JP3535967B2 - Apparatus and method for detecting shape of rolled material - Google Patents

Apparatus and method for detecting shape of rolled material

Info

Publication number
JP3535967B2
JP3535967B2 JP00778698A JP778698A JP3535967B2 JP 3535967 B2 JP3535967 B2 JP 3535967B2 JP 00778698 A JP00778698 A JP 00778698A JP 778698 A JP778698 A JP 778698A JP 3535967 B2 JP3535967 B2 JP 3535967B2
Authority
JP
Japan
Prior art keywords
shape
rolled material
tension
sensor
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP00778698A
Other languages
Japanese (ja)
Other versions
JPH11201745A (en
Inventor
晴行 細川
聡一 北川
雅好 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP00778698A priority Critical patent/JP3535967B2/en
Publication of JPH11201745A publication Critical patent/JPH11201745A/en
Application granted granted Critical
Publication of JP3535967B2 publication Critical patent/JP3535967B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/02Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring flatness or profile of strips

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、圧延材の形状検出
装置及び形状検出方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rolled material shape detecting device and a shape detecting method.

【0002】[0002]

【従来の技術】冷間圧延設備における圧延材の形状検出
装置として、例えば、特公平7−92380号公報、特
開平7−77468号公報等に記載のものが公知であ
る。前記従来の圧延材の形状検出ロールは、ロール軸方
向に積層又は埋設されたセンサ(荷重検出センサ)を所
定の位相角度をもたせた構造とするもので、該形状検出
ローラを圧延材の圧延速度と同期して回転させることに
より、圧延材の形状を検出するものであった。
2. Description of the Related Art As a shape detecting device for a rolled material in a cold rolling facility, for example, those described in Japanese Patent Publication No. 7-92380 and Japanese Patent Laid-Open No. 7-77468 are known. The conventional shape detection roll of the rolled material has a structure in which a sensor (load detection sensor) laminated or embedded in the roll axial direction has a predetermined phase angle, and the shape detection roller is a rolling speed of the rolled material. The shape of the rolled material was detected by rotating the material in synchronism with.

【0003】[0003]

【発明が解決しようとする課題】前記従来のものは、形
状検出ロールを一回転させてデータサンプリング及び処
理するため、一回転中に急激な張力変動があると、位相
角度をもたせて螺旋状にセンサを配置している構造上、
真の形状ではなく不連続な歪んだ形状として検出してし
まうという問題があった。
In the prior art, the shape detecting roll is rotated once to perform data sampling and processing. Therefore, if there is a sudden tension change during one rotation, a phase angle is given to form a spiral. Due to the structure where the sensor is placed,
There is a problem that it is detected as a discontinuous distorted shape instead of the true shape.

【0004】例えば、高速度で運転されるタンデム型圧
延機では、操業効率を高めるため、入側・出側にルーパ
設備を持たせ、溶接させ連続した操業が可能である設備
を採用している。高速で走る被圧延材であっても、上記
溶接点は材料接合部分での板破断を防止するために、張
力を低下させて低速で圧延させる操業方法をとってい
る。このとき、形状検出ロールのセンサは位相角を持た
せて螺旋状に配置されており、位相角毎に張力変動を受
けることになり、一回転後のデータをサンプリング処理
するため、結果として不連続な形状と処理され、検出誤
差が生じてしまう。
For example, in a tandem type rolling mill operated at a high speed, in order to improve the operating efficiency, a looper facility is provided on the inlet side and the outlet side, and equipment capable of continuous welding is employed. . Even for a material to be rolled that runs at a high speed, the welding point employs an operating method in which tension is reduced and rolling is performed at a low speed in order to prevent plate breakage at a material joining portion. At this time, the sensors of the shape detection roll are arranged in a spiral shape with a phase angle, and are subject to tension fluctuation for each phase angle, and the data after one rotation is sampled, resulting in discontinuity. It will be processed with a different shape and a detection error will occur.

【0005】また、圧延中に圧延速度、張力、圧延荷重
等のプロセス状態を変化させると、形状に与える主要因
である「摩擦係数」「ワークロールクラウン」「変形抵
抗値」が急激に変化し、結果として形状も変化していま
う。このような過渡状態の形状検出を正確に行うことは
非常に重要な課題である。例えば、定常圧延中に圧延速
度が一定で急激な張力変化を生じた場合、形状に影響を
及ぼす主要因である「摩擦係数」「ワークロールクラウ
ン」「変形抵抗値」の変化を伴い、結果としてワークロ
ール直下での形状が変化する。現状の接触式形状検出ロ
ールの構造上、上記のような現象が発生した場合、セン
サ配置角度毎に張力変動分を含んだデータとして処理さ
れ、不連続な形状値として検出誤差を生じてしまう。
When the process conditions such as rolling speed, tension, rolling load, etc. are changed during rolling, the "friction coefficient", "work roll crown" and "deformation resistance value" which are the main factors affecting the shape change abruptly. , As a result, the shape is changing. Accurately detecting the shape of such a transient state is a very important issue. For example, when the rolling speed is constant and a sudden tension change occurs during steady rolling, it is accompanied by a change in the "friction coefficient", "work roll crown", and "deformation resistance value", which are the main factors affecting the shape. The shape under the work roll changes. When the above phenomenon occurs due to the structure of the current contact type shape detection roll, it is processed as data including a tension fluctuation amount for each sensor arrangement angle, and a detection error occurs as a discontinuous shape value.

【0006】そこで、本発明は、形状検出ローラの一回
転中に張力変動が有る場合、その張力変動が形状検出に
影響しないように補正して、真の形状を検出できるよう
にした圧延材の形状検出方法及び検出装置を提供するこ
とを目的とする。
Therefore, according to the present invention, when there is a fluctuation in tension during one revolution of the shape detection roller, the rolled material is corrected so that the fluctuation in tension does not affect the shape detection, and the true shape can be detected. It is an object to provide a shape detection method and a detection device.

【0007】[0007]

【課題を解決するための手段】前記目的を達成するため
に、本発明は、次の手段を講じた。即ち、本発明方法の
特徴とするところは、軸方向に沿って複数のセンサが配
置され、前記各センサは周方向等分割位置に、回転方向
に所定角度づつずれて配置され、前記等分割位置の特定
位置には前記センサが配置されていないNULL点を有
する形状検出ローラが、圧延材に接触し且つその圧延速
度と同期して回転することにより、該各センサが前記圧
延材から受ける荷重を検出し、前記検出ローラが一回転
した後に前記各センサからの検出信号と前記NULL点
の信号値を処理して、ドリフト及びユラギの補正を行っ
前記圧延材の形状を検出する方法において、前記セン
サとは別に設けられた張力検出手段により、前記圧延材
の張力を、前記各センサの荷重検出と同時に検出し、前
記各センサからの検出信号を処理して前記圧延材の形状
を求める際、前記形状検出ローラの一回転中に張力変動
がある場合、前記検出した張力値を補正値として用い
て、前記圧延材の形状を求める点にある。
In order to achieve the above object, the present invention takes the following means. That is, it is an aspect of the present invention method, a plurality of sensors distribution I along the axial direction
The respective sensors are arranged at circumferentially equally divided positions and shifted by a predetermined angle in the rotational direction, and the equal division positions are specified.
The shape detection roller having a NULL point where the sensor is not arranged at the position contacts the rolled material and rotates in synchronization with the rolling speed, whereby each sensor detects the load received from the rolled material. , The detection signal from each sensor and the NULL point after the detection roller makes one rotation
The signal value of is processed to correct drift and errata.
In the method of detecting the shape of the rolled material by means of a tension detecting means provided separately from the sensor, the tension of the rolled material is detected simultaneously with the load detection of each sensor, and a detection signal from each sensor is detected. Process to obtain the shape of the rolled material , the tension fluctuation during one rotation of the shape detection roller
In this case, the shape of the rolled material is obtained by using the detected tension value as a correction value.

【0008】より具体的には、前記張力検出手段により
検出された各センサ位置(n)における張力Tn から、
前記形状検出ローラの一回転中の平均張力TAVG を、 TAVG =Σ(1/n)Tn として算出し、各センサからの検出信号を処理して得ら
れる圧延材の形状をRnとして求め、前記張力値を補正
値として用いて、補正後の前記圧延材の形状を、 RAVG n =Rn (TAVG /Tn ) として求めることができる。
More specifically, from the tension T n at each sensor position (n) detected by the tension detecting means,
The average tension T AVG during one rotation of the shape detection roller is calculated as T AVG = Σ (1 / n) T n , and the shape of the rolled material obtained by processing the detection signal from each sensor is R n Then, by using the tension value as a correction value, the shape of the rolled material after correction can be calculated as R AVG n = R n (T AVG / T n ).

【0009】また、本発明装置の特徴とするところは、
軸方向に沿って複数のセンサが配置され、前記各センサ
は周方向等分割位置に、回転方向に所定角度づつずれて
配置され、前記等分割位置の特定位置には前記センサが
配置されていないNULL点を有する形状検出ローラ
が、圧延材に接触し且つその圧延速度と同期して回転す
ることにより、該各センサが前記圧延材から受ける荷重
を検出し、前記検出ローラが一回転した後に前記各セン
サからの検出信号と前記NULL点の信号値を処理し
て、ドリフト及びユラギの補正を行って前記圧延材の形
状を検出する形状検出装置において、前記センサとは別
に、圧延材の張力を検出する張力検出手段が設けられ、
前記圧延材の張力を、前記各センサの荷重検出と同時に
検出し、前記各センサからの検出信号を処理して前記圧
延材の形状を求める際、前記形状検出ローラの一回転中
に張力変動がある場合、前記検出した張力値を補正値と
して用いて、前記圧延材の形状を求める形状検出補正手
段が設けられた点にある。
The features of the device of the present invention are as follows:
A plurality of sensors it along the axial direction is arranged, each sensor
Are arranged at circumferentially equally divided positions with a predetermined angle offset in the rotational direction, and the sensor is provided at a specific position of the equally divided positions.
The shape detection roller having a NULL point which is not arranged contacts the rolled material and rotates in synchronization with the rolling speed, whereby each sensor detects the load received from the rolled material, and the detection roller detects the load. In a shape detection device that processes a detection signal from each of the sensors and a signal value of the NULL point after rotation to detect the shape of the rolled material by correcting drift and erratic, in addition to the sensors, Tension detecting means for detecting the tension of the material is provided,
When the tension of the rolled material is detected at the same time as the load of each sensor is detected and the detection signal from each sensor is processed to obtain the shape of the rolled material , one rotation of the shape detection roller is performed.
In the case where there is a fluctuation in tension, there is provided a shape detection / correction means for obtaining the shape of the rolled material by using the detected tension value as a correction value.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づき説明する。図1において、圧延材1 の形状検出
装置2 は、圧延機3 の巻取側に設けられ、圧延材1 に接
触して圧延速度と同期回転する形状検出ローラ4 と、該
ローラ4 とは別に設けられた張力検出手段5 と、前記検
出ローラ4 と張力検出手段5 からの検出信号を処理して
圧延材1 の形状を求める処理装置6 とからなる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. In FIG. 1, the shape detecting device 2 for the rolled material 1 is provided on the winding side of the rolling mill 3, and the shape detection roller 4 that comes into contact with the rolled material 1 and rotates synchronously with the rolling speed is separated from the roller 4. It comprises a tension detecting means 5 provided and a processing device 6 for processing the detection signals from the detecting roller 4 and the tension detecting means 5 to obtain the shape of the rolled material 1.

【0011】図2に示すように、前記形状検出ローラ4
は、複数枚のディスク7 を回転軸の軸心方向に積層して
成り、前記回転軸の両端部は、軸受装置8 を介して回転
自在に支持されている。この回転軸の一端は、図示省略
のモータ等の駆動手段に軸継手9 を介して結合され、圧
延速度と同期回転可能とされている。回転軸の他端に、
チャージアンプ10と回転角度検出器11と回転トランスミ
ッタ12が取り付けられている。
As shown in FIG. 2, the shape detecting roller 4 is
Is formed by stacking a plurality of disks 7 in the axial direction of the rotary shaft, and both ends of the rotary shaft are rotatably supported via bearing devices 8. One end of this rotary shaft is coupled to a drive means such as a motor (not shown) via a shaft coupling 9 and is rotatable in synchronization with the rolling speed. At the other end of the rotary shaft,
A charge amplifier 10, a rotation angle detector 11, and a rotation transmitter 12 are attached.

【0012】前記軸受装置8 は、前記張力検出手段5 を
介してベース13に取り付けられている。この張力検出手
段5 は、ロードセル等の荷重計からなり、軸受荷重を検
出して圧延材1 の張力を求めるものである。尚、この張
力検出手段5 は、ルーパーに設けた荷重計等から構成す
ることもできる。図3に示す如く、前記形状検出ローラ
4 を構成する各ディスク7 には、その周方向一か所に圧
電素子からなるセンサ14が内蔵されている。そして、形
状検出ローラ4 が回転して、圧延材1 とセンサ14との関
係が図3(a)の状態から同図(b)の状態に至ると、
同図(c)に示すように、該センサ14から検出信号が出
力される。
The bearing device 8 is attached to the base 13 via the tension detecting means 5. The tension detecting means 5 is composed of a load cell such as a load cell, and detects the bearing load to obtain the tension of the rolled material 1. The tension detecting means 5 may be composed of a load meter or the like provided on the looper. As shown in FIG. 3, the shape detection roller
Each disk 7 constituting 4 has a built-in sensor 14 composed of a piezoelectric element at one location in the circumferential direction. When the shape detection roller 4 rotates and the relationship between the rolled material 1 and the sensor 14 changes from the state of FIG. 3 (a) to the state of FIG. 3 (b),
As shown in FIG. 3C, a detection signal is output from the sensor 14.

【0013】図4に示すように各ディスク7 の前記セン
サ14は、軸方向に沿い且つ回転方向に所定角度づつずれ
て配置されている。所定角度の内、数カ所は、センサが
配置されていない。以下、この位置をNULL点と言う
(図7においては、0°、120°、240°がNUL
L点であり、図8においては、0°、90°、180
°、270°がNULL点である。)。
As shown in FIG. 4, the sensors 14 of the respective disks 7 are arranged along the axial direction and displaced by a predetermined angle in the rotational direction. Of the predetermined angle, the number places the sensor is not not been arranged. Hereinafter, this position is referred to as a NULL point (in FIG. 7, 0 °, 120 °, and 240 ° are NULL.
L point, and in FIG. 8, 0 °, 90 °, 180
270 ° is the NULL point. ).

【0014】図5に示すように、各ディスク7 はグルー
プ分けされ、同一グループ内のセンサ14は、同一のチャ
ンネルのチャージアンプ10に接続され、各センサ14から
の出力信号は、前記回転トランスミッタ12を介して処理
装置6 に伝送される。そして、前記処理装置6 には、前
記各センサ14からの検出信号を処理して前記圧延材1 の
形状を求める際、前記張力検出手段5 からの張力値を補
正値として用いて、前記圧延材1 の形状を求める形状検
出補正手段15が設けられている。
As shown in FIG. 5, each disk 7 is divided into groups, the sensors 14 in the same group are connected to the charge amplifier 10 of the same channel, and the output signal from each sensor 14 is the rotary transmitter 12. Is transmitted to the processing device 6 via. Then, when the processing device 6 processes the detection signals from the respective sensors 14 to obtain the shape of the rolled material 1, the tension value from the tension detecting means 5 is used as a correction value to obtain the rolled material. A shape detection / correction means 15 for determining the shape of 1 is provided.

【0015】図6により、前記処理装置6 の機能を説明
する。形状検出ローラ4 を圧延材1 に接触させて同期回
転させ、形状検出ローラ4 の回転角度を前記回転角度検
出器11で検出する一方、センサ14からの信号を受信する
(S1)と共に、また各NULL点の出力値を検出する
(S2)。図7に示すように、前記形状検出ローラ4 か
らの波形信号は、ドリフトとユラギを含んだものとな
る。そこで、ドリフトを求めて当該ドリフトの補正を行
い(S3)、ユラギの振幅、位相、オフセットの計算を
行い(S4)、当該ユラギの補正を行う(S5)。尚、
前記ドリフト補正及びユラギ補正処理は、特公平7−9
2380号公報に記載の如く公知の処理であるので、そ
の詳細説明は省略する。
The function of the processing device 6 will be described with reference to FIG. The shape detection roller 4 is brought into contact with the rolled material 1 to rotate synchronously and the rotation angle of the shape detection roller 4 is detected by the rotation angle detector 11, while receiving a signal from the sensor 14 (S1) and The output value at the NULL point is detected (S2). As shown in FIG. 7, the waveform signal from the shape detection roller 4 contains drift and erratic. Therefore, the drift is obtained and the drift is corrected (S3), the amplitude, phase, and offset of the eel are calculated (S4), and the eel is corrected (S5). still,
The drift correction and the erratic correction process are described in Japanese Patent Publication No. 7-9.
Since this is a known process as described in Japanese Patent No. 2380, detailed description thereof will be omitted.

【0016】ドリフト補正及びユラギ補正された形状デ
ータRn は、図8の下部に示す如くである。ここで、R
の下添え字nは、センサの位置(30°、60°……)
を示し、また図中のRの上添え字の(A)……(F)
は、チャージアンプのチャンネルを示す。尚、図7と図
8のデータの関連性はなく、単なる例示にすぎない。前
記図8の下部の形状データは、同図上部に示す如く、張
力変動が有った場合のものであり、このような張力変動
が発生すると、前記形状検出補正手段15により、張力変
動補正が行われる(S6)。
The shape data Rn that has been subjected to drift correction and errata correction is as shown in the lower part of FIG. Where R
The subscript n is the position of the sensor (30 °, 60 ° ...)
And the superscript of R in the figure is (A) ... (F)
Indicates a charge amplifier channel. It should be noted that the data in FIGS. 7 and 8 are not related to each other and are merely examples. The shape data in the lower part of FIG. 8 is for the case where there is a tension fluctuation as shown in the upper part of the figure, and when such a tension fluctuation occurs, the shape fluctuation correcting means 15 corrects the tension fluctuation. (S6).

【0017】即ち、形状検出ロールからの形状信号と、
張力計からの張力信号を同時サンプリングし、図8に示
すように、張力変動が発生した場合、次式により一回転
中の平均張力TAVG を算出し、平均張力下での形状値に
補正する(S7)。 TAVG =Σ(1/n)Tn いま、平均張力値TAVG における形状平均値をRAVG
すると、次式が成立する。
That is, the shape signal from the shape detection roll,
The tension signals from the tensiometer are simultaneously sampled, and as shown in FIG. 8, when a tension fluctuation occurs, the average tension T AVG during one rotation is calculated by the following formula and corrected to the shape value under the average tension. (S7). T AVG = Σ (1 / n) T n Now, let the shape average value at the average tension value T AVG be R AVG , the following equation holds.

【0018】RAVG /TAVG =R30/T30 故に、 RAVG 30=R30(TAVG /T30) RAVG 60=R60(TAVG /T60) ………… RAVG 330 =R330 (TAVG /T330 ) 前記RAVG 30〜RAVG 330 は、平均張力時TAVG 上での
形状として処理されるので、一回転中の張力変動の影響
を受けることなく、平均張力値(TAVG )上での正確な
形状として表示することができる。
R AVG / T AVG = R 30 / T 30 Therefore, R AVG 30 = R 30 (T AVG / T 30 ) R AVG 60 = R 60 (T AVG / T 60 ) ... R AVG 330 = R 330 (T AVG / T 330 ) Since the above R AVG 30 to R AVG 330 are processed as the shape on T AVG at the time of average tension, the average tension value is not affected by the tension fluctuation during one rotation. It can be displayed as an accurate shape on (T AVG ).

【0019】なお、本発明方法は、グリップ張力変動を
除去する場合にも適用できる。即ち、圧延機から繰り出
された圧延材をリールに巻き取るときに、その巻き取り
始端がリール外周面上の段差となり、圧延材を巻いたコ
イルが局部的にコブ状となり、圧延材がこの段差と形状
検出ローラの外面とに対して接線状になったとき、この
段差により巻き取り張力が変動するといったグリップ張
力変動が発生する。このグリップ張力変動は、形状検出
ローラによる形状検出に誤差を生じさせる。そこで、グ
リップ張力変動がある場合、本発明方法の張力補正を行
い、グリップ張力変動を除去することができる。
The method of the present invention can also be applied to the case of eliminating grip tension fluctuations. That is, when the rolled material fed from the rolling mill is wound on the reel, the winding start end becomes a step on the outer peripheral surface of the reel, the coil wound the rolled material locally becomes a bump shape, and the rolled material has this step. When it becomes tangential with respect to the outer surface of the shape detection roller, grip tension fluctuation such as winding tension fluctuation occurs due to this step. This grip tension fluctuation causes an error in shape detection by the shape detection roller. Therefore, when there is a grip tension fluctuation, the tension correction according to the method of the present invention can be performed to eliminate the grip tension fluctuation.

【0020】尚、本発明は、前記実施の形態に限定され
るものではない。
The present invention is not limited to the above embodiment.

【0021】[0021]

【発明の効果】本発明によれば、形状検出ロールが一回
転中に発生する張力変動により、センサ取付位相角毎に
荷重が発生した場合でも、検出誤差を解消することがで
き、正確な形状検出が行える。またタンデム圧延機にお
いて、コイル間を溶接した部分を通過させる時に生じる
張力変動に関して、従来であれば正確な形状検出が不可
能であった為に自動形状制御が不可能であったが、本発
明によれば、溶接部分通過時における形状検出が正確に
でき、自動形状制御運転が可能になり、製品の歩留が向
上する。
According to the present invention, even if a load is generated at each sensor mounting phase angle due to the tension fluctuation generated during one rotation of the shape detection roll, the detection error can be eliminated, and the accurate shape can be obtained. Can detect. Further, in the tandem rolling mill, with respect to the tension fluctuation generated when passing the welded portion between the coils, automatic shape control was impossible because accurate shape detection could not be conventionally achieved. According to the method, the shape can be accurately detected when passing through the welded portion, the automatic shape control operation can be performed, and the product yield is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の形状検出装置の配置図である。FIG. 1 is a layout view of a shape detection device of the present invention.

【図2】図2は形状検出ローラの正面図である。FIG. 2 is a front view of a shape detection roller.

【図3】図3は形状検出ローラの詳細を示し、同図
(a)は非荷重点出力時の圧延材とローラの接触状態を
示し、同図(b)は最大荷重出力時の圧延材とローラの
接触状態を示し、同図(c)はセンサの出力波形を示
す。
FIG. 3 shows details of a shape detection roller, FIG. 3 (a) shows a contact state between a rolled material and a roller at the time of non-load point output, and FIG. 3 (b) shows a rolled material at the time of maximum load output. Shows the contact state between the roller and the roller, and FIG. 7C shows the output waveform of the sensor.

【図4】図4は形状検出ローラの各ディスクに配置され
たセンサの配置角度の一例を示す図面である。
FIG. 4 is a drawing showing an example of an arrangement angle of a sensor arranged on each disk of a shape detection roller.

【図5】図5は、本発明の形状検出装置を示す構成図で
ある。
FIG. 5 is a configuration diagram showing a shape detection device of the present invention.

【図6】図6は、本発明方法のフローチャトである。FIG. 6 is a flow chart of the method of the present invention.

【図7】図7は、形状検出ロールからの形状信号を示す
とともに、ユラギとドリフトの説明図である。
FIG. 7 is a diagram illustrating a shape signal from a shape detection roll, and is an explanatory diagram of a fluctuation and a drift.

【図8】図8は、張力変動が発生した時の、形状検出ロ
ールからの出力波形を示すグラフである。
FIG. 8 is a graph showing an output waveform from the shape detection roll when a tension fluctuation occurs.

【符号の説明】[Explanation of symbols]

1 圧延材 4 形状検出ローラ 5 張力検出手段 6 処理装置 14 センサ 15 形状検出補正手段 1 rolled material 4 Shape detection roller 5 Tension detection means 6 processing equipment 14 sensors 15 Shape detection and correction means

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−145655(JP,A) 特開 平8−61948(JP,A) 特開 平7−77468(JP,A) 特公 平7−92380(JP,B2) (58)調査した分野(Int.Cl.7,DB名) G01B 21/20 G01L 5/10 B21C 51/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-8-145655 (JP, A) JP-A-8-61948 (JP, A) JP-A-7-77468 (JP, A) JP-B 7- 92380 (JP, B2) (58) Fields surveyed (Int.Cl. 7 , DB name) G01B 21/20 G01L 5/10 B21C 51/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 軸方向に沿って複数のセンサが配置さ
れ、前記各センサは周方向等分割位置に、回転方向に所
定角度づつずれて配置され、前記等分割位置の特定位置
には前記センサが配置されていないNULL点を有する
形状検出ローラが、圧延材に接触し且つその圧延速度と
同期して回転することにより、該各センサが前記圧延材
から受ける荷重を検出し、前記検出ローラが一回転した
後に前記各センサからの検出信号と前記NULL点の信
号値を処理して、ドリフト及びユラギの補正を行って
記圧延材の形状を検出する方法において、 前記センサとは別の張力検出手段により、前記圧延材の
張力を、前記各センサの荷重検出と同時に検出し、前記
各センサからの検出信号を処理して前記圧延材の形状を
求める際、前記形状検出ローラの一回転中に張力変動が
ある場合、前記検出した張力値を補正値として用いて、
前記圧延材の形状を求めることを特徴とする圧延材の形
状検出方法。
1. A axially I along a plurality of sensors is arranged
Is, to the each sensor circumferentially equal division position, is disposed shifted by a predetermined angle at a time in the direction of rotation, the particular position of the equal division position
A shape detection roller having a NULL point where the sensor is not arranged contacts the rolled material and rotates in synchronization with the rolling speed, whereby each sensor detects a load received from the rolled material, After the detection roller makes one rotation, the detection signal from each sensor and the signal of the NULL point are transmitted.
In the method for detecting the shape of the rolled material by processing the signal value and correcting drift and errata, the tension of the rolled material is detected by a tension detecting means other than the sensor. When the load of each sensor is detected at the same time and the detection signal from each sensor is processed to obtain the shape of the rolled material , the tension fluctuation occurs during one rotation of the shape detection roller.
In some cases, using the detected tension value as a correction value,
A method for detecting the shape of a rolled material, characterized in that the shape of the rolled material is obtained.
【請求項2】 前記張力検出手段により検出された各セ
ンサ位置(n)における張力(Tn)から、前記形状検
出ローラの一回転中の平均張力(TAVG)を、 TAVG =Σ(1/n)Tn として算出し、 各センサからの検出信号を処理して得られる圧延材の形
状をRn として求め、前記張力値を補正値として用い
て、補正後の前記圧延材の形状(RAVG n)を、 RAVG n=Rn (TAVG /Tn ) として求めることを特徴とする請求項1記載の圧延材の
形状検出方法。
2. The average tension (T AVG ) during one rotation of the shape detection roller is calculated from the tension (T n ) at each sensor position (n) detected by the tension detecting means as follows: T AVG = Σ (1 / N) calculated as T n , the shape of the rolled material obtained by processing the detection signal from each sensor is obtained as R n , and using the tension value as a correction value, the shape of the rolled material after correction ( The method for detecting the shape of a rolled material according to claim 1, wherein R AVG n ) is obtained as R AVG n = R n (T AVG / T n ).
【請求項3】 軸方向に沿って複数のセンサが配置さ
れ、前記各センサは周方向等分割位置に、回転方向に所
定角度づつずれて配置され、前記等分割位置の特定位置
には前記センサが配置されていないNULL点を有する
形状検出ローラが、圧延材に接触し且つその圧延速度と
同期して回転することにより、該各センサが前記圧延材
から受ける荷重を検出し、前記検出ローラが一回転した
後に前記各センサからの検出信号と前記NULL点の信
号値を処理して、ドリフト及びユラギの補正を行って
記圧延材の形状を検出する形状検出装置において、 前記センサとは別に、圧延材の張力を検出する張力検出
手段が設けられ、前記圧延材の張力を、前記各センサの
荷重検出と同時に検出し、前記各センサからの検出信号
を処理して前記圧延材の形状を求める際、前記形状検出
ローラの一回転中に張力変動がある場合、前記検出した
張力値を補正値として用いて、前記圧延材の形状を求め
る形状検出補正手段が設けられたことを特徴とする圧延
材の形状検出装置。
Wherein axially I along a plurality of sensors is arranged
Is, to the each sensor circumferentially equal division position, is disposed shifted by a predetermined angle at a time in the direction of rotation, the particular position of the equal division position
A shape detection roller having a NULL point where the sensor is not arranged contacts the rolled material and rotates in synchronization with the rolling speed, whereby each sensor detects a load received from the rolled material, After the detection roller makes one rotation, the detection signal from each sensor and the signal of the NULL point are transmitted.
In the shape detecting device for detecting the shape of the rolled material by processing the signal value to correct the drift and the unevenness, a tension detecting means for detecting the tension of the rolled material is provided separately from the sensor. When detecting the tension of the rolled material at the same time as detecting the load of each of the sensors and processing the detection signal from each of the sensors to obtain the shape of the rolled material, the shape detection is performed.
When there is a tension fluctuation during one rotation of the roller, a shape detecting and correcting means for determining the shape of the rolled material by using the detected tension value as a correction value is provided. .
JP00778698A 1998-01-19 1998-01-19 Apparatus and method for detecting shape of rolled material Expired - Lifetime JP3535967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00778698A JP3535967B2 (en) 1998-01-19 1998-01-19 Apparatus and method for detecting shape of rolled material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00778698A JP3535967B2 (en) 1998-01-19 1998-01-19 Apparatus and method for detecting shape of rolled material

Publications (2)

Publication Number Publication Date
JPH11201745A JPH11201745A (en) 1999-07-30
JP3535967B2 true JP3535967B2 (en) 2004-06-07

Family

ID=11675359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00778698A Expired - Lifetime JP3535967B2 (en) 1998-01-19 1998-01-19 Apparatus and method for detecting shape of rolled material

Country Status (1)

Country Link
JP (1) JP3535967B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100421826C (en) * 2006-09-29 2008-10-01 燕山大学 Split plate profile instrument with piezomagnetic internal pores
CN101985134B (en) * 2010-11-04 2014-01-01 中色科技股份有限公司 Contact-type plate-shaped measuring apparatus
CH704255A1 (en) * 2010-12-22 2012-06-29 Kistler Holding Ag FUEL SENSOR SYSTEM AND METHOD FOR PLANNING MEASUREMENTS OF FILM OR PANEL STRIPS FOR ROLLING.

Also Published As

Publication number Publication date
JPH11201745A (en) 1999-07-30

Similar Documents

Publication Publication Date Title
US20050039548A1 (en) Non-contacting compliant torque sensor
US20160288196A1 (en) Ring rolling mill and method for manufacturing ring rolled material
US4356714A (en) Apparatus for detecting faults in the inherent flatness of a stretched strip in movement
JP3535967B2 (en) Apparatus and method for detecting shape of rolled material
US7135860B2 (en) Variable reluctance resolver including rotor with multiple detection portions
JPH07209107A (en) Method and device for detecting internal stress of feeding roll
JPH05149803A (en) Apparatus and method for measuring cogging torque of motor
US7235965B2 (en) Motor bearing wear detecting device
US20040112147A1 (en) DSP based algorithm for non-contacting torque sensor
JP3833143B2 (en) Method and apparatus for detecting shape of rolled material
CN106061874A (en) Rotational pattern forming device and rotational pattern forming method
CN113280730A (en) System and method for efficiently detecting strip head of steel coil
JP3683650B2 (en) Method for detecting the shape of rolled material
JP2001317932A (en) Method and device for detecting shape of rolled material
JPH04351979A (en) Test apparatus of linear motor
JPH0357901A (en) Apparatus for measuring eccentricity of stator of overhung motor
JPH06141424A (en) Cable take-up device
JP3090553B2 (en) Cup type wave device with magnetostrictive torque detector
JP2001001044A (en) Zero point adjusting method of wrapper roll
JPH0865975A (en) Induction motor provided with detector for axial displacement of rotor
JPH03142308A (en) Form measuring instrument for rolled stock
JPH10232127A (en) Method for detecting shape of rolled material
JP3440664B2 (en) Method of determining the frequency of constant voltage AC supplied to the detection coil of the torque sensor
JP2818330B2 (en) Carosel reel coil diameter calculator
JPH09243476A (en) Magnetostrictive torque sensor

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 10

EXPY Cancellation because of completion of term