溶剤としては、塩化メチ
レン、クロロホルム、四塩化炭素等の有機塩素系溶剤
や、アセトン、メチルエチルケトン等の低級ケトン類、
酢酸エチル等の有機酸の低級エステル類などを用いるこ
とができる。溶剤研削後の光伝送体を非溶剤、例えば、
水、アルコール等で洗浄処理するのもよい方法である。
Solvents used for solvent grinding include organic chlorine solvents such as methylene chloride, chloroform and carbon tetrachloride, and lower ketones such as acetone and methyl ethyl ketone.
Lower esters of organic acids such as ethyl acetate can be used. Non-solvent optical transmission body after solvent grinding, for example,
It is also a good method to perform a washing treatment with water, alcohol, or the like.

【0014】上記のごとくして得た屈折率分布型光伝送
体はフレア光の発生も極めて小さく、良好な画像伝送特
性を有しているものであるが、該光伝送体を多数本平行
に並べてアレイ化して使用する場合には、各光伝送体間
のクロストークを防止することが必要である。このクロ
ストークによる光伝送体の画像特性の低下を防止するに
は、上記のごとくして作成した屈折率分布型光伝送体の
側面をカーボンブラック含有遮光剤にて処理し、遮光被
膜を形成せしめるのが最も有効な方法である。
The refractive index distribution type optical transmitter obtained as described above has a very small generation of flare light and has good image transmission characteristics. When used in an array, it is necessary to prevent crosstalk between the optical transmitters. In order to prevent the image characteristics of the optical transmission body from deteriorating due to the crosstalk, the side surfaces of the refractive index distribution type optical transmission body prepared as described above are treated with a carbon black-containing light shielding agent to form a light shielding film. Is the most effective method.

【0015】遮光被膜形成に用いる被覆材としては、水
あるいは溶剤に可溶な種々のカーボンブラック入りの被
覆材を用いることができるが、とくに、アクリル樹脂、
アルキッド樹脂、ポリエステル樹脂、アクリル変性ポリ
エステル樹脂などをその具体例として挙げることができ
る。
As the coating material used for forming the light-shielding film, various coating materials containing carbon black soluble in water or a solvent can be used.
Alkyd resins, polyester resins, acrylic-modified polyester resins, and the like can be given as specific examples.

【0016】以下、実施例により本発明をさらに詳細に
説明する。また、MTFの測定は次のような方法を用い
て行った。 [MTFの測定]MTFの測定は図3に示す装置を用い
て実施した。光源から得られる連続光をフィルター、拡
散板を透過させることによって単色化し、空間周波数n
(ラインペア/mm)を有する格子を用いて原画を得る
(図4)。この原画を光伝送体単体あるいは複数本配列
した光伝送体アレイを用いて結像させ、結像面に設置さ
れたCCDラインセンサを用いて画像を読み取る(図
5)ことによって、[数3]により光伝送体単体あるい
は光伝送体アレイのMTFを測定した。
Hereinafter, the present invention will be described in more detail with reference to examples. The MTF was measured using the following method. [Measurement of MTF] MTF was measured using the apparatus shown in FIG. The continuous light obtained from the light source is made monochromatic by transmitting through a filter and a diffusion plate, and the spatial frequency n
An original image is obtained using a grid having (line pairs / mm) (FIG. 4). By forming an image of this original image using a single light transmitting body or an optical transmitting body array in which a plurality of light transmitting bodies are arranged, and reading the image using a CCD line sensor provided on the image forming surface (FIG. 5), [Equation 3] is obtained. , The MTF of the optical transmitter alone or the optical transmitter array was measured.

【0017】[0017]

【参考例1】まず、本発明の光伝送体を作るのに用いる
屈折率分布型光伝送体プリフォームの製造方法およびそ
の外周部研削方法について説明する。ポリメチルメタク
リレート([η]=0.56、メチルエチルケトン(ME
K)中25℃にて測定)46重量部、ベンジルメタクリレー
ト44重量部、メチルメタクリレート10重量部、1-ヒドロ
キシシクロヘキシルフェニルケトン0.2重量部およびハ
イドロキノン 0.1重量部を70℃に加熱混練して第1層
(中心部)形成用原液とした。また、ポリメチルメタク
リレート([η]=0.41、MEK中25℃にて測定)50重
量部、メチルメタクリレート50重量部、1-ヒドロキシシ
クロヘキシルフェニルケトン 0.2重量部およびハイドロ
キノン 0.1重量部を70℃に加熱混練して第2層形成用原
液とし、さらに、ポリメチルメタクリレート([η]=
0.34、MEK中25℃にて測定)45重量部、2,2,3,3,4,4,
5,5-オクタフルオロペンチルメタクリレート35重量部、
メチルメタクリレート20重量部、1-ヒドロキシシクロヘ
キシルフェニルケトン 0.2重量部およびハイドロキノン
0.1重量部を70℃で加熱混練したものを第3層(外層
部)形成用原液とした。
Reference Example 1 First, a method of manufacturing a refractive index distribution type optical transmission body preform used for manufacturing the optical transmission body of the present invention and a method of grinding the outer peripheral portion thereof will be described. Polymethyl methacrylate ([η] = 0.56, methyl ethyl ketone (ME
K) Measured at 25 ° C) 46 parts by weight, 44 parts by weight of benzyl methacrylate, 10 parts by weight of methyl methacrylate, 0.2 parts by weight of 1-hydroxycyclohexylphenyl ketone and 0.1 parts by weight of hydroquinone are heated and kneaded at 70 ° C to form the first layer. (Center part) It was used as a stock solution for formation. Also, 50 parts by weight of polymethyl methacrylate ([η] = 0.41, measured at 25 ° C. in MEK), 50 parts by weight of methyl methacrylate, 0.2 parts by weight of 1-hydroxycyclohexyl phenyl ketone and 0.1 part by weight of hydroquinone are heated and kneaded at 70 ° C. To give a stock solution for forming a second layer, and further, polymethyl methacrylate ([η] =
0.34, measured at 25 ° C in MEK) 45 parts by weight, 2,2,3,3,4,4,
5,5-octafluoropentyl methacrylate 35 parts by weight,
20 parts by weight of methyl methacrylate, 0.2 part by weight of 1-hydroxycyclohexyl phenyl ketone and hydroquinone
A solution prepared by heating and kneading 0.1 part by weight at 70 ° C. was used as a stock solution for forming a third layer (outer layer).

【0018】トルーコンジュゲート型複合紡糸ノズルを
備えた成型装置を用い、上記3種類の原液を中心から外
側に向って、順次、未硬化物の屈折率が低くなるように
配列し、同時に押出し、ストランドファイバとした。押
出し時の粘度は第1層の成分が 4,5×104 ポイズ、第2
層が 2.0×104 ポイズ、そして第3層の原液が 2.2×10
4 ポイズであった。また、複合紡糸ノズルの温度は55℃
とした。
Using a molding apparatus equipped with a true conjugate type composite spinning nozzle, the above three types of stock solutions are arranged in order from the center to the outside so that the refractive index of the uncured material becomes lower, and simultaneously extruded. Strand fiber was used. The viscosity of the first layer was 4,5 × 10 4 poise,
The layer is 2.0 × 10 4 poise, and the undiluted solution of the third layer is 2.2 × 10 4
4 poise. The temperature of the composite spinning nozzle is 55 ° C.
And

【0019】次いで、長さ90cmの各層相互拡散処理部を
通過させ、その後、長さ 120cm、40Wの蛍光灯12本を円
状に等間隔に配置された光照射部に中心にストランドフ
ァイバを通過させ、50cm/分の速度で半径(r0)0.50mm
の光伝送体プリフォームをニップローラーで引取った。
吐出量比は第1層:第2層:第3層=1:1:1とし
た。屈折率分布は中心部(N0)が1.512 で、周辺部が1.
470 であり、屈折率分布定数(g)は0.52で、図2中の
[II]に示すごとく、その中心から外面に向って0.25r0
〜0.75r0の範囲が近似的に[数1]を満足する二次曲線
[II]とほぼ一致した屈折率分布を有していた。
Next, the light was passed through a 90 cm-long inter-diffusion processing section of each layer, and thereafter, 12 fluorescent lamps having a length of 120 cm and 40 W were passed through a strand fiber centered on circularly arranged light irradiation sections. At a speed of 50 cm / min, radius (r 0 ) 0.50 mm
Was taken by a nip roller.
The discharge amount ratio was set as first layer: second layer: third layer = 1: 1: 1. The refractive index distribution is 1.512 at the center (N 0 ) and 1. at the periphery.
470, the refractive index distribution constant (g) is 0.52, and 0.25r 0 from the center toward the outer surface as shown in [II] in FIG.
The refractive index distribution in the range of about 0.75r 0 almost coincided with the quadratic curve [II] satisfying [Equation 1].

【0020】上記光伝送体プリフォームの両端面を研磨
し、レンズ長7.2mm とし、4ラインペア/mmなる格子を
用いて測定したMTFは57%であり、その時の共役長は
15.4mmであった。また、得られた格子の結像は歪みの少
ない鮮明な像であったが、周辺部はいくらか歪みが認め
られた。この光伝送体プリフォームの両端面研磨物複数
本を平行に配列し、2枚の基板にて接合挟着し、両端面
を研磨仕上げしてレンズ長7.1mm 、共役長15mmの光伝送
体アレイに組上げ、この光伝送体アレイを4ラインペア
/mmなる格子を用いて測定したMTFは49%であった。
The end faces of the optical transmission body preform were polished to a lens length of 7.2 mm, and the MTF measured using a grid of 4 line pairs / mm was 57%.
15.4 mm. The image of the obtained lattice was a clear image with little distortion, but some distortion was recognized in the peripheral portion. A plurality of polished objects on both end surfaces of this optical transmission body preform are arranged in parallel, bonded and sandwiched between two substrates, and both end surfaces are polished and finished, and an optical transmission array having a lens length of 7.1 mm and a conjugate length of 15 mm. The MTF of this optical transmitter array measured using a grating of 4 line pairs / mm was 49%.

【0021】上記光伝送体プリフォームを10℃に保温し
たクロロホルムに45秒間浸漬し、厚さ1mmのシリコンゴ
ム製のシートにあけた微小の穴を通し、クロロホルムで
膨潤した部分(図2中の部分F)を削り取り、半径0.48
mmの光伝送体を得た。この光伝送体の屈折率分布は図2
中[II]に示すごとく、中心部(n0)が1.512 、周辺部が
1.474 であり、屈折率分布定数(g)は0.52で、図2中
[II]に示すごとく、その中心から外面に向って0.24L〜
0.83Lの範囲が近似的に二次曲線[I] にほぼ一致した屈
折率分布を有していた。また、得られた光伝送体の外周
面を顕微鏡観察したところ、網目状の散乱層が形成され
ていることを認めた。
The preform was immersed in chloroform maintained at 10 ° C. for 45 seconds, passed through a small hole formed in a 1 mm thick silicon rubber sheet, and swollen with chloroform (FIG. 2). Cut off part F), radius 0.48
mm optical transmission body was obtained. The refractive index distribution of this optical transmitter is shown in FIG.
As shown in the middle [II], the center (n 0 ) is 1.512 and the periphery is
1.474 and the refractive index distribution constant (g) is 0.52.
As shown in [II], 0.24L from the center to the outer surface
The range of 0.83 L had a refractive index distribution approximately matching the quadratic curve [I]. When the outer peripheral surface of the obtained optical transmission body was observed with a microscope, it was confirmed that a mesh-like scattering layer was formed.

【0022】上記光伝送体より切りだしたレンズの両端
面を研磨し、レンズ長7.2mm とし、4ラインペア/mmな
る格子を用いて測定したMTFは65%であり、その時の
共役長は15.4mmであった。また、得られた格子の結像は
表面を削り取る前の光伝送体プリフォームと比較して、
非常に歪みの少ない鮮明な像であった。
Both ends of the lens cut from the optical transmission body were polished to a lens length of 7.2 mm, and the MTF measured using a grating of 4 line pairs / mm was 65%, and the conjugate length at that time was 15.4. mm. Also, the image of the obtained grating is compared with the optical transmitter preform before the surface is scraped,
It was a clear image with very little distortion.

【0023】この光伝送体複数本を平行配列してレンズ
長7.1mm の光伝送体アレイに組上げ、この光伝送体アレ
イを4ラインペア/mmなる格子を用いて測定したMTF
は、その共役長15.4mmで61%であった。この光伝送体ア
レイにLEDを光源としてCCDを受光素子として結合
したイメージスキャナーを組立てた。このイメージスキ
ャナーは解像度の高いものであり、鮮明な画像を伝送す
ることができた。しかし、フレア光のクロストークによ
り、画像のにじみが発生していた。
A plurality of the light transmitting members are arranged in parallel to form an optical transmitting member array having a lens length of 7.1 mm, and the MTF is measured using a grating of 4 line pairs / mm.
Was 61% at its conjugate length of 15.4 mm. An image scanner was assembled with this light transmitter array by combining an LED as a light source and a CCD as a light receiving element. This image scanner had a high resolution and was able to transmit clear images. However, blurring of the image has occurred due to the crosstalk of the flare light.

【0024】上記のごとく、光伝送体の外周研削を行っ
た屈折率分布型光伝送体をカーボンブラックを含有した
エマルジョンペイントを満たした黒色化槽(25℃、長さ
50cm)に浸漬し、その後引き上げて、70℃の乾燥筒(長
さ2.5m)を70cmの引取り速度で通した。得られた屈折率
分布型光伝送体表面は黒色の光遮断層が 2.5μmの厚さ
で形成された。単レンズとしてのMTFおよび格子の結
像状態は、処理前と変化がなかった。ただ、この光伝送
体複数本を2枚の基板間に平行配列状態で挟持し、その
両端面を研磨してレンズ長7.1mm の光伝送体アレイに組
上げ、この光伝送体アレイを4ラインペア/mmなる格子
を用いて測定したMTFは、その共役長15.4mmで65%で
あった。この光伝送体アレイにLEDを光源としてCC
Dを受光素子として結合したイメージスキャナーを組立
てた。このイメージスキャナーではフレア光のクロスト
ークによる画像のにじみは見られず、非常に鮮明な画像
を伝送することができた。
As described above, the refractive index distribution type optical transmission body which has been subjected to the outer periphery grinding of the optical transmission body is subjected to a blackening tank (25 ° C., length: 25 ° C.) filled with an emulsion paint containing carbon black.
50 cm), and then lifted and passed through a 70 ° C. drying cylinder (length 2.5 m) at a take-up speed of 70 cm. On the surface of the obtained refractive index distribution type optical transmission body, a black light blocking layer was formed with a thickness of 2.5 μm. The MTF as a single lens and the image formation state of the grating did not change from before processing. However, a plurality of the optical transmitters are sandwiched between two substrates in a parallel arrangement, and both end surfaces are polished and assembled into an optical transmitter array having a lens length of 7.1 mm. The MTF measured using a grating of / mm was 65% at its conjugate length of 15.4 mm. This optical transmitter array uses LED as a light source and CC
An image scanner having D as a light receiving element was assembled. This image scanner did not show any image bleeding due to flare light crosstalk, and was able to transmit a very clear image.

【0025】[0025]

【参考例2】黒色化槽にカーボンブラック3重量部、ポ
リメチルメタクリレート 100重量部、メチルエチルケト
ン5000重量部からなる黒色化溶剤を用い、参考例1で用
いた外周部を切削した光伝送体を参考例1と同様の操作
を行って黒色被覆層を形成した。光伝送体表面に黒色の
光遮断層が 3.0μmの厚さで形成された。この光伝送体
を用い、参考例1と同様にしてレンズ長7.1mm の光伝送
体アレイに組上げ、この光伝送体アレイを4ラインペア
/mmなる格子を用いて測定したMTFは、その共役長
15.4mmで66%であった。この光伝送体アレイにLED
を光源としてCCDを受光素子として結合したイメージ
スキャナーを組立てた。このイメージスキャナーではフ
レア光のクロストークによる画像のにじみは見られず、
非常に鮮明な画像を伝送することができた。
[Reference Example 2] Carbon black 3 parts by weight blackening bath, 100 parts by weight of polymethyl methacrylate, with a blackening solvent consisting of methyl ethyl ketone 5000 parts by weight, an optical transmission member that cutting the outer peripheral portion used in Reference Example 1 Reference The same operation as in Example 1 was performed to form a black coating layer. A black light blocking layer was formed on the surface of the light transmitting body with a thickness of 3.0 μm. Using this optical transmitter, an optical transmitter array having a lens length of 7.1 mm was assembled in the same manner as in Reference Example 1, and the MTF of this optical transmitter array measured using a grid of 4 line pairs / mm was the conjugate length of the MTF.
It was 66% at 15.4 mm. This optical transmitter array has LEDs
An image scanner was assembled in which the light source was used as a light source and a CCD was used as a light receiving element. This image scanner does not show image bleeding due to crosstalk of flare light,
A very clear image could be transmitted.

【0026】[0026]

【実施例1】参考例1で製造した屈折率分布型光伝送体
プレカーサを水中に60分間浸漬した後、30℃の酢酸エチ
ル/メタノール(2:3)混合液中に90秒間浸漬して外
周部に膨潤部を形成し、次いで、これをシリコンゴムに
設けた細孔中を通して膨潤部を取り除いた。得られた屈
折率分布型光伝送体側面を顕微鏡で観察すると、その表
面には光散乱層が生じていた。この光伝送体の外径は0.
90mmとなっており、このレンズの有効直径は0.80mm
であり、 0.2L〜0.88Lの範囲が二次曲線にほぼ近似し
た屈折率分布を有していた。この屈折率分布型レンズの
共役長は15.4mmで、4ラインペア/mmの格子を用い
て測定したMTFは68%であった。この光伝送体の外周
に、参考例2と同様にしてカーボンブラックの被覆層を
設け、レンズ長7.1mmのレンズとし、このレンズ多数
本を平行配列してレンズアレイを組立てた。このレンズ
アレイをレンズ長7.1mm、共役長15.4mmとし、4ラ
インペア/mmの格子を用いて測定したMTFは63%で
あった。この光伝送体にLEDを光源としてCCDを受
光素子として結合したイメージスキャナーを組立てたと
ころ、フレア光によるレンズ素子間のクロストークは認
められず、画像のにじみも認められず、非常に鮮明な画
像を伝送することができた。
Example 1 After immersing the refractive index distribution type optical transmitter precursor produced in Reference Example 1 in water for 60 minutes, it was immersed in an ethyl acetate / methanol (2: 3) mixed solution at 30 ° C. for 90 seconds to form an outer periphery. A swollen portion was formed in the portion, and then the swollen portion was removed through a pore provided in the silicone rubber. Observation of the side surface of the obtained refractive index distribution type optical transmission body with a microscope revealed that a light scattering layer was formed on the surface. The outer diameter of this optical transmission body is 0.
90mm, the effective diameter of this lens is 0.80mm
And the range of 0.2 L to 0.88 L had a refractive index distribution almost similar to a quadratic curve. The conjugate length of this refractive index distribution type lens was 15.4 mm, and the MTF measured using a grating of 4 line pairs / mm was 68%. A coating layer of carbon black was provided on the outer periphery of the optical transmission body in the same manner as in Reference Example 2 to form a lens having a lens length of 7.1 mm, and a large number of these lenses were arranged in parallel to assemble a lens array. The lens array was set to have a lens length of 7.1 mm and a conjugate length of 15.4 mm, and the MTF measured using a grating of 4 line pairs / mm was 63%. When an image scanner was assembled with this light transmitter using an LED as a light source and a CCD as a light receiving element, no crosstalk between lens elements due to flare light was observed, and no image bleeding was observed. Could be transmitted.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で使用する屈折率分布型光伝送体の屈折
率分布曲線の一例である。
FIG. 1 is an example of a refractive index distribution curve of a gradient index optical transmission body used in the present invention.

【図2】本発明で用いる屈折率分布型光伝送体の屈折率
分布曲線の他の一例を示す図である。
FIG. 2 is a diagram showing another example of the refractive index distribution curve of the gradient index optical transmission body used in the present invention.

【図3】レンズ素子のMTF測定装置の概略を示す斜視
図である。
FIG. 3 is a perspective view schematically showing an MTF measuring device for a lens element.

【図4】MTF測定装置により格子を読み取ったときの
光量レベルImax 、Imin の測定図である。
FIG. 4 is a measurement diagram of light amount levels I max and I min when a grating is read by an MTF measurement device.

【図5】MTF測定装置によりレンズ素子を介して格子
を読み取ったときの光量レベルimax 、imin の測定図
である。
FIG. 5 is a measurement diagram of light amount levels i max and i min when a grating is read through a lens element by an MTF measurement device.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−152332(JP,A) 特開 平3−196451(JP,A) 特開 平3−213806(JP,A) 特開 平3−174105(JP,A) 特開 昭58−38901(JP,A) 特開 昭53−127294(JP,A) 特開 昭58−155947(JP,A) 実開 昭57−172483(JP,U) 国際公開92/015901(WO,A1) (58)調査した分野(Int.Cl.7,DB名) G02B 3/00 G02B 5/02 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-4-152332 (JP, A) JP-A-3-196451 (JP, A) JP-A-3-213806 (JP, A) JP-A-3-213 174105 (JP, A) JP-A-58-38901 (JP, A) JP-A-53-127294 (JP, A) JP-A-58-155947 (JP, A) WO 92/015901 (WO, A1) (58) Fields investigated (Int. Cl. 7 , DB name) G02B 3/00 G02B 5/02

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 円柱状の屈折率分布型光伝送体の外周部
に膨潤部を形成し、その膨潤部を取り除く、外周が光散
乱層にて覆われている円柱状の屈折率分布型光伝送体の
製造方法。
1. An outer peripheral portion of a columnar refractive index distribution type optical transmission body.
The swelling part is formed and the swelling part is removed.
Of a cylindrical graded-index optical transmission medium covered with a turbostratic
Production method.
【請求項2】 膨潤部を形成する前の円柱状の屈折率分
布型光伝送体(半径L)が、中心軸から外周面へ向かっ
て少なくとも 0.25 L〜 0.85 Lの範囲が[数1]で規定す
る二次曲線にほぼ近似の屈折率分布を備えており、 【数1】n(L)=n {1−(g/2)L (式中、n は光伝送体の中心部の屈折率、n(L)は
光伝送体の中心軸よりLの部位の屈折率、gは光伝送体
の屈折率分布定数、Lは光伝送体の中心部からの距離、
を示す。)かつ、 1.40≦n≦1.60 0.4mm≦L≦0.55mm 0.15mm−1≦g≦0.7mm−1 を満たす請求項1記載の円柱状の屈折率分布型光伝送体
の製造方法。
2. A columnar refractive index component before forming a swollen portion.
The cloth-type optical transmission body (radius L) moves from the central axis to the outer peripheral surface.
The range of at least 0.25 L to 0.85 L is defined by [ Equation 1].
Substantially has a refractive index distribution of the approximation, Equation 1] n (L) = n 0 { 1- (g / 2) L 2} ( where, n 0 is the center of the optical transmission member to the secondary curve that The refractive index of the part, n (L) is
The refractive index at a position L from the central axis of the optical transmitter, g is the optical transmitter
, L is the distance from the center of the optical transmitter,
Is shown. 2. The columnar refractive index distribution type optical transmission body according to claim 1, which satisfies 1.40 ≦ n 0 ≦ 1.60 0.4 mm ≦ L ≦ 0.55 mm 0.15 mm −1 ≦ g ≦ 0.7 mm −1.
Manufacturing method.
JP28625093A 1993-10-22 1993-10-22 Manufacturing method of cylindrical index distribution type optical transmission body Expired - Lifetime JP3537169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28625093A JP3537169B2 (en) 1993-10-22 1993-10-22 Manufacturing method of cylindrical index distribution type optical transmission body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28625093A JP3537169B2 (en) 1993-10-22 1993-10-22 Manufacturing method of cylindrical index distribution type optical transmission body

Publications (2)

Publication Number Publication Date
JPH07120604A JPH07120604A (en) 1995-05-12
JP3537169B2 true JP3537169B2 (en) 2004-06-14

Family

ID=17701935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28625093A Expired - Lifetime JP3537169B2 (en) 1993-10-22 1993-10-22 Manufacturing method of cylindrical index distribution type optical transmission body

Country Status (1)

Country Link
JP (1) JP3537169B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002318302A (en) * 2001-02-16 2002-10-31 Nippon Sheet Glass Co Ltd Rod lens and rod lens array
JP4864509B2 (en) * 2006-03-31 2012-02-01 株式会社沖データ Lens array, exposure apparatus, and image forming apparatus

Also Published As

Publication number Publication date
JPH07120604A (en) 1995-05-12

Similar Documents

Publication Publication Date Title
EP0451266B1 (en) Method of manufacturing a plastic graded-index optical transmission element
JP3537169B2 (en) Manufacturing method of cylindrical index distribution type optical transmission body
CN1439108A (en) Optical waveguides and method of fabrication thereof
JP3301760B2 (en) Graded index type plastic optical transmission body and method of manufacturing the same
KR0154877B1 (en) Refractive index distribution type plastic optical transfer member and its production method
JP2000035519A (en) Optical transmission body, optical transmission body array and image sensor
JPH08211242A (en) Optical transmission body and its production and optical transmission body array
JP3291583B2 (en) Indexable plastic optical transmitter, optical transmitter array, and image scanner
JPH07146436A (en) Refractive index distributed light transmitting body
JP2004206140A (en) Graded-index optical transmission material
JP2893046B2 (en) Method of manufacturing refractive index distribution type plastic optical transmission body
JP3794828B2 (en) Optical transmitter, optical transmitter array and plate lens
JP3072116B2 (en) Manufacturing method of graded index plastic optical transmitter
JPH06174944A (en) Method for grinding outer peripheral part of plastic fiber
JP3328615B2 (en) Graded-index plastic optical transmitter
JPH0792308A (en) Distributed refractive index type rod lens array
JPH07110402A (en) Light transmission body and its production
JP2005164703A (en) Rod lens and rod lens array
JP3370658B2 (en) Graded-index plastic optical transmitter
JP2003066249A (en) Optical transmission body, its production method, its inspecting method, lens array, led printer and scanner
JPH07146416A (en) Refraction factor distribution type light transmission body, and manufacture thereof
JPH0651171A (en) Image reading unit
JPH05273495A (en) Lens array
JPH05264807A (en) Image reading unit
JPH07113922A (en) Image fiber

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080326

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 10

EXPY Cancellation because of completion of term