JP3532954B2 - Control valve for hydraulic power steering system - Google Patents
Control valve for hydraulic power steering systemInfo
- Publication number
- JP3532954B2 JP3532954B2 JP08248294A JP8248294A JP3532954B2 JP 3532954 B2 JP3532954 B2 JP 3532954B2 JP 08248294 A JP08248294 A JP 08248294A JP 8248294 A JP8248294 A JP 8248294A JP 3532954 B2 JP3532954 B2 JP 3532954B2
- Authority
- JP
- Japan
- Prior art keywords
- valve member
- recesses
- pressure oil
- oil supply
- recess
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Power Steering Mechanism (AREA)
Description
【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、油圧パワーステアリン
グ装置の操舵補助力発生用油圧アクチュエータに作用す
る油圧を制御するロータリー式の油圧制御弁に関する。
【0002】
【従来の技術】図5に示す従来の油圧パワーステアリン
グ装置用制御弁は、筒状の第1バルブ部材101と、こ
の第1バルブ部材101に相対回転可能に挿入される第
2バルブ部材102とを備える。その第1バルブ部材1
01の内周と第2バルブ部材102の外周とに軸方向に
沿う複数の凹部101d、102aが周方向等間隔に形
成されている。その第2バルブ部材側凹部102aの一
部は互いに周方向等間隔に位置すると共にポンプに通じ
る複数の圧油供給用凹部102a′とされている。その
第1バルブ部材側凹部101dと第2バルブ部材側凹部
102aの間が両バルブ部材101、102の相対回転
により開度が変化する絞り部とされ、この絞り部の開度
変化により操舵補助力発生用油圧アクチュエータに作用
する油圧が制御される(実公平1‐43977公報参
照)。
【0003】この制御弁においては、ポンプから吐出さ
れる圧油の脈動等により第1バルブ部材101と第2バ
ルブ部材102が相対振動するのを防止するため、各凹
部101d、102aの軸方向一端の軸方向外方におい
て第2バルブ部材の外周に第1周溝102bが形成さ
れ、この第1周溝102bに環状弾性部材103が挿入
され、その第1周溝102bと前記圧油供給用凹部10
2a′の一つとを連通する単一の第1スリット102c
が第2バルブ部材102に形成されている。その第1ス
リット102cの周方向寸法は圧油供給用凹部102
a′の周方向寸法よりも小さくされている。これによ
り、その圧油供給用凹部102a′から第1スリット1
02cを通じ第1周溝102bに圧油を供給し、この供
給された圧油により環状弾性部材103を径方向外方に
張って第1バルブ部材101の内周面に押し付け、第1
バルブ部材101と第2バルブ部材102との相対振動
を防止している。
【0004】また、高圧油が作用したときの両バルブ部
材101、102の間の隙間を軸方向に関し均一化する
ため、各凹部101d、102aの軸方向他端の軸方向
外方において第2バルブ部材の外周に第2周溝102d
が形成され、この第2周溝102dと前記第1周溝10
2bに連通された一つの圧油供給用凹部102a′とを
連通する単一の第2スリット102eが第2バルブ部材
102に形成されている。その第2スリット102eの
周方向寸法は圧油供給用凹部102a′の周方向寸法よ
りも小さくされている。これにより、その圧油供給用凹
部102a′から第2スリット102eを通じ第2周溝
102dに圧油が供給される。すなわち、軸方向に間隔
をおいて形成された両周溝102b、102dに圧油が
供給されるので、第1バルブ部材101の外周面から第
1バルブ部材101を内径方向に縮小しようとする荷重
と第2バルブ部材102の周溝102b、102dに供
給された圧油により第1バルブ部材101を外径方向に
拡張しようとする荷重がほぼバランスし、第1バルブ部
材101の内周と第2バルブ部材102の外周との隙間
が軸方向において均一化される。これにより、両バルブ
部材101、102の相対回転を円滑化し、また、両バ
ルブ部材101、102の内外周間の隙間を最小に設定
して油洩れを防止している。
【0005】また、第1バルブ部材101は、筒状の本
体部101aと、この本体部101aの内周両端に圧入
される環状部101b、101cとから構成されてい
る。その第1バルブ部材101の内周における凹部10
1dは、その本体部101aの軸方向に沿う溝の底面1
01a′と環状部101b、101cの端面101
b′、101c′とから構成されている。これにより、
本体部101aの加工を容易化している。
【0006】
【発明が解決しようとする課題】上記従来の油圧制御弁
では、制振手段を設けているにも拘らず、その振動を充
分に防止することができず、不快な振動音が発生した
り、振動がハンドルに伝わって運転者に不快感を与える
等の問題があった。
【0007】本発明は上記課題を解決することのできる
油圧パワーステアリング装置用制御弁を提供することを
目的とする。
【0008】
【課題を解決するための手段】本発明の油圧パワーステ
アリング装置用制御弁は、筒状の第1バルブ部材と、こ
の第1バルブ部材に相対回転可能に挿入される第2バル
ブ部材とを備え、第1バルブ部材の内周と第2バルブ部
材の外周とに軸方向に沿う複数の凹部が周方向に間隔を
おいて形成され、その第2バルブ部材側凹部の一部は互
いに周方向に間隔をおいて位置すると共に圧油供給手段
に通じる複数の圧油供給用凹部とされ、その第1バルブ
部材側凹部と第2バルブ部材側凹部の間が両バルブ部材
の相対回転により開度が変化する絞り部とされ、その絞
り部の開度変化により操舵補助力発生用油圧アクチュエ
ータに作用する油圧が制御され、第2バルブ部材の外周
に前記各凹部の軸方向両端の軸方向外方において周溝が
形成され、両周溝の少なくとも一方に環状弾性部材が挿
入され、前記各圧油供給用凹部それぞれの軸方向両端か
ら軸方向外方に延びる連通用凹部が形成され、各連通用
凹部を介し各圧油供給用凹部は両周溝に連通され、各圧
油供給用凹部と各連通用凹部とは周方向の寸法が等しく
されている。
【0009】その圧油供給用凹部は周方向等間隔に配置
されているのが好ましい。
【0010】
【作用】本件発明者は、従来の油圧パワーステアリング
装置用制御弁が第1バルブ部材101の制振手段を備え
ているにも拘らず、充分に制振効果を奏することができ
ない原因は、制振作用の応答遅れにあることを究明し
た。すなわち、従来構造では圧油供給用凹部102a′
から各周溝102b、102dへの圧油の供給速度が遅
く、環状弾性部材103に油圧を迅速に作用させること
ができず、そのため制振効果を奏することができなかっ
た。
【0011】そこで、圧油供給用凹部102a′から各
周溝102b、102dへの圧油の供給を迅速化するた
め、各スリット102c、102eの深さを大きくして
流路面積を広げることが考えられる。しかし、各スリッ
ト102c、102eは、通常はフライスによって第2
バルブ部材102の外周を切削することで形成されるた
め、スリット102c、102eを深くし過ぎると、そ
のフライスにより周溝102b、102dの軸方向外方
側の壁面まで削り取られ、圧油が漏洩するおそれがあ
る。
【0012】これに対し本発明の構成によれば、複数の
圧油供給用凹部から複数の連通用凹部を通り各周溝に圧
油が供給され、しかも、各圧油供給用凹部と各連通用凹
部とは周方向の寸法が等しくされているので、従来のよ
うに単一の圧油供給用凹部102a′から単一のスリッ
ト102cを介し環状弾性部材103に油圧を作用さ
せ、そのスリット102cの周方向寸法が圧油供給用凹
部102a′の周方向寸法よりも小さい場合に比べ、環
状弾性部材に油圧を迅速に作用させることができる。こ
れにより、第1バルブ部材の制振効果を確実に奏するこ
とができる。
【0013】しかも、軸方向に間隔をおいて形成された
両方の周溝に迅速に圧油を供給できるので、第1バルブ
部材に油圧が軸方向に関し不均一に作用することはな
く、第1バルブ部材と第2バルブ部材との間の隙間を軸
方向に均一化できる。これにより、両バルブ部材の相対
回転を円滑化すると共に油漏れを防止できる。また、従
来のように単一の圧油供給用凹部から各周溝に圧油が供
給される場合、圧油供給当初においては環状弾性部材に
周方向に関し偏って油圧が作用するため、第1バルブ部
材と第2バルブ部材との間の隙間が周方向に関し不均一
になるおそれがある。これに対し、各周溝に連通される
複数の圧油供給用凹部を周方向等間隔に配置すること
で、第1バルブ部材と第2バルブ部材との間の隙間は周
方向に関し均一化される。これにより、両バルブ部材の
相対回転を円滑化すると共に油漏れを防止できる。
【0014】また、各圧油供給用凹部と各連通用凹部の
周方向の寸法を等しくすることで、その圧油供給用凹部
と連通用凹部とを単一のフライス等の工具により加工す
ることが可能になり、加工コストを低減できる。
【0015】
【実施例】以下、図面を参照して本発明の実施例につい
て説明する。
【0016】図1に示すラックピニオン式油圧パワース
テアリング装置1は、操舵用ハンドル(図示省略)に連
結される入力軸2と、この入力軸2にトーションバー3
を介し連結される出力軸4とを備えている。そのトーシ
ョンバー3はピン5を介し入力軸2に連結され、また、
セレーション6を介し出力軸4に連結されている。その
出力軸4にピニオン7が形成され、このピニオン7に噛
み合うラック8が操舵用車輪(図示省略)に連結されて
いる。その入力軸2はベアリング9を介しバルブハウジ
ング10aに支持され、また、ベアリング11を介し出
力軸4に支持されている。その出力軸4はベアリング1
2、13を介しラックハウジング10bに支持されてい
る。これにより、操舵による入力軸2の回転がトーショ
ンバー3を介しピニオン7に伝達されてラック8が車両
幅方向に移動し、このラック8の移動により車輪が操舵
される。なお、その入出力軸2、4とバルブハウジング
10aとの間にオイルシール14、15が設けられてい
る。また、そのラック8を支持するサポートヨーク16
が設けられ、このサポートヨーク16はバネ17の弾性
力によりラック8に押し付けられている。
【0017】操舵補助力を付与する油圧アクチュエータ
として油圧シリンダ18が設けられている。その油圧シ
リンダ18はラックハウジング10bにより構成される
シリンダチューブ19と、ラック8に一体に形成された
ピストン20とを備え、そのピストン20により仕切ら
れる一対の油室21、22が形成されている。各油室2
1、22にロータリー式油圧制御弁23が接続されてい
る。
【0018】その制御弁23は、筒状の第1バルブ部材
24と、この第1バルブ部材24に相対回転可能に挿入
される第2バルブ部材25とを備えている。その第1バ
ルブ部材24は、筒状の本体部24aと、この本体部2
4aの内周両端に圧入される環状部24b、24cとを
有し、出力軸4にピン26を介し同行回転可能に取り付
けられている。その第2バルブ部材25は入力軸2の外
周に一体に形成されている。
【0019】図2に示すように、両環状部24b、24
c間において第1バルブ部材24の内周と第2バルブ部
材25の外周とに軸方向に沿う複数の凹部が周方向等間
隔に形成されている。その第1バルブ部材側凹部は、互
いに周方向等間隔に位置する4つの右操舵用凹部27
と、互いに周方向等間隔に位置する4つの左操舵用凹部
28とで構成され、その第2バルブ部材側凹部は、互い
に周方向等間隔に位置する4つの圧油供給用凹部29
と、互いに周方向等間隔に位置する4つの圧油排出用凹
部30とで構成される。各右操舵用凹部27と各左操舵
用凹部28とは周方向に交互に配置され、各圧油供給用
凹部29と各圧油排出用凹部30とは周方向に交互に配
置される。各右操舵用凹部27は第1バルブ部材24に
形成された第1流路31およびバルブハウジング10a
に形成された第1ポート32を介し油圧シリンダ18の
一方の油室21に通じる。各左操舵用凹部28は第1バ
ルブ部材24に形成された第2流路33およびバルブハ
ウジング10aに形成された第2ポート34を介し油圧
シリンダ18の他方の油室22に通じる。各圧油供給用
凹部29は第1バルブ部材24に形成された第3流路3
5およびバルブハウジング10aに形成された入口ポー
ト36を介しポンプ37に通じる。各圧油排出用凹部3
0は第2バルブ部材25に形成された第1排出路38、
入力軸2とトーションバー3の内外周間の通路47、入
力軸2に形成された第2排出路39、及びバルブハウジ
ング10aに形成された排出ポート40を介しタンク4
1に通じる。これにより、そのポンプ37、タンク4
1、及び油圧シリンダ18の各油室21、22が第1バ
ルブ部材24と第2バルブ部材25の内外周間の弁間流
路42を通じ連通する。また、その弁間流路42におい
て第1バルブ部材側凹部と第2バルブ部材側凹部の間は
両バルブ部材24、25の相対回転により開度が変化す
る絞り部A、B、C、Dとされ、その絞り部A、B、
C、Dの開度変化により油圧シリンダ18に作用する油
圧が制御される。
【0020】すなわち、図2は操舵していない状態での
両バルブ部材24、25の相対位置を示しており、この
状態においては各圧油供給用凹部29と各圧油排出用凹
部30とが全絞り部A、B、C、Dを介し連通するた
め、ポンプ37から供給された圧油は直接タンク41へ
還流し操舵補助力は発生しない。
【0021】その操舵補助力が発生しない状態から右方
へ操舵すると、車輪が路面から受ける操舵抵抗に応じト
ーションバー3は捩じれ、両バルブ部材24、25が相
対回転する。その結果、各右操舵用凹部27と各圧油供
給用凹部29との間の絞り部Aの開度および各左操舵用
凹部28と各圧油排出用凹部30との間の絞り部Bの開
度が大きくなり、各左操舵用凹部28と各圧油供給用凹
部29との間の絞り部Cの開度および各右操舵用凹部2
7と各圧油排出用凹部30との間の絞り部Dの開度が小
さくなる。これにより、ポンプ37から油圧シリンダ1
8の一方の油室21へ圧油が供給され、油圧シリンダ1
8の他方の油室22よりタンク41へ圧油が還流され、
車両の右方への操舵補助力が操舵抵抗に応じラック8に
作用する。
【0022】また、左方へ操舵すると、各絞り部A、
B、C、Dの開度は右方へ操舵した場合と逆に変化する
ので、車両の左方への操舵補助力が操舵抵抗に応じラッ
ク8に作用する。
【0023】図3に示すように、第2バルブ部材25の
外周に、前記各凹部29、30の軸方向両端の軸方向外
方において周溝43、44が形成され、一方の周溝43
に環状弾性部材45が挿入されている。その一方の周溝
43は、各圧油供給用凹部29の軸方向一端から延びる
4つの連通用凹部46aを介し各圧油供給用凹部29に
連通されている。その他方の周溝44は、各圧油供給用
凹部29の軸方向他端から延びる4つの連通用凹部46
bを介し各圧油供給用凹部29に連通されている。各圧
油供給用凹部29と各連通用凹部46a、46bとは周
方向の寸法が等しくされている。また、各連通用凹部4
6a、46bと各周溝43、44は第1バルブ部材24
を構成する環状部24b、24cの径方向内方に配置さ
れている。
【0024】上記構成によれば、各圧油供給用凹部29
から各連通用凹部46a、46bを介し各周溝43、4
4に圧油が供給され、この供給された圧油により環状弾
性部材45が径方向外方に張られて第1バルブ部材24
の内周面に押し付けられ、第1バルブ部材24の制振が
なされる。この際、複数の圧油供給用凹部29から複数
の連通用凹部46a、46bを通り各周溝43、44に
圧油が供給され、しかも、各圧油供給用凹部29と各連
通用凹部46a、46bとは周方向の寸法が等しくされ
ているので、環状弾性部材45に油圧を迅速に作用させ
ることができる。これにより、第1バルブ部材24と第
2バルブ部材25との相対振動を確実に抑制することが
できる。
【0025】しかも、軸方向に間隔をおいて形成された
両方の周溝43、44に迅速に圧油を供給できるので、
第1バルブ部材24に油圧が軸方向に関し不均一に作用
することはなく、両バルブ部材24、25の間の隙間を
軸方向に関し均一化できる。また、各周溝43、44に
連通される複数の圧油供給用凹部29は周方向等間隔に
配置されるので、環状弾性部材45に周方向に関し偏っ
て油圧が作用することはなく、第1バルブ部材24と第
2バルブ部材25との間の隙間は周方向に均一化され
る。これにより、両バルブ部材24、25の相対回転を
円滑化すると共に油漏れを防止できる。
【0026】また、各圧油供給用凹部29と各連通用凹
部46a、46bの周方向の寸法を等しくすることで、
その圧油供給用凹部29と連通用凹部46a、46bと
を図3において2点鎖線で示すような単一のフライスM
で加工することが可能になり、加工コストを低減でき
る。
【0027】なお、本発明は上記実施例に限定されるも
のではない。例えば、上記実施例では、本発明をラック
ピニオン式油圧パワーステアリング装置に適用したが、
ボールスクリュー式油圧パワーステアリング装置にも適
用できる。また、圧油供給用凹部の数は複数であれば特
に限定されない。また、環状弾性部材は両方の周溝に挿
入してもよい。
【0028】
【発明の効果】本発明の制御弁によれば、バルブ部材の
制振効果を確実に奏し、両バルブ部材の相対回転を円滑
化し、油漏れを防止し、加工コストを低減できる。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotary type hydraulic control valve for controlling a hydraulic pressure acting on a hydraulic actuator for generating a steering assist force of a hydraulic power steering apparatus. 2. Description of the Related Art A conventional control valve for a hydraulic power steering apparatus shown in FIG. 5 has a cylindrical first valve member 101 and a second valve inserted into the first valve member 101 so as to be relatively rotatable. And a member 102. The first valve member 1
A plurality of recesses 101d and 102a along the axial direction are formed at equal intervals in the circumferential direction on the inner circumference of the first valve member 01 and the outer circumference of the second valve member 102. A part of the second valve member side concave portion 102a is a plurality of pressure oil supplying concave portions 102a 'which are located at equal intervals in the circumferential direction and communicate with the pump. Between the first valve member-side concave portion 101d and the second valve member-side concave portion 102a is a throttle portion whose opening degree changes due to the relative rotation of the two valve members 101, 102. The hydraulic pressure acting on the generating hydraulic actuator is controlled (see Japanese Utility Model Publication No. 1-4977). In this control valve, in order to prevent relative vibration of the first valve member 101 and the second valve member 102 due to pulsation of pressure oil discharged from the pump, one axial end of each of the recesses 101d and 102a. A first peripheral groove 102b is formed on the outer periphery of the second valve member on the outer side in the axial direction. An annular elastic member 103 is inserted into the first peripheral groove 102b, and the first peripheral groove 102b and the pressure oil supply recess are formed. 10
Single first slit 102c communicating with one of the second slits 2a '
Are formed on the second valve member 102. The circumferential dimension of the first slit 102c is the pressure oil supply recess 102.
a 'is smaller than the circumferential dimension of a'. As a result, the first slit 1
02c is supplied to the first peripheral groove 102b through the second peripheral groove 102c, and the supplied pressure oil stretches the annular elastic member 103 radially outward and presses the annular elastic member 103 against the inner peripheral surface of the first valve member 101.
The relative vibration between the valve member 101 and the second valve member 102 is prevented. In order to equalize the gap between the two valve members 101 and 102 in the axial direction when high-pressure oil acts, a second valve is provided at the other axial end of each of the recesses 101d and 102a. The second peripheral groove 102d is formed on the outer periphery of the member.
Are formed, and the second peripheral groove 102d and the first peripheral groove 10d are formed.
A single second slit 102e is formed in the second valve member 102 to communicate with one pressure oil supply recess 102a 'communicated with 2b. The circumferential dimension of the second slit 102e is smaller than the circumferential dimension of the pressure oil supply recess 102a '. Thereby, the pressure oil is supplied from the pressure oil supply concave portion 102a 'to the second circumferential groove 102d through the second slit 102e. That is, since the pressure oil is supplied to both the circumferential grooves 102b and 102d formed at intervals in the axial direction, the load that reduces the first valve member 101 in the radial direction from the outer peripheral surface of the first valve member 101 is provided. And the load for expanding the first valve member 101 in the radial direction is substantially balanced by the pressure oil supplied to the circumferential grooves 102b and 102d of the second valve member 102, so that the inner circumference of the first valve member 101 and the second The gap with the outer periphery of the valve member 102 is made uniform in the axial direction. Thereby, the relative rotation of the two valve members 101 and 102 is smoothed, and the gap between the inner and outer circumferences of the two valve members 101 and 102 is set to a minimum to prevent oil leakage. [0005] The first valve member 101 comprises a cylindrical main body 101a, and annular portions 101b and 101c which are press-fitted at both inner peripheral ends of the main body 101a. The concave portion 10 on the inner periphery of the first valve member 101
1d is a bottom surface 1 of the groove along the axial direction of the main body 101a.
01a 'and end faces 101 of the annular portions 101b and 101c
b 'and 101c'. This allows
Processing of the main body 101a is facilitated. [0006] In the above-mentioned conventional hydraulic control valve, the vibration cannot be sufficiently prevented in spite of the provision of the vibration damping means, and unpleasant vibration noise is generated. And the vibrations are transmitted to the steering wheel to cause discomfort to the driver. An object of the present invention is to provide a control valve for a hydraulic power steering device which can solve the above problems. A control valve for a hydraulic power steering apparatus according to the present invention comprises a first cylindrical valve member and a second valve member rotatably inserted into the first valve member. A plurality of recesses along the axial direction are formed on the inner periphery of the first valve member and the outer periphery of the second valve member at intervals in the circumferential direction, and a part of the second valve member-side recesses is mutually formed. A plurality of pressure oil supply recesses are provided at intervals in the circumferential direction and communicate with the pressure oil supply means, and a space between the first valve member side recess and the second valve member side recess is formed by relative rotation of the two valve members. The opening degree is changed to a throttle portion, and the hydraulic pressure acting on the steering assist force generating hydraulic actuator is controlled by the change in the opening degree of the throttle portion. A circumferential groove is formed on the outside An annular elastic member is inserted into at least one of the two circumferential grooves, and a communication recess extending axially outward from both axial ends of each of the pressure oil supply recesses is formed. The oil supply recess is communicated with both circumferential grooves, and each pressure oil supply recess and each communication recess have the same circumferential dimension. The pressure oil supply recesses are preferably arranged at equal intervals in the circumferential direction. The present inventor has found that despite the fact that a conventional control valve for a hydraulic power steering system has a vibration damping means for the first valve member 101, it is impossible to obtain a sufficient vibration damping effect. Found that there was a response delay in the damping action. That is, in the conventional structure, the pressure oil supply concave portion 102a '
Therefore, the supply speed of the pressure oil to each of the circumferential grooves 102b and 102d is low, and the hydraulic pressure cannot be applied to the annular elastic member 103 quickly, so that the vibration damping effect cannot be achieved. In order to speed up the supply of the pressure oil from the pressure oil supply recess 102a 'to each of the peripheral grooves 102b and 102d, the depth of each of the slits 102c and 102e may be increased to increase the flow path area. Conceivable. However, each slit 102c, 102e is usually
Since the slits 102c and 102e are formed too deep by cutting the outer circumference of the valve member 102, the milling cutters cut off the wall surfaces on the axially outward sides of the circumferential grooves 102b and 102d, and leak pressure oil. There is a risk. On the other hand, according to the structure of the present invention, the pressure oil is supplied from the plurality of pressure oil supply recesses to the respective circumferential grooves through the plurality of communication recesses. Since the circumferential dimension is equal to that of the passage recess, hydraulic pressure acts on the annular elastic member 103 from the single pressure oil supply recess 102a 'through the single slit 102c as in the conventional case, and the slit 102c Can be made to act on the annular elastic member more quickly than in the case where the circumferential dimension of is smaller than the circumferential dimension of the pressure oil supply recess 102a '. Thereby, the vibration damping effect of the first valve member can be reliably achieved. In addition, since the pressure oil can be quickly supplied to both the circumferential grooves formed at intervals in the axial direction, the hydraulic pressure does not act unevenly on the first valve member in the axial direction. The gap between the valve member and the second valve member can be made uniform in the axial direction. This makes it possible to smooth the relative rotation of the two valve members and to prevent oil leakage. Further, when the pressure oil is supplied to each of the circumferential grooves from the single pressure oil supply recess as in the related art, at the beginning of the supply of the pressure oil, the hydraulic pressure acts on the annular elastic member in the circumferential direction so that the first pressure oil is supplied. The gap between the valve member and the second valve member may be uneven in the circumferential direction. On the other hand, by arranging a plurality of pressure oil supply recesses communicating with each circumferential groove at equal intervals in the circumferential direction, the gap between the first valve member and the second valve member is made uniform in the circumferential direction. You. This makes it possible to smooth the relative rotation of the two valve members and to prevent oil leakage. By making the circumferential size of each pressure oil supply recess and each communication recess equal, the pressure oil supply recess and the communication recess can be machined by a single tool such as a milling cutter. , And the processing cost can be reduced. Embodiments of the present invention will be described below with reference to the drawings. A rack and pinion type hydraulic power steering device 1 shown in FIG. 1 has an input shaft 2 connected to a steering handle (not shown), and a torsion bar 3 connected to the input shaft 2.
And an output shaft 4 which is connected to the output shaft 4. The torsion bar 3 is connected to the input shaft 2 via a pin 5 and
It is connected to the output shaft 4 via a serration 6. A pinion 7 is formed on the output shaft 4, and a rack 8 that meshes with the pinion 7 is connected to steering wheels (not shown). The input shaft 2 is supported by a valve housing 10 a via a bearing 9, and is supported by the output shaft 4 via a bearing 11. The output shaft 4 is the bearing 1
It is supported by the rack housing 10b via 2 and 13. As a result, the rotation of the input shaft 2 due to the steering is transmitted to the pinion 7 via the torsion bar 3, and the rack 8 moves in the vehicle width direction, and the wheels are steered by the movement of the rack 8. Note that oil seals 14, 15 are provided between the input / output shafts 2, 4 and the valve housing 10a. A support yoke 16 for supporting the rack 8 is provided.
The support yoke 16 is pressed against the rack 8 by the elastic force of a spring 17. A hydraulic cylinder 18 is provided as a hydraulic actuator for applying a steering assist force. The hydraulic cylinder 18 includes a cylinder tube 19 constituted by a rack housing 10b, and a piston 20 formed integrally with the rack 8, and a pair of oil chambers 21 and 22 partitioned by the piston 20 are formed. Each oil chamber 2
A rotary hydraulic control valve 23 is connected to 1 and 22. The control valve 23 includes a cylindrical first valve member 24 and a second valve member 25 inserted into the first valve member 24 so as to be relatively rotatable. The first valve member 24 includes a cylindrical main body 24a and a main body 2a.
It has annular portions 24b and 24c which are press-fitted to both inner peripheral ends of the inner shaft 4a, and is rotatably attached to the output shaft 4 via pins 26. The second valve member 25 is formed integrally on the outer periphery of the input shaft 2. As shown in FIG. 2, both annular portions 24b, 24
A plurality of concave portions along the axial direction are formed at equal intervals in the circumferential direction on the inner periphery of the first valve member 24 and the outer periphery of the second valve member 25 between c. The first valve member-side recesses are provided with four right steering recesses 27 located at equal intervals in the circumferential direction.
And four left steering recesses 28 located at equal intervals in the circumferential direction. The second valve member-side recess has four pressure oil supply recesses 29 located at equal intervals in the circumferential direction.
And four pressure oil discharge recesses 30 located at equal intervals in the circumferential direction. The right steering recesses 27 and the left steering recesses 28 are alternately arranged in the circumferential direction, and the pressure oil supply recesses 29 and the pressure oil discharge recesses 30 are alternately arranged in the circumferential direction. Each right steering recess 27 is provided with a first passage 31 formed in the first valve member 24 and the valve housing 10a.
Through the first port 32 formed to the oil chamber 21 of the hydraulic cylinder 18. Each left steering recess 28 communicates with the other oil chamber 22 of the hydraulic cylinder 18 via a second flow path 33 formed in the first valve member 24 and a second port 34 formed in the valve housing 10a. Each pressure oil supply recess 29 is provided in the third flow path 3 formed in the first valve member 24.
5 and a pump 37 through an inlet port 36 formed in the valve housing 10a. Each pressure oil discharge recess 3
0 is a first discharge path 38 formed in the second valve member 25,
The tank 4 passes through a passage 47 between the input shaft 2 and the inner and outer circumferences of the torsion bar 3, a second discharge passage 39 formed in the input shaft 2, and a discharge port 40 formed in the valve housing 10a.
Lead to 1. Thereby, the pump 37 and the tank 4
The first and second oil chambers 21 and 22 of the hydraulic cylinder 18 communicate with each other through an inter-valve flow path 42 between the inner and outer circumferences of the first valve member 24 and the second valve member 25. Also, in the inter-valve flow path 42, between the first valve member-side concave portion and the second valve member-side concave portion, there are throttle portions A, B, C, and D whose opening degree changes due to relative rotation of the two valve members 24 and 25. And the apertures A, B,
The hydraulic pressure acting on the hydraulic cylinder 18 is controlled by the change in the opening degree of C and D. That is, FIG. 2 shows the relative positions of the two valve members 24 and 25 in a non-steering state. In this state, each pressure oil supply recess 29 and each pressure oil discharge recess 30 are connected. Since all the throttle portions A, B, C, and D communicate with each other, the pressure oil supplied from the pump 37 is directly returned to the tank 41 and no steering assist force is generated. When the steering wheel is steered to the right from the state where no steering assist force is generated, the torsion bar 3 is twisted in accordance with the steering resistance applied to the wheels from the road surface, and the two valve members 24 and 25 rotate relatively. As a result, the opening degree of the throttle portion A between each right steering recess 27 and each pressure oil supply recess 29 and the throttle portion B between each left steering recess 28 and each pressure oil discharge recess 30 are determined. The degree of opening increases, and the degree of opening of the throttle portion C between each left steering recess 28 and each pressure oil supply recess 29 and each right steering recess 2 is increased.
The degree of opening of the throttle portion D between the nozzle 7 and each of the pressure oil discharge recesses 30 is reduced. As a result, the hydraulic cylinder 1
8 is supplied with pressure oil to one oil chamber 21 of the hydraulic cylinder 1.
8, the pressure oil is recirculated from the other oil chamber 22 to the tank 41,
The steering assist force to the right of the vehicle acts on the rack 8 according to the steering resistance. When the steering wheel is steered to the left, each of the apertures A,
Since the opening degrees of B, C, and D change in reverse to the case of steering to the right, the steering assisting force to the left of the vehicle acts on the rack 8 according to the steering resistance. As shown in FIG. 3, circumferential grooves 43 and 44 are formed on the outer periphery of the second valve member 25 at the axial ends of the recesses 29 and 30 at the axial ends.
An annular elastic member 45 is inserted into the second member. One of the peripheral grooves 43 is communicated with each pressure oil supply recess 29 via four communication recesses 46 a extending from one axial end of each pressure oil supply recess 29. The other circumferential groove 44 has four communicating recesses 46 extending from the other axial end of each pressure oil supply recess 29.
Each of the pressure oil supply recesses 29 communicates with the corresponding one of the pressure oil supply recesses 29 through the corresponding b. Each of the pressure oil supply recesses 29 and each of the communication recesses 46a and 46b have the same circumferential dimension. In addition, each communication recess 4
6a, 46b and the respective circumferential grooves 43, 44 are connected to the first valve member 24.
Are disposed radially inward of the annular portions 24b and 24c. According to the above configuration, each pressure oil supply recess 29 is provided.
Through the respective communication recesses 46a, 46b from the respective circumferential grooves 43, 4
4 is supplied with pressure oil, and the supplied pressure oil causes the annular elastic member 45 to be stretched radially outward so that the first valve member 24
And the first valve member 24 is damped. At this time, the pressurized oil is supplied from the plurality of pressurized oil supply recesses 29 to the respective circumferential grooves 43 and 44 through the plurality of communication recesses 46a and 46b, and furthermore, the respective pressurized oil supply recesses 29 and the respective communication recesses 46a , 46b have the same circumferential dimension, so that the hydraulic pressure can be quickly applied to the annular elastic member 45. Thereby, relative vibration between the first valve member 24 and the second valve member 25 can be reliably suppressed. In addition, since the pressure oil can be quickly supplied to both the circumferential grooves 43 and 44 formed at intervals in the axial direction,
The hydraulic pressure does not act unevenly on the first valve member 24 in the axial direction, and the gap between the two valve members 24 and 25 can be made uniform in the axial direction. Further, since the plurality of recesses 29 for supplying pressure oil which are communicated with the respective circumferential grooves 43 and 44 are arranged at equal intervals in the circumferential direction, the hydraulic pressure does not act on the annular elastic member 45 in the circumferential direction. The gap between the first valve member 24 and the second valve member 25 is made uniform in the circumferential direction. As a result, the relative rotation between the two valve members 24 and 25 can be smoothed and oil leakage can be prevented. Also, by making the circumferential dimension of each pressure oil supply recess 29 and each communication recess 46a, 46b equal,
The pressure oil supply recess 29 and the communication recesses 46a and 46b are formed by a single milling cutter M as shown by a two-dot chain line in FIG.
And processing cost can be reduced. The present invention is not limited to the above embodiment. For example, in the above embodiment, the present invention was applied to a rack and pinion hydraulic power steering apparatus.
It can also be applied to a ball screw type hydraulic power steering device. In addition, the number of pressure oil supply recesses is not particularly limited as long as it is plural. Further, the annular elastic member may be inserted into both the circumferential grooves. According to the control valve of the present invention, the vibration damping effect of the valve member is reliably achieved, the relative rotation of the two valve members is smoothed, oil leakage is prevented, and the processing cost can be reduced.
【図面の簡単な説明】
【図1】本発明の実施例の油圧パワーステアリング装置
の縦断面図
【図2】本発明の制御弁の横断面図
【図3】本発明の制御弁の構成説明図
【図4】本発明の実施例の制御弁の要部の断面図
【図5】従来例の制御弁の構成説明図
【符号の説明】
18 油圧シリンダ
24 第1バルブ部材
24a 本体部
24b、24c 環状部
25 第2バルブ部材
29 圧油供給用凹部
43、44 周溝
45 環状弾性部材
46a、46b 連通用凹部
A、B、C、D 絞り部BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a longitudinal sectional view of a hydraulic power steering apparatus according to an embodiment of the present invention. FIG. 2 is a transverse sectional view of a control valve of the present invention. FIG. FIG. 4 is a cross-sectional view of a main part of a control valve according to an embodiment of the present invention. FIG. 5 is an explanatory view of a configuration of a conventional control valve. 24c Annular portion 25 Second valve member 29 Pressure oil supply concave portions 43, 44 Peripheral groove 45 Annular elastic members 46a, 46b Communication concave portions A, B, C, D Throttle portion
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B62D 5/00 - 5/30 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 7 , DB name) B62D 5/00-5/30
Claims (1)
部材に相対回転可能に挿入される第2バルブ部材とを備
え、第1バルブ部材の内周と第2バルブ部材の外周とに
軸方向に沿う複数の凹部が周方向に間隔をおいて形成さ
れ、その第2バルブ部材側凹部の一部は互いに周方向に
間隔をおいて位置すると共に圧油供給手段に通じる複数
の圧油供給用凹部とされ、その第1バルブ部材側凹部と
第2バルブ部材側凹部の間が両バルブ部材の相対回転に
より開度が変化する絞り部とされ、その絞り部の開度変
化により操舵補助力発生用油圧アクチュエータに作用す
る油圧が制御され、第2バルブ部材の外周に前記各凹部
の軸方向両端の軸方向外方において周溝が形成され、両
周溝の少なくとも一方に環状弾性部材が挿入され、前記
各圧油供給用凹部それぞれの軸方向両端から軸方向外方
に延びる連通用凹部が形成され、各連通用凹部を介し各
圧油供給用凹部は両周溝に連通され、各圧油供給用凹部
と各連通用凹部とは周方向の寸法が等しくされ、その圧
油供給用凹部は周方向等間隔に配置され、その圧油供給
用凹部と連通用凹部とが単一の工具により加工されてい
る油圧パワーステアリング装置用制御弁。(57) Claims 1. A first valve member having a cylindrical shape, and a second valve member inserted into the first valve member so as to be rotatable relative to the first valve member. A plurality of recesses along the axial direction are formed in the circumference and the outer circumference of the second valve member at intervals in the circumferential direction. A plurality of pressure oil supply recesses communicating with the pressure oil supply means, and a portion between the first valve member-side recess and the second valve member-side recess serving as a throttle portion whose opening degree changes due to relative rotation of the two valve members; The hydraulic pressure acting on the hydraulic actuator for generating steering assist force is controlled by the change in the opening degree of the throttle portion, and a circumferential groove is formed on the outer periphery of the second valve member at the axially outer ends of both axial ends of each of the concave portions. An annular elastic member is inserted into at least one of the circumferential grooves. A communication recess extending axially outward from each axial end of each of the pressure oil supply recesses is formed, and each of the pressure oil supply recesses is communicated with both circumferential grooves via each of the communication recesses. The recesses for communication and the recesses for communication have the same circumferential dimension , and the pressure
The oil supply recesses are arranged at equal intervals in the circumferential direction,
Control valve for a hydraulic power steering device in which a recess for communication and a recess for communication are machined by a single tool .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08248294A JP3532954B2 (en) | 1994-03-28 | 1994-03-28 | Control valve for hydraulic power steering system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08248294A JP3532954B2 (en) | 1994-03-28 | 1994-03-28 | Control valve for hydraulic power steering system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07267121A JPH07267121A (en) | 1995-10-17 |
JP3532954B2 true JP3532954B2 (en) | 2004-05-31 |
Family
ID=13775741
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08248294A Expired - Fee Related JP3532954B2 (en) | 1994-03-28 | 1994-03-28 | Control valve for hydraulic power steering system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3532954B2 (en) |
-
1994
- 1994-03-28 JP JP08248294A patent/JP3532954B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH07267121A (en) | 1995-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3345148B2 (en) | Hydraulic power steering device | |
JP2523170Y2 (en) | Hydraulic control valve | |
JP3532954B2 (en) | Control valve for hydraulic power steering system | |
JP2925056B2 (en) | Pressurized fluid flow control valve | |
JP2000001174A (en) | Hydraulic fluid control valve device | |
JP3182309B2 (en) | Control valve for hydraulic power steering device and method of manufacturing the same | |
EP1679247B1 (en) | Hydraulic power steering apparatus | |
JPH0742916Y2 (en) | Rotary valve for power steering | |
JP3420687B2 (en) | Variable throttle valve | |
JP2589451Y2 (en) | Hydraulic power steering device | |
JP2999929B2 (en) | Control valve for hydraulic power steering device and method of manufacturing the same | |
JPS60203580A (en) | Power-operated steering device | |
JP2978338B2 (en) | Steering gear | |
JP4042314B2 (en) | Power steering device | |
JP3681829B2 (en) | Hydraulic power steering device | |
JP3563157B2 (en) | Hydraulic power steering device | |
JPH0550924A (en) | Steering device | |
JPH08332966A (en) | Hydraulic control valve | |
JPS6137573Y2 (en) | ||
JP2594904Y2 (en) | Steering force control device for power steering device | |
JP2525547Y2 (en) | Ball screw type hydraulic power steering device | |
JPH10203389A (en) | Power steering device | |
JP3664515B2 (en) | Hydraulic power steering device | |
JP2001138935A (en) | Hydraulic control valve for power steering device | |
JP2544153B2 (en) | Hydraulic control valve |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20031225 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040224 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040305 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090312 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |