JP3532774B2 - Magnetic developer - Google Patents

Magnetic developer

Info

Publication number
JP3532774B2
JP3532774B2 JP29279798A JP29279798A JP3532774B2 JP 3532774 B2 JP3532774 B2 JP 3532774B2 JP 29279798 A JP29279798 A JP 29279798A JP 29279798 A JP29279798 A JP 29279798A JP 3532774 B2 JP3532774 B2 JP 3532774B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic developer
developer
fine powder
hydrophobic silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29279798A
Other languages
Japanese (ja)
Other versions
JP2000112177A (en
Inventor
滋記 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomoegawa Co Ltd
Original Assignee
Tomoegawa Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoegawa Paper Co Ltd filed Critical Tomoegawa Paper Co Ltd
Priority to JP29279798A priority Critical patent/JP3532774B2/en
Publication of JP2000112177A publication Critical patent/JP2000112177A/en
Application granted granted Critical
Publication of JP3532774B2 publication Critical patent/JP3532774B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子写真法、静電記録
法、静電印刷法等において使用される磁性1成分現像方
の磁性現像剤に関する。更に詳しくは、長時間放置後
も良好な画像特性を得ることができる磁性現像剤に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic one-component developing method used in electrophotography, electrostatic recording, electrostatic printing and the like.
Method magnetic developer. More specifically, it relates to a magnetic developer capable of obtaining good image characteristics even after being left for a long time.

【0002】[0002]

【従来の技術】一般に電子写真法は、感光体上に電気的
な潜像を形成し、ついで該潜像をトナーによって現像
し、紙などの転写材にトナー画像を転写した後、加熱、
加圧などの手段によって定着し複写物を得るものであ
る。このような電子写真法に用いられる現像剤としては
トナーとキャリアからなる2成分現像剤と、トナーとキ
ャリアの性能を同時に備えた1成分現像剤とがある。1
成分現像剤はさらに磁性1成分現像剤と非磁性1成分現
像剤に分類される。2成分現像剤は、転写性、定着性、
耐環境特性などの電子写真特性に優れる反面、トナーと
キャリアの混合比を制御するためのトナー濃度センサー
が必要であること、現像剤の寿命が短いこと、現像剤の
攪拌機構が複雑化、大型化するなどの問題点を有する。
このような背景から装置の小型簡易化のため、近年、磁
性トナーを1成分現像剤として用いる方法が提案、実用
化されている。
2. Description of the Related Art Generally, in electrophotography, an electrical latent image is formed on a photoconductor, the latent image is developed with toner, the toner image is transferred to a transfer material such as paper, and then heated.
It is fixed by a means such as pressure to obtain a copy. Developers used in such an electrophotographic method include a two-component developer composed of a toner and a carrier, and a one-component developer having the properties of the toner and the carrier at the same time. 1
Component developers are further classified into magnetic one-component developers and non-magnetic one-component developers. The two-component developer has transferability, fixability,
Although it has excellent electrophotographic characteristics such as environmental resistance, it requires a toner concentration sensor to control the mixture ratio of toner and carrier, has a short developer life, and has a complicated developer stirring mechanism. There are problems such as becoming
From such a background, a method of using a magnetic toner as a one-component developer has been proposed and put into practical use in recent years in order to make the apparatus small and simple.

【0003】磁性トナーを用いる1成分現像方法には、
現像剤を担持した現像ローラーを静電潜像を有する感光
体と接触させて現像する接触型の磁性1成分現像方法
と、現像ローラーと感光体の間に一定の空隙ギャップを
設けて現像ローラー上の磁性トナーを飛翔させて現像す
る非接触型の磁性1成分現像方法がある。接触型の磁性
1成分現像方法では、現像ローラー上の非磁性トナーと
静電潜像を有する感光体が接触するため現像性は良好で
あるが、その反面、磁性トナーは現像装置内だけでな
く、感光体ドラムとの間でも摩擦を生ずるので、磁性ト
ナーに対する機械的な負担が大きい。これに対して、非
接触型の非磁性1成分現像方法では、現像剤は層規制部
材のみにより摩擦帯電されるため、現像剤にかかる機械
的負担は少ないが、非接触であることから、接触型に比
べて一般的に現像ローラーから感光体ドラムに飛翔され
る磁性1成分現像剤の量が少量のため十分な画像濃度を
得ることができないという問題があった。この問題は、
特に非接触型の1成分現像方法を採用している現像装置
に磁性1成分現像剤を入れ、そのまま長時間放置した後
画像を得ようとする場合に顕著に現れる問題である。こ
の問題の原因としては、長時間放置すると磁性1成分現
像剤の帯電量が著しく低下することによるものと考えら
れている。そのため、従来は磁性1成分現像剤に含有す
る電荷制御剤の量を多くすることにより帯電量の著しい
低下を防いで対応していたが、電荷制御剤は結着樹脂へ
の分散性が悪いため現像剤粒子個々の電荷制御剤の含有
量が異なり、その結果現像しにくい現像剤粒子が発生し
て現像装置内に該粒子が残留し、その他の現像剤粒子の
飛翔性を阻害するという問題を生じ十分な画像濃度を得
ることができなかった。
The one-component developing method using magnetic toner is
A contact type magnetic one-component developing method in which a developing roller carrying a developer is brought into contact with a photoreceptor having an electrostatic latent image for development, and a constant gap gap is provided between the developing roller and the photoreceptor and There is a non-contact type magnetic one-component developing method of flying and developing the magnetic toner. In the contact-type magnetic one-component developing method, the non-magnetic toner on the developing roller and the photoconductor having the electrostatic latent image come into contact with each other, so that the developing property is good, but on the other hand, the magnetic toner is not only used in the developing device. Since friction also occurs with the photosensitive drum, the mechanical load on the magnetic toner is large. On the other hand, in the non-contact type non-magnetic one-component developing method, the developer is triboelectrically charged only by the layer regulating member, so that the mechanical load on the developer is small, but the non-contact type is not contacted. In general, there is a problem that a sufficient image density cannot be obtained because the amount of the magnetic one-component developer flying from the developing roller to the photosensitive drum is smaller than that of the mold. This problem,
In particular, this is a serious problem when a magnetic one-component developer is put in a developing device adopting a non-contact type one-component developing method and an image is obtained after leaving it for a long time as it is. It is considered that the cause of this problem is that the charge amount of the magnetic one-component developer is remarkably reduced when left standing for a long time. Therefore, conventionally, the amount of the charge control agent contained in the magnetic one-component developer has been increased to prevent a significant decrease in the charge amount, but the charge control agent has poor dispersibility in the binder resin. The developer particles have different contents of the charge control agent, and as a result, developer particles that are difficult to develop are generated, and the particles remain in the developing device, which hinders the flight properties of other developer particles. It was not possible to obtain a sufficient image density.

【0004】[0004]

【発明が解決しようとする課題】本発明は、磁性1成分
現像方法に使用され、長時間放置後も良好な画像特性を
得ることができる磁性現像剤を提供することにある。
The present invention is a magnetic single component
It is an object of the present invention to provide a magnetic developer which is used in a developing method and can obtain good image characteristics even after being left for a long time.

【0005】[0005]

【課題を解決するための手段】本発明は、負荷電性の静
電潜像を表面に保持した感光体と層規制部材により所望
厚み及び所定荷電量を付与せしめた磁性現像剤層を担持
した担持体とを現像部において一定の間隔を設けて非接
触状態で対向配置し、前記磁性現像剤層の磁性現像剤を
感光体に飛翔させることにより可視像化する磁性1成分
現像方法に使用される磁性現像剤であって、前記磁性現
像剤が少なくとも結着樹脂、磁性粉、電荷制御剤及び離
型剤を含有したトナー粒子の表面に疎水性シリカ微粉末
を付着させたものであり、該疎水性シリカ微粉末の帯電
量が−200μc/g〜−300μc/gで、且つトナ
ー粒子の表面に対する面積被覆率が80〜120%であ
ることを特徴とする磁性現像剤である。
SUMMARY OF THE INVENTION The present invention carries a magnetic developer layer having a desired thickness and a predetermined charge amount provided by a photoreceptor having a negatively charged electrostatic latent image on its surface and a layer regulating member. A magnetic single component which is visualized by causing the magnetic developer of the magnetic developer layer to fly to the photoconductor by disposing the support and the support in a non-contact state at a constant interval in the developing unit. A magnetic developer used in a developing method, wherein the magnetic developer has at least a binder resin, a magnetic powder, a charge control agent and a release agent, and a hydrophobic silica fine powder is adhered to the surface of the toner particles. A magnetic developer characterized in that the hydrophobic silica fine powder has a charge amount of −200 μc / g to −300 μc / g and an area coverage of 80 to 120% on the surface of toner particles. is there.

【0006】以下、本発明を図面を参照しながら説明す
る。図1は本発明の磁性現像剤を現像するための現像装
置の概略構成図であり、図中、1は感光体ドラム、2は
ホッパー、3は磁性現像剤、4は層規制部材、5は現像
剤を担持する内部に磁石を有するアルミニウム製スリー
ブを使用した現像ローラー、6は現像剤の漏れ防止部
材、7は攪拌機を示す。この現像装置においては、感光
体ドラム1上には、公知の電子写真法によって静電潜像
が形成される。また、ポッパー2内には磁性現像剤3が
収容されており、この磁性現像剤3は層規制部材4によ
って現像ローラー5上に一定の層厚になるように担持さ
れるとともに層規制部材4との摩擦により電荷が付与さ
れる。現像ローラー5は、感光ドラム1と120〜30
0μmの空隙を介して設置されており、該ローラー5に
は、直流または交流電圧のバイアスを印加する。現像ロ
ーラー5に担持された磁性現像剤は、現像ローラー5の
回転により搬送されて、静電潜像を有する感光体ドラム
1と現像ローラー5との電位差によって感光体ドラム1
の表面に飛翔し、非接触で静電潜像の顕像化が行われ
る。
The present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram of a developing device for developing a magnetic developer of the present invention. In the figure, 1 is a photosensitive drum, 2 is a hopper, 3 is a magnetic developer, 4 is a layer regulating member, and 5 is a layer regulating member. A developing roller using an aluminum sleeve having a magnet for carrying a developer, 6 is a developer leakage preventing member, and 7 is a stirrer. In this developing device, an electrostatic latent image is formed on the photosensitive drum 1 by a known electrophotographic method. A magnetic developer 3 is contained in the popper 2. The magnetic developer 3 is carried by the layer regulating member 4 on the developing roller 5 so as to have a constant layer thickness, and the magnetic developer 3 is An electric charge is given by the friction of. The developing roller 5 includes the photosensitive drum 1 and 120 to 30.
The roller 5 is installed with a gap of 0 μm, and a bias of DC or AC voltage is applied to the roller 5. The magnetic developer carried on the developing roller 5 is conveyed by the rotation of the developing roller 5, and the potential difference between the photosensitive drum 1 having an electrostatic latent image and the developing roller 5 causes the photosensitive drum 1 to develop.
Of the electrostatic latent image is visualized in a non-contact manner.

【0007】磁性現像剤は、少なくとも結着樹脂、磁性
粉、電荷制御剤及び離型剤を含有したトナー粒子の表面
に疎水性シリカ微粉末を付着させたものである。トナー
粒子は、少なくとも結着樹脂、磁性粉、電荷制御剤及び
離型剤、その他必要に応じて添加される添加剤を予備分
散、混練等で適宜分散含有せしめ、粉砕後分級してなる
粒子であり、その体積平均粒子径は5〜20μm、好ま
しくは5〜10μmの範囲である。結着樹脂としては、
ポリエステル樹脂、スチレン樹脂、スチレンアクリル樹
脂、ポリエチレン樹脂、エポキシ樹脂などの熱可塑性樹
脂が用いられ、定着性などの要求から、これら樹脂の2
種以上を混合して用いてもよい。樹脂のガラス転移温度
は55〜70℃、好ましくは60〜65℃である。磁性
粉としては、一次平均径0.1〜0.5μmのマグネタ
イトやフェライト粉が好ましい。その添加量は、結着樹
脂100重量部に対して5〜300重量部、特に10〜
200重量部が好ましい。また、1KOeでの飽和磁化
が58emu/g以上である磁性粉を使用することが地
カブリの少ない画像を得ることができるので好ましい。
The magnetic developer is one in which fine particles of hydrophobic silica are attached to the surface of toner particles containing at least a binder resin, magnetic powder, a charge control agent and a release agent. The toner particles are particles obtained by appropriately dispersing and containing at least a binder resin, a magnetic powder, a charge control agent and a release agent, and other additives which are added as required by preliminary dispersion, kneading, etc., and pulverizing and classifying. And the volume average particle diameter is in the range of 5 to 20 μm, preferably 5 to 10 μm. As the binder resin,
Thermoplastic resins such as polyester resin, styrene resin, styrene acrylic resin, polyethylene resin, and epoxy resin are used.
You may mix and use 1 or more types. The glass transition temperature of the resin is 55 to 70 ° C, preferably 60 to 65 ° C. As the magnetic powder, magnetite or ferrite powder having a primary average diameter of 0.1 to 0.5 μm is preferable. The amount added is 5 to 300 parts by weight, especially 10 to 100 parts by weight of the binder resin.
200 parts by weight is preferred. Further, it is preferable to use a magnetic powder having a saturation magnetization of 58 emu / g or more at 1 KOe because an image with less background fog can be obtained.

【0008】本発明においては、負帯電性の静電潜像を
表面に保持した感光体に磁性現像剤を現像する反転現像
方式の磁性一成分現像方法に使用するものであるから、
磁性現像剤を構成する電荷制御剤として、負帯電性の電
荷制御剤例えばアゾ系金属錯体、錯塩等を使用する。ま
た、帯電性を制御するため4級アンモニウム化合物、或
いは官能基を共重合させた樹脂型電荷制御剤等の正帯電
性の電荷制御剤を加えてもよい。離型剤としては、カル
ナバワックス、キャンデリラワックス、モンタンワック
ス等の天然ワックス、低分子量ポリプロピレン、低分子
量ポリエチレン、フィッシャートロプシュワックス等の
合成炭化水素ワックス、合成エステルワックス等があ
る。特に低温定着性及び離型性に優れている天然ガス系
フィッシャートロプシュワックスが好ましい。
In the present invention, since it is used in a magnetic one-component developing method of a reversal developing system in which a magnetic developer is developed on a photoreceptor having a negatively charged electrostatic latent image on its surface,
As the charge control agent constituting the magnetic developer, a negatively chargeable charge control agent such as an azo metal complex or a complex salt is used. Further, in order to control the chargeability, a quaternary ammonium compound or a positive chargeable charge control agent such as a resin type charge control agent obtained by copolymerizing a functional group may be added. Examples of the releasing agent include natural waxes such as carnauba wax, candelilla wax and montan wax, low molecular weight polypropylene, low molecular weight polyethylene, synthetic hydrocarbon waxes such as Fischer-Tropsch wax and synthetic ester wax. In particular, natural gas-based Fischer-Tropsch wax, which is excellent in low-temperature fixing property and releasing property, is preferable.

【0009】本発明で使用される疎水性シリカ微粉末
は、例えば親水性シリカ微粉末を公知の方法で疎水化処
理後、ヘンシェルミキサーなどの高せん断力を付与でき
るミキサーなどで解砕処理した後、機械式又は気流式粉
砕機と分級機を使用するなどして所望の粒度分布に調整
して得ることができる。上記疎水性処理としては、シラ
ン系及び/またはチタン系カップリング剤、シリコーン
オイルなどにより疎水化するものであって、好ましい疎
水化度はメタノールウエッタビリティ値で50以上であ
る。
The hydrophobic silica fine powder used in the present invention is obtained, for example, by subjecting hydrophilic silica fine powder to a hydrophobic treatment by a known method and then crushing it with a mixer such as a Henschel mixer capable of imparting a high shearing force. It can be obtained by adjusting a desired particle size distribution by using a mechanical or air flow type pulverizer and a classifier. The hydrophobic treatment is performed by using a silane-based and / or titanium-based coupling agent, silicone oil, or the like, and the preferred hydrophobicity is 50 or more in terms of methanol wettability value.

【0010】この疎水性シリカ微粉末の帯電量は、−
00〜−300μc/gであることが必要である。帯電
量が−200μc/g未満では長時間放置後の画像濃度
等の画像特性が悪くなる。疎水性シリカ微粉末の帯電量
はノンコートフェライトキャリアとの摩擦帯電量(重量
混合比=キャリア:シリカ=99:1)を測定した値で
あり、東芝ケミカル社製のブローオフ帯電量測定装置を
使用して測定することができる。疎水性シリカ微粉末の
帯電量は、疎水性処理時の処理剤の種類および処理量を
変えることにより調整できる。例えば、疎水性シリカ微
粉末の正極性を大きくするためには、これら処理剤にア
ミノ基などの正帯電性の大きな官能基を導入すればよ
い。
[0010] charge amount of the hydrophobic silica fine powder, - 2
It is necessary to be from 00 to −300 μc / g . When the charge amount is less than -200 μc / g, image characteristics such as image density after being left for a long time deteriorate. The charge amount of the hydrophobic silica fine powder is a value obtained by measuring the friction charge amount (weight mixing ratio = carrier: silica = 99: 1) with a non-coated ferrite carrier, using a blow-off charge amount measuring device manufactured by Toshiba Chemical Corporation. Can be measured. The charge amount of the hydrophobic silica fine powder can be adjusted by changing the type and the treatment amount of the treating agent during the hydrophobic treatment. For example, in order to increase the positive polarity of the hydrophobic silica fine powder, a functional group having a large positive charging property such as an amino group may be introduced into these treating agents.

【0011】疎水性シリカ微粉末の粒度分布は、体積基
準粒径5.04μm以下の粒子の割合が60体積%以
上、体積基準粒径20.2μm以下の粒子の割合が90
体積%以上であることが好ましい。体積基準粒径5.0
4μm以下の粒子の割合が60体積%未満、または体積
基準粒径20.2μm以下の粒子の割合が90体積%未
満の場合は、感光体表面上にキズが生じやすく、その結
果、黒点状の画像欠陥が生じやすくなる。なお疎水性シ
リカ微粉末の粒度分布は100μmのアパチャーを用い
てコールタールカウンターで測定したものである。ま
た、疎水性シリカ微粉末はBET比表面積が90〜30
0m2 /g、特に100〜200m2 /gのものが好ま
しい。BET比表面積が90〜300m2 /gの疎水性
シリカ微粉末は、磁性現像剤に特に良好な流動性を付与
することができる。
In the particle size distribution of the hydrophobic silica fine powder, the ratio of particles having a volume-based particle size of 5.04 μm or less is 60% by volume or more, and the ratio of particles having a volume-based particle size of 20.2 μm or less is 90.
It is preferably at least volume%. Volume-based particle size 5.0
If the proportion of particles having a particle size of 4 μm or less is less than 60% by volume, or if the proportion of particles having a volume-based particle size of 20.2 μm or less is less than 90% by volume, scratches are likely to occur on the surface of the photoreceptor, resulting in black spots. Image defects are likely to occur. The particle size distribution of the hydrophobic silica fine powder is measured by a coal tar counter using an aperture of 100 μm. The hydrophobic silica fine powder has a BET specific surface area of 90 to 30.
It is preferably 0 m 2 / g, particularly 100 to 200 m 2 / g. The hydrophobic silica fine powder having a BET specific surface area of 90 to 300 m 2 / g can impart particularly good fluidity to the magnetic developer.

【0012】磁性現像剤は、トナー粒子表面を疎水性シ
リカ微粉末が被覆した微粒子であり、トナー粒子の表面
に対する疎水性シリカ微粉末の面積被覆率は80〜12
0%である。疎水性シリカ微粉末の面積被覆率が80%
より低い場合は、長時間放置後の画像濃度等の画像特性
が悪くなり、磁性現像剤の保存安定性も悪くなる。一
方、疎水性シリカ微粉末の面積被覆率が120%より高
い場合は、磁性現像剤の定着性が悪くなり、オフセット
が生じる。トナー粒子の表面に対する疎水性シリカ微粉
末の面積被覆率は、次の計算式により求められる。
The magnetic developer is fine particles in which the surface of toner particles is coated with a fine powder of hydrophobic silica, and the area coverage of the fine powder of hydrophobic silica on the surface of the toner particles is 80 to 12.
It is 0%. 80% area coverage of hydrophobic silica fine powder
When it is lower, the image characteristics such as the image density after being left for a long time deteriorates, and the storage stability of the magnetic developer also deteriorates. On the other hand, when the area coverage of the hydrophobic silica fine powder is higher than 120%, the fixability of the magnetic developer is deteriorated and offset occurs. The area coverage of the fine particles of hydrophobic silica on the surface of the toner particles is calculated by the following calculation formula.

【数1】被覆率(%)=(dt×ρt×W×S×10
0)/〔π(100−W)×ρa×da3 〕 ここにdtはトナー粒子の個数50%径(cm)、da
は疎水性シリカ微粉末の1次粒子径(cm)、ρtはト
ナー粒子の真比重(g/cm3 )、ρaは疎水性シリカ
微粉末の真比重(g/cm3 )、Wはトナー粒子に対す
る疎水性シリカ微粉末の添加量(重量%)、Sは疎水性
シリカ微粉末の投影面積(cm2 )を示す。この式から
明らかなように、トナー粒子の表面に対する疎水性シリ
カ微粉末の面積被覆率は、トナー粒子の粒子径、疎水性
シリカ微粉末の粒子径、トナー粒子の真比重、疎水性シ
リカ微粉末の真比重、疎水性シリカ微粉末の添加量を任
意に変えることにより調整することができる。トナー粒
子に対する疎水性シリカ微粉末の付着は、ヘンシェルミ
キサーなどの高せん断力を付与できるミキサーなどで混
合攪拌すればよい。また、疎水性シリカ微粉末と他の外
添微粒子を併用してもよい。外添微粒子としては、例え
ば、一次平均径が5〜50nmの疎水性酸化チタン、ア
ルミナ、一次平均径が50〜500nmのアクリル系、
フッ素系、シリコン系等の樹脂微粒子、一次平均径が
0.1〜0.6μmのマグネタイト、フェライトなどが
挙げられる。
## EQU1 ## Coverage (%) = (dt × ρt × W × S × 10
0) / [π (100-W) × ρa × da 3 ] where dt is the number of toner particles 50% diameter (cm), da
Is the primary particle size (cm) of the hydrophobic silica fine powder, ρt is the true specific gravity of the toner particles (g / cm 3 ), ρa is the true specific gravity of the hydrophobic silica fine powder (g / cm 3 ), and W is the toner particles The addition amount (% by weight) of the hydrophobic silica fine powder to S, and S indicates the projected area (cm 2 ) of the hydrophobic silica fine powder. As is clear from this formula, the area coverage of the hydrophobic silica fine powder on the surface of the toner particles is calculated by determining the particle diameter of the toner particles, the particle diameter of the hydrophobic silica fine powder, the true specific gravity of the toner particles, the hydrophobic silica fine powder. It can be adjusted by arbitrarily changing the true specific gravity and the addition amount of the hydrophobic silica fine powder. The hydrophobic silica fine powder may be attached to the toner particles by mixing and stirring with a mixer such as a Henschel mixer capable of imparting a high shearing force. Further, the hydrophobic silica fine powder and other externally added fine particles may be used in combination. As the externally added fine particles, for example, a hydrophobic titanium oxide having a primary average diameter of 5 to 50 nm, alumina, an acrylic resin having a primary average diameter of 50 to 500 nm,
Examples thereof include fluorine-based and silicon-based resin fine particles, magnetite having a primary average diameter of 0.1 to 0.6 μm, and ferrite.

【0013】[0013]

【実施例】実施例1 以下、本発明を実施例に基づいてより詳細に説明する。
なお、「部」は「重量部」を意味する。 上記処方の原料をヘンシェルミキサー(三井三池工業社
製)で混合した。混合物を二軸混練機で設定温度120
℃で溶融混練した後、ジェット粉砕・気流分級して体積
平均粒径8.5μmのトナー粒子を得た。次に、このト
ナー粒子に対して下記の疎水性シリカ微粉末Aを被覆率
95%〔dt:6.40×10-4(cm)、da:0.
018×10-4(cm)、ρt:1.57(g/c
3 )、ρa:2.30(g/cm3 )、W:1.55
(重量%)、S:2.53×10-12 (cm2 )〕にな
るようにヘンシェルミキサーで混合して本発明の磁性現
像剤を得た。疎水性シリカ微粉末Aは次の方法で製造し
た。BET比表面積が約130m2/gの親水性シリカ
(乾式法)にシリコンオイル処理を行い、その後、気流
式粉砕分級機にて解砕と回収を行い、体積基準粒径5.
04μm以下の粒子の割合が66.4体積%、体積基準
粒径20.2μm以下の粒子の割合が93.2体積%の
粒度を有する疎水性シリカ微粉末Aを得た。この疎水性
シリカ微粉末Aの帯電量は−264μc/gであった。
EXAMPLES Example 1 Hereinafter, the present invention will be described in more detail with reference to Examples.
In addition, "part" means "part by weight". The raw materials of the above formulation were mixed with a Henschel mixer (manufactured by Mitsui Miike Industry Co., Ltd.). The temperature of the mixture is set to 120 with a twin-screw kneader.
After melt-kneading at 0 ° C., jet grinding and air flow classification were carried out to obtain toner particles having a volume average particle diameter of 8.5 μm. Next, the following hydrophobic silica fine powder A was coated on the toner particles at a coverage of 95% [dt: 6.40 × 10 −4 (cm), da: 0.
018 × 10 −4 (cm), ρt: 1.57 (g / c
m 3 ), ρa: 2.30 (g / cm 3 ), W: 1.55
(% By weight), S: 2.53 × 10 −12 (cm 2 )] and mixed with a Henschel mixer to obtain the magnetic developer of the present invention. The hydrophobic silica fine powder A was manufactured by the following method. 4. Hydrophilic silica (dry method) having a BET specific surface area of about 130 m 2 / g was treated with silicone oil, and then crushed and collected by an airflow crushing classifier to obtain a volume standard particle size of 5.
A hydrophobic silica fine powder A having a particle size of particles having a particle size of 04 μm or less of 66.4% by volume and a particle ratio of particles having a volume standard particle size of 20.2 μm or less of 93.2% by volume was obtained. The charge amount of this hydrophobic silica fine powder A was -264 μc / g.

【0014】 上記の原料をヘンシェルミキサー(三井三池工業社製)
で混合した。混合物を二軸混練機で設定温度120℃で
溶融混練した後、ジェット粉砕・気流分級して体積平均
粒径8.5μmのトナー粒子を得た。次に、このトナー
粒子に対して下記の疎水性シリカ微粉末Bを被覆率95
%〔dt:6.34×10-4(cm)、da:0.01
8×10-4(cm)、ρt:1.57(g/cm3 )、
ρa:2.10(g/cm3 )、W:1.43(重量
%)、S:2.53×10-12 (cm2 )〕になるよう
にヘンシェルミキサーで混合して本発明の磁性現像剤を
得た。疎水性シリカ微粉末Bは次の方法で製造した。B
ET比表面積が約130m2/gの親水性シリカ(乾式
法)にシリコンオイル処理を行い、その後、気流式粉砕
分級機にて解砕と回収を行い、体積基準粒径5.04μ
m以下の粒子の割合が63.4体積%、体積基準粒径2
0.2μm以下の粒子の割合が91.2体積%の粒度を
有する疎水性シリカ微粉末Bを得た。この疎水性シリカ
微粉末Bの帯電量は−231μc/gであった。
[0014] Henschel mixer (Mitsui Miike Industry Co., Ltd.)
Mixed in. The mixture was melt-kneaded with a twin-screw kneader at a set temperature of 120 ° C., and then jet pulverized and air stream classified to obtain toner particles having a volume average particle diameter of 8.5 μm. Next, the toner particles are coated with the following hydrophobic silica fine powder B at a coverage of 95
% [Dt: 6.34 × 10 −4 (cm), da: 0.01
8 × 10 −4 (cm), ρt: 1.57 (g / cm 3 ),
ρa: 2.10 (g / cm 3 ), W: 1.43 (wt%), S: 2.53 × 10 -12 (cm 2 )] and mixed with a Henschel mixer to obtain the magnetic property of the present invention. A developer is obtained. The hydrophobic silica fine powder B was manufactured by the following method. B
Hydrophilic silica (dry method) with an ET specific surface area of about 130 m 2 / g is treated with silicone oil, and then crushed and collected by an airflow crushing classifier to obtain a volume standard particle size of 5.04μ.
The ratio of particles of m or less is 63.4% by volume, volume standard particle size is 2
A hydrophobic silica fine powder B having a particle size of 0.2% or less and 91.2% by volume was obtained. The charge amount of the hydrophobic silica fine powder B was −231 μc / g.

【0015】 上記の原料をヘンシェルミキサー(三井三池工業社製)
で混合した。混合物を二軸混練機で設定温度120℃で
溶融混練した後、ジェット粉砕・気流分級して体積平均
粒径8.5μmのトナー粒子を得た。次に、このトナー
粒子に対して下記の疎水性シリカ微粉末Aを被覆率95
%〔dt:6.40×10-4(cm)、da:0.01
8×10-4(cm)、ρt:1.57(g/cm3 )、
ρa:2.30(g/cm3 )、W:1.55(重量
%)、S:2.53×10-12 (cm2 )〕になるよう
にヘンシェルミキサーで混合して本発明の磁性現像剤を
得た。
[0015] Henschel mixer (Mitsui Miike Industry Co., Ltd.)
Mixed in. The mixture was melt-kneaded with a twin-screw kneader at a set temperature of 120 ° C., and then jet pulverized and air stream classified to obtain toner particles having a volume average particle diameter of 8.5 μm. Next, the toner particles are coated with the following hydrophobic silica fine powder A at a coverage of 95
% [Dt: 6.40 × 10 −4 (cm), da: 0.01
8 × 10 −4 (cm), ρt: 1.57 (g / cm 3 ),
ρa: 2.30 (g / cm 3 ), W: 1.55 (wt%), S: 2.53 × 10 -12 (cm 2 )] and mixed with a Henschel mixer to obtain the magnetic property of the present invention. A developer is obtained.

【0016】実施例4 実施例1の疎水性シリカ微粉末Aを粉砕分級機にかけ、
体積基準粒径5.04μm以下の粒子の割合が43.2
体積%、体積基準粒径20.2μm以下の粒子の割合が
92.3体積%であるシリカを使用した以外は実施例1
と同様にして本発明の磁性現像剤を得た。
Example 4 The hydrophobic silica fine powder A obtained in Example 1 was pulverized and classified,
The ratio of particles having a volume-based particle diameter of 5.04 μm or less is 43.2.
Example 1 except that silica was used in which the volume ratio of the particles having a volume-based particle size of 20.2 μm or less was 92.3% by volume.
A magnetic developer of the present invention was obtained in the same manner as.

【0017】比較例1 実施例1で得たトナー粒子に対して、市販の疎水性シリ
カ微粉末C(乾式法、BET比表面積が約125m2
g、ジメチルジクロルシラン処理、体積基準粒径5.0
4μm以下の粒子の割合が37.1体積%、体積基準粒
径20.2μm以下の粒子の割合が85.3体積%、帯
電量−190μc/g)を被覆率が95%〔dt:6.
40×10-4(cm)、da:0.016×10-4(c
m)、ρt:1.57(g/cm3 )、ρa:2.65
(g/cm3 )、W:1.58(重量%)、S:2.0
×10-12 (cm2 )〕になるようにヘンシェルミキサ
ーで混合して比較用の磁性現像剤を得た。
Comparative Example 1 Compared to the toner particles obtained in Example 1, a commercially available hydrophobic silica fine powder C (dry method, BET specific surface area of about 125 m 2 /
g, dimethyldichlorosilane treatment, volume standard particle size 5.0
The ratio of particles having a particle size of 4 μm or less is 37.1% by volume, the ratio of particles having a volume-based particle size of 20.2 μm or less is 85.3% by volume, and the coverage is 95% [charge: −190 μc / g] [dt: 6.
40 × 10 −4 (cm), da: 0.016 × 10 −4 (c
m), ρt: 1.57 (g / cm 3 ), ρa: 2.65
(G / cm 3 ), W: 1.58 (% by weight), S: 2.0
× 10 −12 (cm 2 )] was mixed with a Henschel mixer to obtain a magnetic developer for comparison.

【0018】比較例2 実施例1で得たトナー粒子に対して、疎水性シリカ微粉
末Aを被覆率が70%〔dt:6.40×10-4(c
m)、da:0.018×10-4(cm)、ρt:1.
57(g/cm3 )、ρa:2.30(g/cm3 )、
W:1.15(重量%)、S:2.53×10-12 (c
2 )〕になるようにヘンシェルミキサーで混合して比
較用の磁性現像剤を得た。 比較例3 実施例1で得たトナー粒子に対して、疎水性シリカ微粉
末Aを被覆率が125%〔dt:6.40×10-4(c
m)、da:0.018×10-4(cm)、ρt:1.
57(g/cm3 )、ρa:2.30(g/cm3 )、
W:2.03(重量%)、S:2.53×10-12 (c
2 )〕になるようにヘンシェルミキサーで混合して比
較用の磁性現像剤を得た。
Comparative Example 2 The toner particles obtained in Example 1 were covered with the hydrophobic silica fine powder A at a coverage of 70% [dt: 6.40 × 10 -4 (c
m), da: 0.018 × 10 −4 (cm), ρt: 1.
57 (g / cm 3 ), ρa: 2.30 (g / cm 3 ),
W: 1.15 (wt%), S: 2.53 × 10 -12 (c
m 2 )] was mixed with a Henschel mixer to obtain a magnetic developer for comparison. Comparative Example 3 The toner particles obtained in Example 1 were coated with the hydrophobic silica fine powder A at a coverage of 125% [dt: 6.40 × 10 −4 (c
m), da: 0.018 × 10 −4 (cm), ρt: 1.
57 (g / cm 3 ), ρa: 2.30 (g / cm 3 ),
W: 2.03 (% by weight), S: 2.53 × 10 -12 (c
m 2 )] was mixed with a Henschel mixer to obtain a magnetic developer for comparison.

【0019】(磁性現像剤の評価)前記実施例1〜4及
び比較例1〜3の磁性現像剤を市販の図1のような現像
装置を有するプリンター(有機感光体、帯電ローラー及
び転写ローラーを使用)に適用し、初期画像特性を評価
し、その後、磁性現像剤を現像装置に入れたまま、高温
高湿環境下(35℃,85%RH)に1週間放置した。
そして、放置後の画像特性を評価した。その結果を表1
に示す。表1中の画像濃度はマクベス社製の反射濃度計
(RD−914)によるベタ画像濃度の測定値である。
またカブリは日本電色社製の色差計(ZE2000)に
よる非画像部の測定値である。
(Evaluation of Magnetic Developer) The magnetic developers of Examples 1 to 4 and Comparative Examples 1 to 3 are commercially available printers (developing device as shown in FIG. 1 (organic photoreceptor, charging roller and transfer roller). Application) to evaluate the initial image characteristics, and then leave the magnetic developer in the developing device in a high temperature and high humidity environment (35 ° C., 85% RH) for 1 week.
Then, the image characteristics after standing were evaluated. The results are shown in Table 1.
Shown in. The image densities in Table 1 are measured values of solid image densities by a reflection densitometer (RD-914) manufactured by Macbeth.
Fog is a measurement value of a non-image area by a color difference meter (ZE2000) manufactured by Nippon Denshoku Co., Ltd.

【0020】[0020]

【表1】 [Table 1]

【0021】表1から明らかなように実施例1〜4では
放置後においても画像濃度及びカブリともに初期画像と
あまり変化がなかった。これに対し、比較例1及び2で
は放置後の画像濃度が低く、比較例3では初期からオフ
セットが生じるため画像特性を評価することを中止し
た。なお、実施例1及び2に対し実施例3では画像濃度
がやや低く、実施例4では多数枚プリントを行っていく
うちに実施例1及び2に比較して感光体表面上にキズが
発生しやすかった。また、実施例1〜4及び比較例1〜
3の磁性現像剤20gをポリエチレン容器に入れ、45
℃で7日間保管した後、容器から取り出して目視にて磁
性現像剤の凝集状態を評価した結果、実施例1〜4及び
比較例1、3は全く問題がなかったが、比較例2の磁性
現像剤は凝集物(塊)が生じていた。
As is clear from Table 1, in Examples 1 to 4, the image density and fog did not change much from the initial image even after standing. On the other hand, in Comparative Examples 1 and 2, the image density after standing was low, and in Comparative Example 3, an offset occurred from the beginning, so the evaluation of the image characteristics was stopped. It should be noted that the image density was slightly lower in Example 3 than in Examples 1 and 2, and in Example 4, scratches were generated on the surface of the photoconductor as compared with Examples 1 and 2 while printing a large number of sheets. It was easy. In addition, Examples 1 to 4 and Comparative Examples 1 to
20g of magnetic developer of 3 was put in a polyethylene container, and 45
After storing at 7 ° C. for 7 days, the magnetic developer was taken out from the container and visually evaluated for the aggregation state of the magnetic developer. As a result, there was no problem in Examples 1 to 4 and Comparative Examples 1 and 3, but the magnetic property of Comparative Example 2 Aggregates (lumps) were generated in the developer.

【0022】[0022]

【発明の効果】本発明の磁性現像剤は、長期間放置後で
あっても凝集が生じず、良好な保存状態を保持できる。
このため、十分な画像濃度を有し、カブリのほとんど無
い画像が得られる。
The magnetic developer of the present invention does not cause aggregation even after being left for a long period of time, and can maintain a good storage state.
Therefore, an image having a sufficient image density and almost free from fog can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】非接触型の磁性1成分現像方法に使用する現像
装置の概略構成図である。
FIG. 1 is a schematic configuration diagram of a developing device used in a non-contact type magnetic one-component developing method.

【符号の説明】[Explanation of symbols]

1 感光体ドラム 2 ホッパー 3 磁性現像剤 4 層規制部材 5 現像ローラー 6 現像剤の漏れ防止部材、 7 攪拌機 1 photoconductor drum 2 hopper 3 Magnetic developer 4 layer regulation member 5 developing roller 6 developer leakage prevention member, 7 stirrer

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−289403(JP,A) 特開 平6−51554(JP,A) 特開 平9−204062(JP,A) 特開 平8−152742(JP,A) 特開 平4−80764(JP,A) 特開 平7−319201(JP,A) 特開 平8−234483(JP,A) 特開 平9−179335(JP,A) 特開 平9−185181(JP,A) 特開 平9−319139(JP,A) (58)調査した分野(Int.Cl.7,DB名) G03G 9/08 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-5-289403 (JP, A) JP-A-6-51554 (JP, A) JP-A-9-204062 (JP, A) JP-A-8- 152742 (JP, A) JP 4-80764 (JP, A) JP 7-319201 (JP, A) JP 8-234483 (JP, A) JP 9-179335 (JP, A) JP-A-9-185181 (JP, A) JP-A-9-319139 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G03G 9/08

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 負荷電性の静電潜像を表面に保持した感
光体と層規制部材により所望厚み及び所定荷電量を付与
せしめた磁性現像剤層を担持した担持体とを現像部にお
いて一定の間隔を設けて非接触状態で対向配置し、前記
磁性現像剤層の磁性現像剤を感光体に飛翔させることに
より可視像化する磁性一成分現像方法に使用される磁性
現像剤であって、前記磁性現像剤が少なくとも結着樹
脂、磁性粉、電荷制御剤及び離型剤を含有したトナー粒
子の表面に疎水性シリカ微粉末を付着させたものであ
り、該疎水性シリカ微粉末の帯電量が−200μc/g
〜−300μc/gで、且つトナー粒子の表面に対する
面積被覆率が80〜120%であることを特徴とする磁
性現像剤。
1. A photosensitive member having a negatively charged electrostatic latent image on its surface and a carrier carrying a magnetic developer layer having a desired thickness and a predetermined amount of charge imparted by a layer regulating member are fixed in a developing section. A magnetic developer used in a magnetic one-component developing method in which the magnetic developer in the magnetic developer layer is visualized by flying the magnetic developer on the photoconductor, the magnetic developer being opposed to each other with a space of The magnetic developer is obtained by adhering hydrophobic silica fine powder to the surface of toner particles containing at least a binder resin, magnetic powder, a charge control agent and a release agent, and the hydrophobic silica fine powder is electrically charged. Amount is -200μc / g
In ~-300μc / g, and magnetic developer, wherein the area coverage with respect to the surface of the toner particles is 80 to 120%.
【請求項2】 疎水性シリカ微粉末の粒度分布が体積基
準粒径5.04μm以下の粒子の割合が60体積%以
上、体積基準粒径20.2μm以下の粒子の割合が90
体積%以上であることを特徴とする請求項1記載の磁性
現像剤。
2. The hydrophobic silica fine powder has a particle size distribution of 60% by volume or more of particles having a volume standard particle size of 5.04 μm or less and 90% of particles having a volume standard particle size of 20.2 μm or less.
The magnetic developer according to claim 1, wherein the magnetic developer is at least volume%.
【請求項3】 離型剤が天然ガス系フィッシャートロプ
シュワックスであることを特徴とする請求項1記載の磁
性現像剤。
3. The magnetic developer according to claim 1, wherein the releasing agent is a natural gas type Fischer-Tropsch wax.
JP29279798A 1998-10-01 1998-10-01 Magnetic developer Expired - Lifetime JP3532774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29279798A JP3532774B2 (en) 1998-10-01 1998-10-01 Magnetic developer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29279798A JP3532774B2 (en) 1998-10-01 1998-10-01 Magnetic developer

Publications (2)

Publication Number Publication Date
JP2000112177A JP2000112177A (en) 2000-04-21
JP3532774B2 true JP3532774B2 (en) 2004-05-31

Family

ID=17786477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29279798A Expired - Lifetime JP3532774B2 (en) 1998-10-01 1998-10-01 Magnetic developer

Country Status (1)

Country Link
JP (1) JP3532774B2 (en)

Also Published As

Publication number Publication date
JP2000112177A (en) 2000-04-21

Similar Documents

Publication Publication Date Title
KR0159321B1 (en) Production of toner for developing electrostatic images
US7378211B2 (en) Carrier and developer compositions
JP3093578B2 (en) Electrophotographic toner
JP2884129B2 (en) Electrophotographic toner
JPH0816791B2 (en) Electrophotographic developer
JP2632237B2 (en) Non-magnetic one-component development method
JP3532774B2 (en) Magnetic developer
JP2784924B2 (en) Electrophotographic toner and electrophotographic developer
JPH07295282A (en) Magnetic toner and electrophotographic method
JPS63118757A (en) Electrophotographic developer
JP2835961B2 (en) One-component magnetic toner for electrostatic image development
JP3558972B2 (en) Electrostatic image developing toner and image forming method
JP3845325B2 (en) Non-magnetic one-component developing toner
JP3191074B2 (en) One-component developer and image forming method
JP3333978B2 (en) One-component magnetic developer and developing method
JP3729718B2 (en) Toner for developing electrostatic image and image forming method
JPH01250963A (en) Electrostatic charge image developing one-component type developer and image forming method
JP3525217B2 (en) One-component developing method and toner
JPS63200160A (en) Positively charged toner for electrostatic image
JPH0619189A (en) Image forming method
JPH07306543A (en) Electrophotographic method
JP2000292972A (en) Electrostatic charge image developing magnetic toner
JP2003186243A (en) Toner for image formation, developer for two-component image formation, and image forming device
JPH07199543A (en) Toner for image forming device
JPH06295130A (en) Developing device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040304

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 9