JP3532390B2 - Laminated core - Google Patents

Laminated core

Info

Publication number
JP3532390B2
JP3532390B2 JP23158297A JP23158297A JP3532390B2 JP 3532390 B2 JP3532390 B2 JP 3532390B2 JP 23158297 A JP23158297 A JP 23158297A JP 23158297 A JP23158297 A JP 23158297A JP 3532390 B2 JP3532390 B2 JP 3532390B2
Authority
JP
Japan
Prior art keywords
magnetic core
atomic
ribbon
magnetic
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23158297A
Other languages
Japanese (ja)
Other versions
JPH1174108A (en
Inventor
昌二 吉田
隆夫 水嶋
彰宏 牧野
明久 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP23158297A priority Critical patent/JP3532390B2/en
Priority to EP98306529A priority patent/EP0899754A1/en
Priority to KR1019980034623A priority patent/KR100278372B1/en
Priority to TW087114082A priority patent/TW388039B/en
Publication of JPH1174108A publication Critical patent/JPH1174108A/en
Application granted granted Critical
Publication of JP3532390B2 publication Critical patent/JP3532390B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、トランス、チョー
クコイル、磁気センサ等に使用されるFe基軟磁性金属
ガラス合金を備えた積層磁心に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated magnetic core provided with a Fe-based soft magnetic metallic glass alloy used for transformers, choke coils, magnetic sensors and the like.

【0002】[0002]

【従来の技術】従来、トランスやチョークコイル、磁気
センサなどの磁心材料として、50%Ni−Feパーマ
ロイ磁心や、80%Ni−Feパーマロイ磁心、ケイ素
鋼が用いられてきた。しかし、これらの磁性材料からな
る磁心は、特に高周波帯域におけるコアロスが大きく、
数10kHz以上の周波数帯域では磁心の温度上昇が激
しく、使用が困難であるという課題があった。
2. Description of the Related Art Conventionally, 50% Ni--Fe permalloy magnetic core, 80% Ni--Fe permalloy magnetic core, and silicon steel have been used as magnetic core materials for transformers, choke coils, magnetic sensors and the like. However, magnetic cores made of these magnetic materials have a large core loss, especially in the high frequency band,
In the frequency band of several tens of kHz or more, there is a problem that the temperature rise of the magnetic core is severe and it is difficult to use.

【0003】そこで最近では、高周波帯域におけるコア
ロスが小さく角形比が高いCo基アモルファス合金の薄
帯、若しくは飽和磁束密度と最大透磁率が高いFe基ア
モルファス合金の薄帯を、トロイダル状に巻回してなる
磁心本体や、所定の形状に打ち抜いたものを積層してな
る磁心本体を備えた積層磁心が、トランス、チョークコ
イル、磁気センサー等に用いられている。
Therefore, recently, a thin ribbon of a Co-based amorphous alloy having a small core loss and a high squareness ratio in a high frequency band, or a thin ribbon of an Fe-based amorphous alloy having a high saturation magnetic flux density and a maximum magnetic permeability is wound in a toroidal shape. A magnetic core main body or a laminated magnetic core including a magnetic core main body formed by stacking punched pieces in a predetermined shape is used for a transformer, a choke coil, a magnetic sensor, or the like.

【0004】[0004]

【発明が解決しようとする課題】ところで、例えば、厚
さが20μmの上述の薄帯を巻回、若しくは積層する
と、薄帯の表面の凹凸のために隣り合う薄帯の間に3μ
m程度の隙間が生じる。磁心本体の体積に対する薄帯の
占める体積を占積率と称し、このときの占積率を計算す
ると、 20(μm)/(20+3(μm))×100=87% となり、磁心本体に占める隙間の体積が大きく、磁心を
小型化することができないという課題があった。
By the way, for example, when the above-mentioned thin strips having a thickness of 20 μm are wound or laminated, the unevenness of the surface of the thin strips causes a gap of 3 μm between the adjacent strips.
A gap of about m is generated. The volume occupied by the ribbon with respect to the volume of the magnetic core body is called the space factor, and the space factor at this time is calculated to be 20 (μm) / (20 + 3 (μm)) × 100 = 87%, which is the gap occupied by the magnetic core body. However, there is a problem that the magnetic core cannot be downsized because of its large volume.

【0005】本発明は、上記の課題を解決するためにな
されたものであって、コアロスが小さく、小型化が可能
な積層磁心を提供することを目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a laminated magnetic core which has a small core loss and can be miniaturized.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は以下の構成を採用した。本発明の積層磁
心は、ΔT=T−T(ただしTは結晶化開始温
度、Tはガラス遷移温度を示す。)の式で表される過
冷却液体の温度間隔ΔTが35K以上であり、比抵抗
が1.5μΩm以上であり、下記の組成からなるFe基
軟磁性金属ガラス合金の薄帯が、トロイダル状に巻回さ
れてなる磁心本体を備えることを特徴とする。Al: 1原子%〜10原子% Ga: 0.5原子%〜4原子% P: 0原子%〜15原子% C: 2原子%〜 7原子% B: 2原子%〜10原子% Si: 1原子%〜15原子% Fe: 残部 また、本発明の積層磁心は、先に記載のF
e基軟磁性金属ガラス合金の薄帯が積層されてなる磁心
本体を備えることを特徴とする。
In order to achieve the above object, the present invention has the following constitutions. In the laminated magnetic core of the present invention, the temperature interval ΔT x of the supercooled liquid represented by the formula ΔT x = T x −T g (where T x is the crystallization start temperature and T g is the glass transition temperature). It is characterized by comprising a magnetic core main body formed by winding a ribbon of a Fe-based soft magnetic metallic glass alloy having the following composition, which has a specific resistance of 35 K or higher and a specific resistance of 1.5 μΩm or higher , and which has a toroidal shape. Al: 1 atomic% to 10 atomic% Ga: 0.5 atomic% to 4 atomic% P: 0 atomic% to 15 atomic% C: 2 atomic% to 7 atomic% B: 2 atomic% to 10 atomic% Si: 1 Atomic% to 15 atomic% Fe: balance The laminated magnetic core of the present invention has the above-described F content.
It is characterized by comprising a magnetic core body formed by laminating thin strips of an e-based soft magnetic metallic glass alloy.

【0007】[0007]

【0008】また、本発明では、前記Fe基軟磁性金属
ガラス合金の組成に、原子%でGeが0〜4%、より好
ましくは0.5〜4%含有されてもよい。
Further , in the present invention, the composition of the Fe-based soft magnetic metallic glass alloy may contain Ge in an atomic percentage of 0 to 4%, and more preferably 0.5 to 4%.

【0009】本発明では、前記Fe基軟磁性金属ガラス
合金の組成に、原子%でNb、Mo、Hf、Ta、W、
Crのうちの少なくとも1種以上が7%以下含有されて
もよい。また、本発明では、前記Fe基軟磁性金属ガラ
ス合金の組成に、原子%で10%以下のNiと30%以
下のCoの少なくとも一方が含有されてもよい。
In the present invention, the composition of the Fe-based soft magnetic metallic glass alloy contains Nb, Mo, Hf, Ta, W, in atomic%.
At least one kind of Cr may be contained in an amount of 7% or less. Further, in the present invention, the composition of the Fe-based soft magnetic metallic glass alloy may contain at least one of Ni of 10% or less and Co of 30% or less in atomic%.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。本発明に係る積層磁心は、例えば
円環形状で実現される。このような円環形状の積層磁心
は、後述するFe基軟磁性金属ガラス合金薄帯を液体急
冷法で製造した後、Fe基軟磁性金属ガラス合金薄帯を
トロイダル状に巻回して磁心本体を形成するか、また
は、Fe基軟磁性金属ガラス合金薄帯をプレス打ち抜き
してリングを得、このリングを必要枚数積層して磁心本
体を構成し、これら磁心本体を例えばエポキシ系の樹脂
で樹脂被覆するか樹脂ケースに封入して絶縁保護するこ
とにより、積層磁心が得られる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. The laminated magnetic core according to the present invention is realized, for example, in an annular shape. Such an annular laminated magnetic core is manufactured by manufacturing a Fe-based soft magnetic metallic glass alloy ribbon described later by a liquid quenching method, and then winding the Fe-based soft magnetic metallic glass alloy ribbon into a toroidal shape to form a magnetic core body. A ring is formed by pressing or punching a Fe-based soft magnetic metallic glass alloy ribbon to obtain a ring, and a required number of the rings are laminated to form a magnetic core main body, and the magnetic core main body is coated with, for example, an epoxy resin. Alternatively, the laminated magnetic core is obtained by encapsulating in a resin case for insulation protection.

【0011】また、EIコア型の積層磁心を実現するた
めには、Fe基軟磁性金属ガラス合金薄帯をE型あるい
はI型になるようにプレス打ち抜きしてE型の薄片とI
型の薄片を複数枚作成した後、E型の薄片同士あるいは
I型の薄片同士を積層してE型コアとI型コアとを作成
し、それらを接合することで磁心本体を形成する。この
ような磁心本体を、例えばエポキシ系の樹脂で必要部分
を樹脂被覆するか樹脂ケースに封入して必要部分を絶縁
保護することにより、EIコア型の積層磁心が得られ
る。
In order to realize an EI core type laminated magnetic core, an Fe-based soft magnetic metallic glass alloy ribbon is punched into an E type or an I type by press punching to obtain an E type thin piece and an I type thin piece.
After forming a plurality of mold thin pieces, E type thin pieces or I type thin pieces are laminated to form an E type core and an I type core, and these are joined to form a magnetic core body. An EI core type laminated magnetic core can be obtained by covering the required portion of the magnetic core body with an epoxy resin, for example, or encapsulating the magnetic core body in a resin case for insulation protection.

【0012】図1は、円環形状の積層磁心の一例を示す
もので、この積層磁心1は、樹脂製の中空円環状の磁心
本体収納ケース2の内部に、後述するFe基軟磁性金属
ガラス合金からなる薄帯3をトロイダル状に巻回してな
る磁心本体4が収納されてなる。磁心本体収納ケース2
は、例えばポリアセタール樹脂、ポリエチレンテレフタ
レート樹脂等の樹脂を好ましく用いて形成される。ま
た、磁心本体収納ケース2の底面2a上の2カ所には、
磁心本体4と磁心本体収納ケース2とを安定して固定す
るための接着部材5が塗布されている。接着部材を塗布
する位置の数は2〜4カ所の範囲とするのが好ましい。
接着部材5としては、エポキシ樹脂、シリコンゴム等が
用いられる。
FIG. 1 shows an example of a ring-shaped laminated magnetic core. This laminated magnetic core 1 is made of a resin-made hollow circular magnetic core main body housing case 2 and has an Fe-based soft magnetic metallic glass to be described later. A magnetic core body 4 formed by winding a thin ribbon 3 made of an alloy in a toroidal shape is housed. Magnetic core body storage case 2
Is preferably formed using a resin such as a polyacetal resin or a polyethylene terephthalate resin. In addition, at two places on the bottom surface 2a of the magnetic core main body storage case 2,
An adhesive member 5 is applied to stably fix the magnetic core body 4 and the magnetic core body storage case 2. The number of positions where the adhesive member is applied is preferably in the range of 2 to 4 places.
As the adhesive member 5, epoxy resin, silicone rubber or the like is used.

【0013】図2は、円環形状の積層磁心の別の例を示
すもので、この積層磁心11は、樹脂製の中空円環状の
磁心本体下ケース12の内部に、後述するFe基軟磁性
金属ガラス合金からなる薄帯3を打ち抜いて得たリング
を積層してなる磁心本体13を収納し、磁心本体上蓋1
4を磁心本体下ケース12に嵌合することにより得られ
る。磁心本体下ケース12と磁心本体上蓋14とは、例
えばポリアセタール樹脂、ポリエチレンテレフタレート
樹脂等の樹脂を好ましく用いて形成される。
FIG. 2 shows another example of a ring-shaped laminated magnetic core. This laminated magnetic core 11 has an Fe-based soft magnetic material, which will be described later, inside a resin-made hollow circular magnetic core main body lower case 12. A magnetic core main body 13 formed by stacking rings obtained by punching a thin ribbon 3 made of a metallic glass alloy is housed, and a magnetic core main body upper lid 1
4 is fitted into the lower case 12 of the magnetic core body. The magnetic core main body lower case 12 and the magnetic core main body upper cover 14 are preferably formed of a resin such as polyacetal resin or polyethylene terephthalate resin.

【0014】従来からFe系の合金として、Fe−P−
C系、Fe−P−B系、Fe−Ni−Si系等の組成の
ものがガラス遷移を起こすものとして知られているが、
これらの合金の過冷却液体領域の温度幅ΔTxがいずれ
も極めて小さく、実際的に金属ガラス合金として構成す
ることはできない。これに対して、本発明に係るFe基
軟磁性金属ガラス合金は、Feを主成分とし、ΔTx=
Tx−Tg(式中、Txは結晶化開始温度、Tgはガラ
ス遷移温度を示す)の式で表される過冷却液体領域の温
度幅ΔTxが20K以上、組成によっては40〜60K
以上という顕著な温度間隔を示すので、徐冷による成形
が可能となり、比較的肉厚のリボン状や線状の成形体を
作成することが可能となる。
Conventionally, as an Fe-based alloy, Fe-P-
C-based, Fe-P-B-based, and Fe-Ni-Si-based compositions are known to cause glass transition.
The temperature width ΔTx of the supercooled liquid region of each of these alloys is extremely small and cannot be practically formed as a metallic glass alloy. On the other hand, the Fe-based soft magnetic metallic glass alloy according to the present invention contains Fe as a main component, and ΔTx =
The temperature width ΔTx of the supercooled liquid region represented by the formula of Tx−Tg (where Tx represents the crystallization start temperature and Tg represents the glass transition temperature) is 20 K or more, and 40 to 60 K depending on the composition.
Since the above remarkable temperature intervals are exhibited, it is possible to perform molding by slow cooling, and it is possible to prepare a relatively thick ribbon-shaped or linear molded body.

【0015】占積率を増加するには、積層磁心1、11
に用いるアモルファス合金の薄帯の厚さを大きくすれば
良い。従来のアモルファス合金は、上述のように過冷却
液体領域の温度幅ΔTxが極めて小さいので、液体急冷
法により所定の組成の合金溶湯を急速冷却して薄帯を製
造する場合において、軟磁気特性を低下させないために
は薄帯の厚さを50μm以下にする必要があり、占積率
の向上には限界があった。本発明に係るFe基軟磁性金
属ガラス合金は、板厚が100〜200μm程度の薄帯
を得ることが可能であり、このような薄帯を巻回又は積
層して得られた磁心本体4、13は占積率が高くなり、
部品の小型化が可能である。また、比抵抗が高いため、
同じ板厚の薄帯を用いた場合には、従来のアモルファス
合金に比べてコアロスを小さくすることが可能となる。
To increase the space factor, the laminated magnetic cores 1, 11
It suffices to increase the thickness of the amorphous alloy ribbon used for. Since the conventional amorphous alloy has an extremely small temperature range ΔTx in the supercooled liquid region as described above, it has a soft magnetic property when a thin ribbon is produced by rapidly cooling the molten alloy having a predetermined composition by the liquid quenching method. In order not to reduce the thickness, the thickness of the ribbon needs to be 50 μm or less, and there is a limit to the improvement of the space factor. With the Fe-based soft magnetic metallic glass alloy according to the present invention, it is possible to obtain a ribbon having a plate thickness of about 100 to 200 μm, and a magnetic core body 4 obtained by winding or laminating such a ribbon, 13 has a higher space factor,
Parts can be downsized. Also, since the specific resistance is high,
When a thin strip having the same plate thickness is used, it is possible to reduce the core loss as compared with the conventional amorphous alloy.

【0016】20K以上のΔTxを有するFe基軟磁性
金属ガラス合金を得るために、このFe基軟磁性金属ガ
ラス合金に、Fe以外の他の金属元素と半金属元素とを
含有させる。このうちFe以外の他の金属とは、周期律
表の3B族および4B族の少なくとも1種類以上からな
るものであり、具体的にはAl、Ga、In、Tl、S
n、およびPbの少なくとも1種以上が好ましく、中で
もAl、Ga、InまたはSnがより好ましい。前記の
半金属元素は、P、C、B、GeおよびSiの少なくと
も1種以上であることが好ましい。特に、P、C、およ
びBの少なくとも1種以上を含有させることが好まし
い。また、Siを加えることにより、過冷却液体の温度
間隔ΔTxを向上させ、非晶質単相組織となる臨界板厚
を増大できる。Siの含有量は多すぎると過冷却液体領
域ΔTxが消滅するので、15原子%以下が好ましい。
またこのFe基軟磁性金属ガラス合金は、Nb、Mo、
Hf、Ta、W、ZrおよびCrの少なくとも1種以上
を含有してもよい。更に、NiとCoの少なくとも一方
を含有してもよい。
In order to obtain an Fe-based soft magnetic metallic glass alloy having a ΔTx of 20 K or more, this Fe-based soft magnetic metallic glass alloy contains a metal element other than Fe and a metalloid element. Among these, the metal other than Fe is composed of at least one of 3B group and 4B group of the periodic table, and specifically, Al, Ga, In, Tl, S.
At least one or more of n and Pb is preferable, and Al, Ga, In or Sn is more preferable. The metalloid element is preferably at least one of P, C, B, Ge and Si. In particular, it is preferable to contain at least one or more of P, C, and B. Further, by adding Si, the temperature interval ΔTx of the supercooled liquid can be improved, and the critical plate thickness that forms an amorphous single-phase structure can be increased. If the Si content is too large, the supercooled liquid region ΔTx disappears, so 15 atomic% or less is preferable.
Further, this Fe-based soft magnetic metallic glass alloy is made of Nb, Mo,
You may contain at least 1 sort (s) or more of Hf, Ta, W, Zr, and Cr. Further, it may contain at least one of Ni and Co.

【0017】より具体的に例示すると、本発明では、そ
の組成が原子%で、Al:1〜10、Ga:0.5〜
4、P:0〜15、C:2〜7、B:2〜10、Fe:
残部であって、不可避不純物が含有されても良いFe基
軟磁性金属ガラス合金が得られる。また、本発明では、
その組成が原子%で、Al:1〜10、Ga:0.5〜
4、P:0〜15、C:2〜7、B:2〜10、Si:
0〜 15、Fe:残部であって、不可避不純物が含有
されても良いFe基軟磁性金属ガラス合金が得られる。
尚、より大きな過冷却液体領域ΔTxを得るために、前
記の組成において、PとCを原子%で、P:6〜15、
C:5〜7とすると、より好ましく35K以上の過冷却
液体領域ΔTxを得ることができる。また、前記の組成
において、更にGeを0〜4原子%、好ましくは0.5
〜4原子%の範囲で含有していても良い。また、前記の
組成において、更にNb、Mo、Hf、Ta、W、Z
r、Crの少なくとも1種以上を7原子%以下含有して
も良く、更に、0〜10原子%のNi、0〜30原子%
のCoの少なくとも1種類以上を含有しても良い。
More specifically, in the present invention, the composition is atomic%, Al: 1-10, Ga: 0.5-.
4, P: 0-15, C: 2-7, B: 2-10, Fe:
A Fe-based soft magnetic metallic glass alloy, which is the balance and may contain inevitable impurities, is obtained. Further, in the present invention,
The composition is atomic%, Al: 1-10, Ga: 0.5-
4, P: 0-15, C: 2-7, B: 2-10, Si:
0 to 15, Fe: The balance, and an Fe-based soft magnetic metallic glass alloy in which unavoidable impurities may be contained is obtained.
In order to obtain a larger supercooled liquid region ΔTx, in the above composition, P and C in atomic%, P: 6 to 15,
When C: 5 to 7, a supercooled liquid region ΔTx of 35K or more can be obtained more preferably. Further, in the above composition, Ge is further contained in an amount of 0 to 4 atomic%, preferably 0.5.
It may be contained in the range of up to 4 atom%. Further, in the above composition, Nb, Mo, Hf, Ta, W, Z
7 at% or more of at least one of r and Cr may be contained, and 0 to 10 at% Ni and 0 to 30 at% are further included.
At least one kind of Co may be contained.

【0018】本発明に係るFe基軟磁性金属ガラス合金
の薄帯3は、母合金を溶解してから鋳造法により、或い
は単ロールもしくは双ロールによる急冷法によって、更
には液中紡糸法や溶液抽出法によって製造される。これ
らの製造法によって、従来公知のFe基またはCo基の
アモルファス合金に比べて急冷法では2倍以上、鋳造法
では10倍以上の厚さと形の大きさのFe基軟磁性金属
ガラス合金の薄帯3を得ることができる。これらの方法
により得られた前記の組成のFe基軟磁性金属ガラス合
金は、室温において軟磁気特性(Soft magnetism)を有
している。この軟磁気特性は300℃〜500℃の範囲
内の熱処理を施すことによって更に改善される。このた
め、磁心への応用に有用なものとなる。尚、製造方法に
ついて付言すると、合金の組成、そして製造のための手
段と製品の大きさ、形状等によって、好適な冷却速度が
決まるが、通常は1〜104K/s程度の範囲を目安と
することができる。そして、実際には、ガラス相(glas
sy phase)に、結晶相としてのFe3B、Fe2B、Fe
3P等の相が析出するかどうかを確認することで決める
ことができる。
The thin strip 3 of the Fe-based soft magnetic metallic glass alloy according to the present invention is formed by melting the mother alloy and then casting, or by a single-roll or twin-roll quenching method, and further by a submerged spinning method or a solution. It is manufactured by the extraction method. According to these manufacturing methods, compared with the conventionally known Fe-based or Co-based amorphous alloys, the thickness of the Fe-based soft magnetic metallic glass alloy having a thickness and shape that are at least twice as large in the quenching method and at least 10 times as large as the casting method. Band 3 can be obtained. The Fe-based soft magnetic metallic glass alloy having the above composition obtained by these methods has soft magnetism at room temperature. This soft magnetic property is further improved by applying a heat treatment in the range of 300 ° C to 500 ° C. Therefore, it is useful for application to magnetic cores. In addition, regarding the manufacturing method, a suitable cooling rate is determined depending on the composition of the alloy, the means for manufacturing, the size and shape of the product, etc., but normally a range of about 1 to 10 4 K / s is a standard. Can be And, in fact, the glass phase (glas
sy phase), Fe 3 B, Fe 2 B, Fe as a crystal phase
It can be decided by confirming whether or not a phase such as 3 P precipitates.

【0019】本発明の積層磁心1、11は、ΔTx=Tx
−Tg(ただしTxは結晶化開始温度、Tgはガラス遷移
温度を示す。)の式で表される過冷却液体の温度間隔Δ
xが20K以上、より好ましくは35K以上であるF
e基軟磁性金属ガラス合金の薄帯3が、トロイダル状に
巻回されてなる磁心本体4、若しくは積層されてなる磁
心本体13を備えているので、板厚の厚い薄帯から積層
磁心1、11を作成することが可能となり、積層磁心
1、11の占積率を増加させることができるので、小型
化を図ることができる。また、従来のアモルファス合金
に比べて高い比抵抗を有しているので、高周波帯域にお
けるコアロスも小さい。更に、液体急冷法のみならず、
鋳造法によっても上述のFe基軟磁性金属ガラス合金が
得られるので、積層磁心1、11の製造コストを低くす
ることができる。
The laminated magnetic cores 1 and 11 of the present invention have ΔT x = T x
The temperature interval Δ of the supercooled liquid represented by the formula −T g (where T x is the crystallization start temperature and T g is the glass transition temperature).
F having T x of 20 K or more, more preferably 35 K or more
Since the ribbon 3 of the e-based soft magnetic metallic glass alloy is provided with the magnetic core body 4 formed by winding in a toroidal shape or the laminated magnetic core body 13, the laminated magnetic core 1 is formed from a thin ribbon having a large plate thickness, 11 can be produced, and the space factor of the laminated magnetic cores 1 and 11 can be increased, so that the size can be reduced. Further, since it has a higher specific resistance than the conventional amorphous alloy, the core loss in the high frequency band is also small. Furthermore, not only the liquid quenching method,
Since the Fe-based soft magnetic metallic glass alloy described above can be obtained also by the casting method, the manufacturing cost of the laminated magnetic cores 1 and 11 can be reduced.

【0020】また、本発明のFe基軟磁性金属ガラス合
金は、Fe以外の他の金属元素と半金属元素とを含有し
てなり、特にSiを含有することにより、過冷却液体の
温度間隔ΔTxを大きくすることができるので、板厚の
大きい薄帯から積層磁心1、11を作成することが可能
となり、積層磁心1、11の占積率を向上させ、コアロ
スを小さくすることができる。
The Fe-based soft magnetic metallic glass alloy of the present invention contains a metal element other than Fe and a metalloid element, and in particular, by containing Si, the temperature interval ΔT of the supercooled liquid is increased. Since x can be increased, the laminated magnetic cores 1 and 11 can be formed from thin ribbons, the space factor of the laminated magnetic cores 1 and 11 can be improved, and the core loss can be reduced.

【0021】また、本発明の積層磁心1、11は、組成
がそれぞれ原子%でAl:1〜10、Ga:0.5〜
4、P:0〜15、C:2〜7、B:2〜10、Fe:
残部、若しくは、Al:1〜10、Ga:0.5〜4、
P:0〜15、C:2〜7、B:2〜10、Si:0〜
15、Fe:残部であり、透磁率が高く、保磁力が小さ
く、飽和磁束密度が高く、軟磁気特性に優れたFe基軟
磁性金属ガラス合金からなる磁心本体4、13を備えて
いるので、コアロスを小さくすることができる。
Further, the laminated magnetic cores 1 and 11 of the present invention each have an atomic% composition of Al: 1 to 10 and Ga: 0.5 to.
4, P: 0-15, C: 2-7, B: 2-10, Fe:
The balance or Al: 1-10, Ga: 0.5-4,
P: 0 to 15, C: 2 to 7, B: 2 to 10, Si: 0
15, Fe: The balance, which has high magnetic permeability, low coercive force, high saturation magnetic flux density, and magnetic core bodies 4 and 13 made of an Fe-based soft magnetic metallic glass alloy excellent in soft magnetic characteristics, Core loss can be reduced.

【0022】[0022]

【実施例】(参考例1) Fe、Al及びGaと、Fe−C合金、Fe−P合金及
びBを原料としてそれぞれ所定量秤量し、減圧Ar雰囲
気下においてこれらの原料を高周波誘導加熱装置で溶解
し、母合金を作製した。この母合金をるつぼ内に入れて
溶解し、るつぼのノズルから回転しているロールに溶湯
を吹き出して急冷する単ロール法によって、減圧Ar雰
囲気下で、Fe73AlGa11なる組
成の急冷薄帯を得た。このとき、るつぼのノズル径と、
ノズル先端とロール表面との距離(ギャップ)と、ロー
ルの回転数と、射出圧力と、雰囲気圧力を適当に調整す
ることにより、厚さが35〜229μmの薄帯試料を得
た。
Example ( Reference Example 1 ) Fe, Al and Ga, and Fe-C alloy, Fe-P alloy and B were weighed in predetermined amounts, and these raw materials were placed in a high pressure induction heating apparatus under a reduced pressure Ar atmosphere. It melted and the mother alloy was produced. This master alloy is put in a crucible and melted, and the melt is blown out from a nozzle of the crucible into a rotating roll to rapidly cool the melt, by a single roll method under reduced pressure Ar atmosphere, Fe 73 Al 5 Ga 2 P 11 C 5 B A quenched ribbon of composition 4 was obtained. At this time, the nozzle diameter of the crucible,
A ribbon sample having a thickness of 35 to 229 μm was obtained by appropriately adjusting the distance (gap) between the nozzle tip and the roll surface, the rotation number of the roll, the injection pressure, and the atmospheric pressure.

【0023】上述の薄帯試料について、300〜450
℃の温度範囲で熱処理した場合の磁気特性を測定した。
熱処理条件は、赤外線イメージ炉を用い、真空中で昇降
温速度180℃/分、保持温度10分の条件とした。図
3は、前記各薄帯試料における磁気特性の熱処理温度依
存性について示したものである。また、図4は、図3に
示したデータの中から必要数抜粋したデータのみを記載
したものである。これらの図から、35〜180μmの
範囲の板厚薄帯試料の飽和磁化(σs)については、熱
処理なしの試料と変わらずに400℃までほぼ一定の値
を示したが、450℃熱処理においては、劣化する傾向
を示した。一方、229μmの板厚の薄帯試料について
は、400℃でピークを示した後、劣化する傾向を示し
た。 これは、400℃以上において、Fe3B等の結
晶が成長したためと考えられる。保磁力(Hc)につい
ては、熱処理無しの薄帯試料でアモルファス単相である
125μmの板厚の薄帯試料までほぼ一定の値を示し、
それ以上の板厚においては増大する傾向を示した。ま
た、熱処理により、400℃まで低下する傾向を示す。
次に、透磁率μ'(1kHz)については、熱処理無し
の薄帯試料でアモルファス単相である135μmまでほ
ぼ一定の値を示し、それ以上の板厚において減少する傾
向を示した。熱処理の効果は、400℃まで向上する
が、450℃の熱処理において大幅に劣化する傾向を示
した。また、板厚増加に伴ってその効果は小さくなる。
For the above ribbon sample, 300 to 450
The magnetic properties were measured when heat-treated in the temperature range of ° C.
As the heat treatment conditions, an infrared image furnace was used, and the temperature rising / falling rate was 180 ° C./min in vacuum and the holding temperature was 10 min. FIG. 3 shows the heat treatment temperature dependence of the magnetic properties of each of the ribbon samples. Further, FIG. 4 shows only the data obtained by extracting the necessary number from the data shown in FIG. From these figures, the saturation magnetization (σ s ) of the thin strip sample in the range of 35 to 180 μm showed almost constant value up to 400 ° C., which was the same as that of the sample without heat treatment. , Showed a tendency to deteriorate. On the other hand, the ribbon sample having a plate thickness of 229 μm showed a peak at 400 ° C. and then tended to deteriorate. It is considered that this is because crystals of Fe 3 B or the like grew at 400 ° C. or higher. With respect to the coercive force (H c ) of the ribbon sample without heat treatment, it shows a substantially constant value up to a ribbon sample having a plate thickness of 125 μm which is an amorphous single phase,
There was a tendency for the plate thickness to increase beyond that. In addition, the heat treatment tends to lower the temperature to 400 ° C.
Next, regarding the magnetic permeability μ ′ (1 kHz), the ribbon sample without heat treatment showed a substantially constant value up to 135 μm, which is an amorphous single phase, and showed a tendency to decrease at a plate thickness higher than that. Although the effect of the heat treatment was improved up to 400 ° C, there was a tendency that the heat treatment was significantly deteriorated in the heat treatment at 450 ° C. Further, the effect becomes smaller as the plate thickness increases.

【0024】これらの熱処理による軟磁気特性の変化に
ついては、熱処理無しの薄帯試料において存在する内部
応力が熱処理によって緩和されたためと思われる。ま
た、最適熱処理温度Taは、今回の試験においては35
0℃付近にあると言える。なお、キュリー温度Tc以下
の熱処理では、磁区固着による軟磁気特性の劣化が起こ
る可能性があるので、熱処理温度は少なくとも300℃
以上必要であると思われる。また、450℃における熱
処理では、熱処理なしの薄帯試料の値よりも劣化する傾
向にあるので、この系の結晶化温度(約500℃)に近
く、結晶核の生成開始(構造的短範囲秩化序)または結
晶析出開始による磁壁のピンニングに起因して劣化する
ものと思われる。従って、熱処理する場合の温度は30
0〜500℃、換言すると、300℃〜結晶化開始温度
の範囲であることが好ましく、300〜450℃がより
好ましいことが判明した。
The change in soft magnetic properties due to these heat treatments is considered to be due to the relaxation of the internal stress existing in the ribbon sample without heat treatment. The optimum heat treatment temperature T a is 35 in this test.
It can be said that it is around 0 ° C. Note that heat treatment at a Curie temperature T c or lower may cause deterioration of soft magnetic characteristics due to magnetic domain sticking, so the heat treatment temperature is at least 300 ° C.
It seems necessary. Further, since the heat treatment at 450 ° C. tends to deteriorate as compared with the value of the ribbon sample without heat treatment, it is close to the crystallization temperature (about 500 ° C.) of this system, and the formation of crystal nuclei starts (structural short range order). It is thought that the deterioration is caused by the pinning of the domain wall due to the initiation of chemical precipitation) or crystal precipitation. Therefore, the temperature for heat treatment is 30
It was found that the range of 0 to 500 ° C., in other words, the range of 300 ° C. to the crystallization start temperature is preferable, and the range of 300 to 450 ° C. is more preferable.

【0025】また、参考例1の薄帯試料の飽和磁化(σ
)と保磁力(H)と透磁率(μ')と過冷却液体の
温度間隔(△Tx)と組織構造とを表1にまとめて示
す。構造はXRD(X線回折法)で構造解析した結果を
示し、amoはアモルファス単相、amo+cryはアモルファ
ス相+結晶相の構造を有することを示す。△Txについ
は、229μm厚の試料以外はほぼ一定値(△Tx=4
7℃)を示した。
Further, the saturation magnetization of the ribbon sample of Reference Example 1
s ), coercive force (H c ), magnetic permeability (μ ′), temperature interval (ΔTx) of supercooled liquid, and microstructure are summarized in Table 1. The structure shows the result of structural analysis by XRD (X-ray diffraction method), and amo has an amorphous single phase and amo + cry has an amorphous phase + crystalline phase. About ΔTx, except for the 229 μm thick sample, it is almost constant (ΔTx = 4
7 ° C.).

【0026】[0026]

【表1】 [Table 1]

【0027】図5は、Fe78Si13なる組成の
比較試料について、熱処理なしの試料と370℃で12
0分間熱処理した試料、参考例1の薄帯試料について熱
処理無しの試料と350℃で10分間熱処理した試料の
それぞれに対し、飽和磁化(σ)と保磁力(H)と
透磁率(μ')のそれぞれの板厚依存性を測定した結果
を示す。何れの試料においても板厚30〜200μmの
範囲であれば、磁気特性の劣化も少なく、優れた特性が
得られた。
FIG. 5 shows a comparative sample having a composition of Fe 78 Si 9 B 13 and a sample without heat treatment and a sample at 12 ° C. at 370 ° C.
Saturation magnetization (σ s ), coercive force (H c ), and magnetic permeability (μ) of the sample that was heat-treated for 0 minutes, the ribbon sample of Reference Example 1 and the sample that was not heat-treated and that was heat-treated at 350 ° C. for 10 minutes, respectively. The results of measuring the thickness dependence of each of () are shown. In any of the samples, when the plate thickness was in the range of 30 to 200 μm, the magnetic properties were less deteriorated and excellent properties were obtained.

【0028】図6は、Fe78Si913なる組成の比較
試料について370℃で120分間熱処理した試料と、
Fe73Al5Ga21154なる組成の試料について3
50℃で10分間熱処理した試料のそれぞれに対し、曲
げ試験を行い、最大歪を測定した結果を示す。曲げ試験
は、2本のロッドと薄帯試料を用い、2本のロッドの先
端部の間にロッドと平行に配置した薄帯を挟み、2本の
ロッドを徐々に接近させて薄帯を山状に折り曲げるもの
とし、このように山状に折り曲げていった場合に薄帯が
折れて切れたときのロッドの端面間の幅をLとし、薄帯
の厚さをtとした場合、t/(L−t)の値を最大歪
(λf)と定義することにした。図6に示す結果から、
Fe78Si913なる組成の比較試料は板厚が増加する
につれて急激に折り曲げに弱くなる(換言すると脆くな
る)が、本発明に係る組成系の試料では板厚が増加して
も折り曲げに弱くなり難い性質(換言すると脆くなり難
い)を有している。また、板厚が60μm以上の場合は
比較試料よりも本発明系の組成の試料の方が折り曲げに
強くなることも明らかになった。従って、本発明の係る
組成の合金薄帯をトロイダル状に巻回して積層磁心とし
た場合には、曲率半径を小さくすることが可能となり、
積層磁心の形状を小型にできる。
FIG. 6 shows a comparative sample having a composition of Fe 78 Si 9 B 13 which was heat-treated at 370 ° C. for 120 minutes,
Regarding a sample having a composition of Fe 73 Al 5 Ga 2 P 11 C 5 B 4 3
The bending test is performed on each of the samples heat-treated at 50 ° C. for 10 minutes, and the maximum strain is measured. In the bending test, two rods and a ribbon sample were used, and a ribbon arranged in parallel with the rod was sandwiched between the tip parts of the two rods, and the two rods were gradually brought close to each other to make a ribbon. When the ribbon is bent and cut in this way, the width between the end faces of the rod is L, and the thickness of the ribbon is t, where t / The value of (Lt) is defined as the maximum strain (λf). From the results shown in FIG.
The comparative sample having the composition of Fe 78 Si 9 B 13 is vulnerable to bending sharply as the plate thickness increases (in other words, becomes brittle), but the sample of the composition system according to the present invention does not bend even if the plate thickness increases. It has the property of being hard to weaken (in other words, hard to be brittle). It was also clarified that when the plate thickness is 60 μm or more, the sample having the composition of the present invention is more resistant to bending than the comparative sample. Therefore, when the alloy ribbon of the composition according to the present invention is wound in a toroidal shape to form a laminated magnetic core, the radius of curvature can be reduced,
The shape of the laminated magnetic core can be made small.

【0029】図7には、Fe78Si913なる組成の比
較試料と、Fe73Al5Ga21154なる組成の試料
について、比抵抗の板厚依存性を測定した結果を示す。
本発明組成系の試料にあっては、比較例の試料よりも比
抵抗が高く、18μm厚〜235μm厚の試料まで1.
5μΩcm以上の値を示した。従って本発明組成系の試
料にあっては高周波での渦電流損失が少なく、高周波損
失の少ない積層磁心を提供できることが判明した。
FIG. 7 shows the results of measuring the plate thickness dependence of the specific resistance of a comparative sample having a composition of Fe 78 Si 9 B 13 and a sample having a composition of Fe 73 Al 5 Ga 2 P 11 C 5 B 4. Indicates.
In the sample of the composition system of the present invention, the specific resistance is higher than that of the sample of the comparative example.
The value was 5 μΩcm or more. Therefore, it was revealed that the sample of the composition system of the present invention has a small eddy current loss at high frequencies and can provide a laminated magnetic core with a small high frequency loss.

【0030】(参考例2) 次に、Fe70+XAlGa(P55
252023−Xなる組成において、Fe濃度を変
化させて薄帯試料をそれぞれ作製し、各薄帯試料につい
て構造および特性を調べた。薄帯試料の作製は上記参考
例1と同様にして行い、試料の板厚は30μmとした。
Reference Example 2 Next, Fe 70 + X Al 5 Ga 2 (P 55 C
In 25 B 20) 23-X having the composition, by changing the Fe concentration was prepared ribbon sample were each examined the structure and characteristics of each ribbon samples. For the preparation of ribbon samples, refer to the above
The same procedure as in Example 1 was carried out, and the plate thickness of the sample was 30 μm.

【0031】図8は、各薄帯試料(熱処理無し)の磁気
特性を測定した結果を示したものである。またこの図に
は、比較試料として従来のFe−Si−B系アモルファ
ス材料(板厚25μm、真空中で370℃×120分間
の熱処理後)の飽和磁化(σ s)と保磁力(Hc)と透磁
率μ'の値をそれぞれ破線で示す。この図から明らかな
ように、飽和磁化(σs)については、Fe濃度の増加
に伴って向上することがわかる。そして、アモルファス
単相組織を有するFe濃度範囲においては、Fe濃度が
75原子%のときに、Fe−Si−B系の比較試料(σ
s=183emu/g)とほぼ同等のσs=150emu
/gの値が得られた。 また保磁力Hcについては、ア
モルファス単相組織を有するFe濃度=75原子%まで
の試料でほぼ一定の値を示し、それ以上のFe濃度にお
いては大きく増大した。透磁率(μ'(1kHz))に
ついては、Fe濃度の増加に伴って減少する傾向が見ら
れるものの、Fe濃度が70〜76原子%の範囲で、透
磁率5000以上の優れた軟磁気特性が得られた。この
結果より本発明のFe基軟磁性金属ガラス合金におい
て、Feを増加させることによって飽和磁化(σs)を
向上させることができ、Fe75Al5Ga29 .94.5
3.6なる組成において、従来のFe−Si−B系アモル
ファス材料とほぼ同等のσsを有するFe基軟磁性金属
ガラス合金が、単ロール液体急冷法により得られること
がわかった。
FIG. 8 shows the magnetism of each ribbon sample (without heat treatment).
The results of measuring the characteristics are shown. Also in this figure
Is a conventional Fe-Si-B based amorpha as a comparative sample.
Material (plate thickness 25 μm, 370 ° C. for 120 minutes in vacuum)
(After heat treatment), saturation magnetization (σ s) And coercive force (Hc) And magnetic permeability
The values of the rate μ'are shown by broken lines. Clear from this figure
Saturation magnetization (σs), Increase in Fe concentration
It can be seen that it will improve with. And amorphous
In the Fe concentration range having a single-phase structure, the Fe concentration is
At 75 atomic%, a Fe-Si-B system comparative sample (σ
s= 183 emu / g)s= 150 emu
A value of / g was obtained. Also the coercive force HcFor
Fe concentration with morphus single-phase structure = up to 75 atomic%
Sample shows almost constant value, and Fe concentration higher than that shows almost constant value.
It has increased significantly. Permeability (μ '(1kHz))
As for the Fe content, it tends to decrease as the Fe concentration increases.
However, when the Fe concentration is in the range of 70 to 76 atomic%,
Excellent soft magnetic characteristics with a magnetic susceptibility of 5000 or more were obtained. this
The results show that the Fe-based soft magnetic metallic glass alloy of the present invention
The saturation magnetization (σs)
Can be improved, Fe75AlFiveGa2P9 .9C4.5B
3.6In the following composition, the conventional Fe-Si-B system
Σ that is almost the same as that of fass materialsFe-based soft magnetic metal with
Glass alloy can be obtained by single roll liquid quenching method
I understood.

【0032】(実施例) 次に、上記参考例1の組成にSiを添加してなるFe基
軟磁性金属ガラス合金について実施例を挙げ、その効果
を明らかにする。原子組成比がFe72AlGa
10Siのインゴットを作製し、これをるつぼ
内に入れて溶解し、るつぼのノズルから回転しているロ
ールに溶湯を吹き出して急冷する単ロール法によって、
減圧Ar雰囲気下で急冷薄帯を得た。製造時の条件を、
ノズル径0.4〜0.5mm、ノズル先端とロール表面
との距離(ギャップ)0.3mm、ロールの回転数20
0〜2500r.p.m.、射出圧力0.35〜0.40kgf/
cm、雰囲気圧力−10cmHg、ロール表面状態#100
0に設定して製造したところ、厚さ20〜250μmの
薄帯が得られた。
Example 1 Next, an example will be given of an Fe-based soft magnetic metallic glass alloy obtained by adding Si to the composition of Reference Example 1 above, and the effect thereof will be clarified. Atomic composition ratio is Fe 72 Al 5 Ga 2 P
A 10 C 6 B 4 Si ingot was prepared, which was placed in a crucible to be melted, and the molten metal was blown out from a nozzle of the crucible onto a rotating roll to rapidly cool the ingot.
A quenched ribbon was obtained under a reduced pressure Ar atmosphere. The manufacturing conditions
Nozzle diameter 0.4-0.5 mm, distance between nozzle tip and roll surface (gap) 0.3 mm, roll rotation speed 20
0 ~ 2500r.pm, injection pressure 0.35 ~ 0.40kgf /
cm 2 , atmosphere pressure-10 cmHg, roll surface condition # 100
When it was manufactured by setting it to 0, a ribbon having a thickness of 20 to 250 μm was obtained.

【0033】前記で得られた厚さ20〜250μmの各
薄帯試料について、熱処理を行わない場合と、熱処理し
た場合の磁気特性をそれぞれ測定した。図9は、各薄帯
試料の磁気特性の板厚依存性を示す。熱処理条件は、赤
外線イメージ炉を用い、真空中で、上記参考例1のSi
を添加しない試料において最適条件であった昇降温速度
180℃/分、保持温度350℃、保持時間30分の条
件とした。この図から明らかなように、飽和磁化
(σ)については、熱処理無しの場合において、板厚
にかかわらずほぼ一定で145emu/g程度の値を示
した。熱処理後の飽和磁化(σ)は、アモルファス単
相構造を維持している板厚160μmまでは熱処理無し
のものと大きく変わらないが、それ以上の板厚で熱処理
無しのものに比べて劣化する傾向を示した。これは、熱
処理によってFeB、FeC等の結晶が成長したこ
とが原因であると考えられる。
With respect to each of the ribbon samples having a thickness of 20 to 250 μm obtained above, the magnetic characteristics were measured without heat treatment and with heat treatment. FIG. 9 shows the plate thickness dependence of the magnetic properties of each ribbon sample. The heat treatment condition is that the infrared image furnace is used and the Si of Reference Example 1 is used in vacuum.
The conditions were the optimum conditions for the sample without addition of 180 ° C./minute of temperature rising / falling temperature, 350 ° C. holding temperature, and 30 minutes holding time. As is clear from this figure, the saturation magnetization (σ s ) shows a value of about 145 emu / g which is almost constant regardless of the plate thickness without heat treatment. The saturation magnetization (σ s ) after heat treatment is not much different from that without heat treatment up to a plate thickness of 160 μm that maintains an amorphous single phase structure, but it deteriorates compared with that without heat treatment at a plate thickness above that. Showed a trend. It is considered that this is because the crystals of Fe 3 B, Fe 3 C, etc. grew by the heat treatment.

【0034】保磁力(H)については、熱処理無しの
試料では板厚の増加に伴って増大する傾向を示した。ま
た、熱処理後の試料は熱処理無しのものに比べて保磁力
(H)が低下しており、いずれの板厚においても0.
625〜0.125Oeの値を示した。このように熱処
理によって保持力(H)が低下したのは、上記参考例
と同様に、熱処理無しの試料において存在する内部応
力が熱処理を行うことによって緩和されたためであると
思われる。
The coercive force (H c ) of the sample without heat treatment tended to increase as the plate thickness increased. Further, the coercive force (H c ) of the sample after the heat treatment is lower than that of the sample without the heat treatment, and the coercive force (H c ) is less than 0.
The value was 625 to 0.125 Oe. The holding force by the heat treatment in this manner (H c) is lowered, the reference example
Like in No. 1 , it is considered that the internal stress existing in the sample without heat treatment was relaxed by the heat treatment.

【0035】次に、透磁率(μ'(1kHz))につい
ては、熱処理無しの試料では板厚の増加に伴って減少す
る傾向を示した。また熱処理によって透磁率(μ')は
向上し、上記参考例1のSiを含有しない組成のFe基
軟磁性金属ガラス合金とほぼ同等の値が得られた。な
お、上記参考例1と同様に、熱処理による効果が板厚増
加に従って小さくなる傾向は本実施例でも見られた。
Next, the magnetic permeability (μ '(1 kHz)) of the sample without heat treatment tended to decrease as the plate thickness increased. Further, the magnetic permeability (μ ′) was improved by the heat treatment, and a value almost equal to that of the Fe-based soft magnetic metallic glass alloy of the composition containing no Si in Reference Example 1 was obtained. Similar to Reference Example 1 , the effect of heat treatment tended to decrease as the plate thickness increased in this example.

【0036】また、本実施例で得られた各板厚の試料
(熱処理無し)における飽和磁化(σ s)と保磁力
(Hc)と過冷却液体の温度間隔(△Tx)と透磁率
(μ')と組織構造とを表2にまとめて示す。
Samples of various plate thicknesses obtained in this example
Saturation magnetization (without heat treatment) (σ s) And coercive force
(Hc) And supercooled liquid temperature interval (△ Tx) and permeability
(Μ ′) and the tissue structure are summarized in Table 2.

【0037】[0037]

【表2】 [Table 2]

【0038】図10は、Fe78Si913なる組成の比
較試料について370℃で120分間熱処理した試料
と、Fe72Al5Ga21064Si1なる組成の試料
について350℃で30分間熱処理した試料のそれぞれ
に対し、飽和磁化(σs)と保磁力(Hc)と透磁率
(μ')のそれぞれの板厚依存性を測定した結果を示
す。この結果より、Fe72Al5Ga21064Si1
なる組成の本発明に係るFe基金属ガラス合金試料は、
Fe78Si913なる組成の従来の比較試料と比べて、
板厚20〜250μmの範囲であれば、磁気特性の劣化
も少なく、優れた特性が得られることが認められた。特
に軟磁気特性に関しては、本発明に係る試料において、
従来材料よりも優れた透磁率の値が得られており、板厚
20〜250μmの範囲で透磁率5000以上の優れた
軟磁気特性が得られることが認められる。
FIG. 10 shows a comparative sample having a composition of Fe 78 Si 9 B 13 which was heat-treated at 370 ° C. for 120 minutes and a sample having a composition of Fe 72 Al 5 Ga 2 P 10 C 6 B 4 Si 1 at 350 ° C. The results of measuring the plate thickness dependences of the saturation magnetization (σ s ), the coercive force (H c ), and the magnetic permeability (μ ′) are shown for each of the samples that have been heat-treated for 30 minutes. From this result, Fe 72 Al 5 Ga 2 P 10 C 6 B 4 Si 1
The Fe-based metallic glass alloy sample of the present invention having the composition
Compared with a conventional comparative sample having a composition of Fe 78 Si 9 B 13 ,
It was confirmed that when the plate thickness is in the range of 20 to 250 μm, the magnetic properties are less deteriorated and excellent properties are obtained. Particularly regarding soft magnetic properties, in the sample according to the present invention,
It has been found that the value of the magnetic permeability is superior to that of the conventional material, and that it is possible to obtain the excellent soft magnetic property of the magnetic permeability of 5000 or more in the plate thickness range of 20 to 250 μm.

【0039】(実施例2) Fe、Al及びGaと、Fe−C合金、Fe−P合金及
びB、更に必要に応じてSiを原料としてそれぞれ所定
量秤量し、減圧Ar雰囲気下においてこれらの原料を高
周波誘導加熱装置で溶解し、母合金を作製した。この母
合金をるつぼ内に入れて溶解し、るつぼのノズルから回
転しているロールに溶湯を吹き出して急冷する単ロール
法によって、減圧Ar雰囲気下で、Fe73AlGa
11、Fe73AlGa10
Si、Fe72AlGa10C6B
、Fe70Al3.57Ga1.4313.8
6.25、Fe77Al2.14Ga0.86
8.4Si2.6、Fe58CoNiZr
1018、Fe56CoNiZr1020なる
組成の急冷薄帯を得た。このとき、るつぼのノズル径
と、ノズル先端とロール表面との距離(ギャップ)と、
ロールの回転数と、射出圧力と、雰囲気圧力を適当に調
整することにより、厚さが25〜229μmの薄帯を得
た。
( Example 2 ) Fe, Al and Ga, and Fe-C alloy, Fe-P alloy and B, and optionally Si as raw materials were weighed in predetermined amounts, and these raw materials were placed under a reduced pressure Ar atmosphere. Was melted with a high frequency induction heating device to prepare a mother alloy. This mother alloy is put into a crucible and melted, and the melt is blown from a nozzle of the crucible to a rotating roll to rapidly cool the melt, by a single roll method under reduced pressure Ar atmosphere, Fe 73 Al 5 Ga.
2 P 11 C 5 B 4 , Fe 73 Al 5 Ga 2 P 10 C 5 B
4 Si 1 , Fe 72 Al 5 Ga 2 P 10 C6B 4 S
i 1 , Fe 70 Al 3.57 Ga 1.43 P 13.8 C
6.25 B 5 , Fe 77 Al 2.14 Ga 0.86 P
8.4 C 5 B 4 Si 2.6 , Fe 58 Co 7 Ni 7 Zr
A quenched ribbon having a composition of 10 B 18 , Fe 56 Co 7 Ni 7 Zr 10 B 20 was obtained. At this time, the nozzle diameter of the crucible, the distance (gap) between the nozzle tip and the roll surface,
By appropriately adjusting the number of rotations of the roll, the injection pressure, and the atmospheric pressure, a ribbon having a thickness of 25 to 229 μm was obtained.

【0040】次に、上述のようにして得られた各々の薄
帯を、リング状に打ち抜いて必要枚数を積層し、各層の
絶縁と固定のために層間にシリコンゴムを含浸した後
に、図2に示すような外径8mm、内径4mm、厚さ5
mmの円環状の積層磁心を作成した。
Next, each of the thin strips obtained as described above was punched in a ring shape to stack a required number of layers, and silicon rubber was impregnated between the layers for insulation and fixing of each layer, and then, as shown in FIG. 8mm outer diameter, 4mm inner diameter, 5 thickness
An annular laminated magnetic core of mm was prepared.

【0041】上述のようにして得られた厚さ50μmの
Fe73Al5Ga21154、厚さ100μmのFe72
Al5Ga210C6B4Si1及び厚さ200μmのFe
70Al5Ga29.655.754.6Si3なる組成の急冷薄
帯から作製した積層磁心についてこれらの積層磁心の占
積率を測定した結果を表3に示す。また、Fe77Al
2.14Ga0.868.454Si2.6なる組成で、種々の厚
さの急冷薄帯から得られた上記寸法形状の積層磁心につ
いて、薄帯の板厚と占積率との関係を図11に示す。占
積率の測定は、積層磁心の断面を顕微鏡にて観察するこ
とにより求めた。図11に示すように、占積率は板厚の
増加と共に向上し、100μmをこえると占積率が97
%以上とほぼ一定になる。本発明に係るFe基金属ガラ
ス合金からなる積層磁心は、薄帯の板厚が100μmを
超えたものであっても、上述のように軟磁気特性が劣化
することがないので、コアロスの小さい積層磁心が得ら
れる。一方、Fe78Si913なる従来公知のアモルフ
ァス合金は、板厚が20μm程度のものしか得られず、
占積率も87%と低い。従来のアモルファス合金は、過
冷却液体領域の温度幅ΔTxが小さいので、液体急冷法
により所定の組成の合金溶湯を急速冷却して薄帯を製造
する場合において、軟磁気特性を低下させないためには
薄帯の厚さを50μm以下にする必要があり、この板厚
を超えると軟磁気特性が劣化するので、占積率の増加と
軟磁気特性の向上を同時に実現することができず、コア
ロスの小さい積層磁心を得ることができなかった。
Fe 73 Al 5 Ga 2 P 11 C 5 B 4 having a thickness of 50 μm and Fe 72 having a thickness of 100 μm obtained as described above.
Al 5 Ga 2 P 10 C 6 B 4 Si 1 and Fe with a thickness of 200 μm
70 Al 5 Ga 2 P 9.65 C 5.75 B 4.6 Si 3 becomes occupied by these laminated cores with a laminated magnetic core prepared from the melt spun ribbons of composition
Table 3 shows the result of measuring the product ratio. In addition, Fe 77 Al
Fig. 11 shows the relationship between the strip thickness and the space factor for laminated magnetic cores of the above-mentioned size and shape obtained from quenched ribbons of various thicknesses with a composition of 2.14 Ga 0.86 P 8.4 C 5 B 4 Si 2.6 . Shown in. The space factor was measured by observing the cross section of the laminated magnetic core with a microscope. As shown in FIG. 11, the space factor increases with an increase in the plate thickness, and when it exceeds 100 μm, the space factor becomes 97.
It is almost constant at over%. Since the laminated magnetic core made of the Fe-based metallic glass alloy according to the present invention does not deteriorate the soft magnetic characteristics as described above even when the strip thickness exceeds 100 μm, the laminated core has a small core loss. The magnetic core is obtained. On the other hand, the conventionally known amorphous alloy of Fe 78 Si 9 B 13 can obtain only a plate thickness of about 20 μm,
The space factor is as low as 87%. Since the conventional amorphous alloy has a small temperature range ΔTx in the supercooled liquid region, in the case of rapidly cooling the molten alloy having a predetermined composition by the liquid quenching method to produce a ribbon, it is necessary to prevent the soft magnetic characteristics from deteriorating. It is necessary to set the thickness of the ribbon to 50 μm or less, and if the thickness exceeds this thickness, the soft magnetic characteristics deteriorate, so that it is not possible to increase the space factor and improve the soft magnetic characteristics at the same time. It was not possible to obtain a small laminated magnetic core.

【0042】[0042]

【表3】 [Table 3]

【0043】[0043]

【0044】更に、種々の板厚のFe73Al5Ga211
54、Fe77Al2.14Ga0.868.454Si2.6
る組成の合金薄帯と、Fe78Si913なる組成の合金
(比較例)とから作製した積層磁心について、コアロス
(W)、透磁率(μe(実数値))、保磁力(Hc)、飽
和磁束密度(Bs)の薄帯板厚の依存性を調査した。結
果を図12に示す。また、図13には、比較例としてケ
イ素鋼(Si6.5%)の薄帯からなる積層磁心を追加
した場合のコアロス(W)の板厚依存性の調査結果を示
す。図12において、飽和磁束密度(Bs)は、Fe77
Al2.14Ga0.868.454Si2.6なる組成の積層磁
心では、Fe78Si913なる組成の比較例の積層磁心
と、ほぼ同等の飽和磁束密度を示す。Fe73Al5Ga2
1154なる組成の積層磁心の飽和磁束密度が低いの
は、Feの濃度がやや低いためと推定される。保磁力に
関しては、実施例の積層磁心は板厚の依存性が見られな
いが、比較例のFe78Si913なる組成の積層磁心に
ついては、薄帯の板厚の増加と共に保磁力が増加し、軟
磁気特性が劣化していることがわかる。更に、透磁率
(実数値)については、実施例の積層磁心は薄帯の板厚
の増加によって透磁率(μe(実数値))がやや減少す
る。一方、比較例のFe78Si913なる組成の積層磁
心は、薄帯の板厚の増加に伴う透磁率(実数値)の劣化
が大きい。更に、コアロスに関しては、図12及び図1
において、比較例ののFe78Si913なる組成の積
層磁心は、薄帯の板厚が100μmを超えると急激にコ
アロスが増加することがわかる。また、もう1つの比較
例であるケイ素鋼からなる積層磁心は、コアロスの薄帯
板厚の依存性が見られず、ほぼ一定の値を示すが、実施
例の積層磁心よりもコアロスが大きい。
Further, Fe 73 Al 5 Ga 2 P 11 having various thicknesses is used.
The core loss of the laminated magnetic core prepared from the alloy ribbon of the composition C 5 B 4 , Fe 77 Al 2.14 Ga 0.86 P 8.4 C 5 B 4 Si 2.6, and the alloy of the composition Fe 78 Si 9 B 13 (comparative example) The dependence of (W), magnetic permeability (μ e (real value)), coercive force (H c ) and saturation magnetic flux density (B s ) on the thin strip thickness was investigated. Results are shown in FIG . Further, FIG. 13 shows the results of investigation of the thickness dependence of the core loss (W) when a laminated magnetic core made of silicon steel (Si 6.5%) ribbons is added as a comparative example. In FIG. 12 , the saturation magnetic flux density (B s ) is Fe 77
The laminated magnetic core having the composition of Al 2.14 Ga 0.86 P 8.4 C 5 B 4 Si 2.6 exhibits almost the same saturation magnetic flux density as the laminated magnetic core of the comparative example having the composition of Fe 78 Si 9 B 13 . Fe 73 Al 5 Ga 2
The low saturation magnetic flux density of the laminated magnetic core having the composition P 11 C 5 B 4 is presumed to be due to the slightly low concentration of Fe. Regarding the coercive force, the laminated magnetic core of the example does not show the dependency of the plate thickness, but the laminated magnetic core of the composition of Fe 78 Si 9 B 13 of the comparative example shows that the coercive force increases as the plate thickness of the ribbon increases. It can be seen that the soft magnetic properties are increased and the soft magnetic properties are deteriorated. Further, regarding the magnetic permeability (real value), in the laminated magnetic core of the embodiment, the magnetic permeability (μ e (real value)) is slightly decreased due to an increase in the plate thickness of the ribbon. On the other hand, in the laminated magnetic core having the composition of Fe 78 Si 9 B 13 of the comparative example, the magnetic permeability (real value) is greatly deteriorated with the increase of the strip thickness. Furthermore, regarding core loss, FIG. 12 and FIG.
3 , it can be seen that the core loss of the laminated magnetic core having the composition of Fe 78 Si 9 B 13 of the comparative example sharply increases when the plate thickness of the ribbon exceeds 100 μm. The laminated magnetic core made of silicon steel, which is another comparative example, shows a substantially constant value without showing the dependence of the core loss on the thin strip thickness, but has a larger core loss than the laminated magnetic core of the example.

【0045】このように、本発明に係るFe基金属ガラ
ス合金の過冷却領域の温度間隔が、従来のアモルファス
合金(Fe78Si913)よりも大きく、板厚が大きい
バルク状のものが得られるので、積層磁心の占積率を大
きくすることが可能となり、積層磁心のコアロスを小さ
くすることができる。
As described above, the Fe-based metallic glass alloy according to the present invention has a temperature interval in the supercooled region which is larger than that of the conventional amorphous alloy (Fe 78 Si 9 B 13 ) and has a large plate thickness. Since it is obtained, the space factor of the laminated magnetic core can be increased, and the core loss of the laminated magnetic core can be reduced.

【0046】なお、この発明は、以上の例によって何ら
限定されるものではなく、その組成、製造方法、熱処理
条件、形状等について様々な態様が可能であることは勿
論である。
The present invention is not limited to the above examples, and it is needless to say that the composition, the manufacturing method, the heat treatment conditions, the shape and the like can be variously modified.

【0047】[0047]

【発明の効果】以上、詳細に説明したように、本発明の
積層磁心は、ΔTx=Tx−Tg(ただしTxは結晶化開始
温度、Tgはガラス遷移温度を示す。)の式で表される
過冷却液体の温度間隔ΔTxが20K以上であるFe基
軟磁性金属ガラス合金の薄帯が、トロイダル状に巻回さ
れてなる磁心本体若しくは積層されてなる磁心本体を備
えているので、板厚の厚い薄帯から積層磁心を作成する
ことが可能となり、積層磁心の占積率を増加させること
ができるので、積層磁心の小型化を図ることができる。
また、比抵抗が大きいので、高周波帯域におけるコアロ
スを小さくできる。更に、液体急冷法のみならず、鋳造
法によっても上述のFe基軟磁性金属ガラス合金が得ら
れるので、積層磁心の製造コストを低くすることができ
る。
As described above in detail, in the laminated magnetic core of the present invention, ΔT x = T x −T g (where T x is the crystallization start temperature and T g is the glass transition temperature). A magnetic core body formed by winding a thin ribbon of a Fe-based soft magnetic metallic glass alloy having a temperature interval ΔT x of the supercooled liquid represented by the formula of 20 K or more in a toroidal shape or a laminated magnetic core body. Since it is possible to form the laminated magnetic core from the thin ribbon having a large plate thickness and the space factor of the laminated magnetic core can be increased, the laminated magnetic core can be downsized.
Further, since the specific resistance is large, the core loss in the high frequency band can be reduced. Furthermore, since the Fe-based soft magnetic metallic glass alloy described above can be obtained by the casting method as well as the liquid quenching method, the manufacturing cost of the laminated magnetic core can be reduced.

【0048】また、本発明のFe基軟磁性金属ガラス合
金は、Fe以外の他の金属元素と半金属元素とを含有し
てなり、特にSiを含有することにより、過冷却液体の
温度間隔ΔTxを大きくすることができるので、板厚の
厚い薄帯から積層磁心を作成することが可能となり、積
層磁心の占積率を向上させ、コアロスを小さくできる。
The Fe-based soft magnetic metallic glass alloy of the present invention contains a metal element other than Fe and a metalloid element, and in particular, by containing Si, the temperature interval ΔT of the supercooled liquid is increased. Since x can be increased, the laminated magnetic core can be formed from a thin ribbon having a large plate thickness, the space factor of the laminated magnetic core can be improved, and the core loss can be reduced.

【0049】また、本発明の積層磁心は、組成がそれぞ
れ原子%でAl:1〜10、Ga:0.5〜4、P:0
〜15、C:2〜7、B:2〜10、Fe:残部、若し
くは、Al:1〜10、Ga:0.5〜4、P:0〜1
5、C:2〜7、B:2〜10、Si:〜15、F
e:残部であり、透磁率が高く、保磁力が小さく、飽和
磁束密度が高く、軟磁気特性に優れたFe基金属ガラス
合金からなる磁心本体を備えているので、コアロスを小
さくすることができる。
The laminated magnetic core of the present invention has a composition of atomic% of Al: 1 to 10, Ga: 0.5 to 4, and P: 0.
-15, C: 2-7, B: 2-10, Fe: balance, or Al: 1-10, Ga: 0.5-4, P: 0-1
5, C: 2 to 7, B: 2 to 10, Si: 1 to 15, F
e: Remainder, high magnetic permeability, low coercive force, high saturation magnetic flux density, and a magnetic core body made of an Fe-based metallic glass alloy having excellent soft magnetic characteristics, so core loss can be reduced. .

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施の形態である積層磁心を示す分
解図である。
FIG. 1 is an exploded view showing a laminated magnetic core according to an embodiment of the present invention.

【図2】 本発明の実施の形態である積層磁心を示す分
解図である。
FIG. 2 is an exploded view showing a laminated magnetic core that is an embodiment of the present invention.

【図3】 飽和磁化と保磁力と透磁率の板厚依存性を示
す図である。
FIG. 3 is a diagram showing plate thickness dependence of saturation magnetization, coercive force, and magnetic permeability.

【図4】 図3に示す板厚依存性のデータの一部を抜粋
して示す図である。
FIG. 4 is a diagram showing an excerpt of part of the plate thickness dependence data shown in FIG. 3.

【図5】 組成の異なる各試料の飽和磁化と保磁力と透
磁率の板厚依存性を示す図である。
FIG. 5 is a diagram showing plate thickness dependence of saturation magnetization, coercive force, and magnetic permeability of samples having different compositions.

【図6】 組成の異なる試料の最大歪と板厚の関係を示
す図である。
FIG. 6 is a diagram showing a relationship between maximum strain and plate thickness of samples having different compositions.

【図7】 従来のFe基アモルファス合金と本発明に係
る組成の金属ガラス合金の比抵抗の板厚依存性を示す図
である。
FIG. 7 is a diagram showing plate thickness dependence of specific resistance of a conventional Fe-based amorphous alloy and a metallic glass alloy having a composition according to the present invention.

【図8】 飽和磁化と保磁力と透磁率のFe濃度依存性
を示す図である。
FIG. 8 is a diagram showing the Fe concentration dependence of saturation magnetization, coercive force, and magnetic permeability.

【図9】 Siを添加した試料における熱処理なしの場
合と熱処理後の飽和磁化と保磁力と透磁率の板厚依存性
を示す図である。
FIG. 9 is a diagram showing plate thickness dependence of saturation magnetization, coercive force, and magnetic permeability in a sample to which Si is added without heat treatment and after heat treatment.

【図10】 従来のFe基アモルファス合金と本発明に
係るSiを添加した金属ガラス合金の飽和磁化と保磁力
と透磁率の板厚依存性を示す図である。
FIG. 10 is a diagram showing plate thickness dependence of saturation magnetization, coercive force, and magnetic permeability of a conventional Fe-based amorphous alloy and a Si-added metallic glass alloy according to the present invention.

【図11】 本発明に係る金属ガラス合金の板厚と占積
率との関係を示す図である。
FIG. 11 is a diagram showing the relationship between the plate thickness and the space factor of the metallic glass alloy according to the present invention.

【図12】 本発明に係る金属ガラス合金の薄帯から作
製した積層磁心の飽和磁束密度、保磁力、透磁率及びコ
アロスと薄帯の板厚との関係を示す図である。
FIG. 12 is made from a ribbon of metallic glass alloy according to the present invention .
The saturation magnetic flux density, coercive force, permeability and
It is a figure which shows the relationship between Aros and the board thickness of a thin strip.

【図13】 本発明に係る金属ガラス合金の薄帯から作
製した積層磁心のコアロスと薄帯の板厚との関係を示す
図である。
FIG. 13: Made from ribbon of metallic glass alloy according to the invention
The relationship between the core loss of the manufactured laminated magnetic core and the thickness of the ribbon is shown.
It is a figure.

【符号の説明】[Explanation of symbols]

1 積層磁心 2 磁心本体収納ケース 3 薄帯 4 磁心本体 5 接着部材 1 laminated magnetic core 2 Magnetic core storage case 3 ribbon 4 Magnetic core body 5 Adhesive members

───────────────────────────────────────────────────── フロントページの続き (72)発明者 牧野 彰宏 東京都大田区雪谷大塚町1番7号 アル プス電気株式会社内 (72)発明者 井上 明久 宮城県仙台市青葉区川内元支倉35番地 川内住宅11−806 (56)参考文献 特開 平8−333660(JP,A) 特開 昭62−76607(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01F 1/12 - 1/38 H01F 27/24 - 27/26 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akihiro Makino 1-7 Yukiya Otsuka-cho, Ota-ku, Tokyo Alps Electric Co., Ltd. (72) Akihisa Inoue 35 Kawachi, Aoba-ku, Sendai-shi, Miyagi Kawauchi Kawauchi Housing 11-806 (56) Reference JP-A-8-333660 (JP, A) JP-A-62-76607 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01F 1 / 12-1/38 H01F 27/24-27/26

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ΔT=T−T(ただしTは結晶
化開始温度、Tはガラス遷移温度を示す。)の式で表
される過冷却液体の温度間隔ΔTが20K以上であ
り、比抵抗が1.5μΩm以上であり、下記の組成から
なるFe基軟磁性金属ガラス合金の薄帯が、トロイダル
状に巻回されてなる磁心本体を備えることを特徴とする
積層磁心。Al: 1原子%〜10原子% Ga: 0.5原子%〜4原子% P: 0原子%〜15原子% C: 2原子%〜 7原子% B: 2原子%〜10原子% Si: 1原子%〜15原子% Fe: 残部
1. The temperature interval ΔT x of the supercooled liquid represented by the formula ΔT x = T x −T g (where T x is the crystallization start temperature and T g is the glass transition temperature) is 20 K or more. , and the and the specific resistance of 1.5μΩm above, the following composition
Laminated magnetic core ribbons comprising Fe-based soft magnetic glassy alloy, characterized in that it comprises a magnetic core main body formed by winding in a toroidal shape. Al: 1 atomic% to 10 atomic% Ga: 0.5 atomic% to 4 atomic% P: 0 atomic% to 15 atomic% C: 2 atomic% to 7 atomic% B: 2 atomic% to 10 atomic% Si: 1 Atomic% to 15 atomic% Fe: balance
【請求項2】 請求項1に記載のFe基軟磁性金属ガラ
ス合金の薄帯が積層されてなる磁心本体を備えることを
特徴とする積層磁心。
2. A laminated magnetic core comprising a magnetic core main body formed by laminating thin ribbons of the Fe-based soft magnetic metallic glass alloy according to claim 1.
JP23158297A 1997-08-27 1997-08-27 Laminated core Expired - Lifetime JP3532390B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP23158297A JP3532390B2 (en) 1997-08-27 1997-08-27 Laminated core
EP98306529A EP0899754A1 (en) 1997-08-27 1998-08-17 Matgnetic core including Fe-based glassy alloy
KR1019980034623A KR100278372B1 (en) 1997-08-27 1998-08-26 The core of the glass with the FE-base metal glass alloy
TW087114082A TW388039B (en) 1997-08-27 1998-08-26 Magnetic core including Fe-based glassy alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23158297A JP3532390B2 (en) 1997-08-27 1997-08-27 Laminated core

Publications (2)

Publication Number Publication Date
JPH1174108A JPH1174108A (en) 1999-03-16
JP3532390B2 true JP3532390B2 (en) 2004-05-31

Family

ID=16925787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23158297A Expired - Lifetime JP3532390B2 (en) 1997-08-27 1997-08-27 Laminated core

Country Status (1)

Country Link
JP (1) JP3532390B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100494005B1 (en) * 2004-02-25 2005-06-10 주식회사 신텍 Method for disposal of waste material using movable trailer equipped multi-round separator and variable vibrating-hopper on the spot and apparatus thereof
JP5401523B2 (en) * 2011-09-28 2014-01-29 株式会社日立製作所 Magnetic core and molding method thereof

Also Published As

Publication number Publication date
JPH1174108A (en) 1999-03-16

Similar Documents

Publication Publication Date Title
TWI512767B (en) Ferromagnetic amorphous alloy ribbon with reduced surface protrusions, method of casting and application thereof
KR101162080B1 (en) Soft magnetic ribbon, magnetic core, magnetic part and process for producing soft magnetic ribbon
KR101113411B1 (en) Current transformer core and method for producing a current transformer core
JP2573606B2 (en) Magnetic core and manufacturing method thereof
GB1578654A (en) Magnetic devices including amorphous alloys
US6077367A (en) Method of production glassy alloy
JP2001508129A (en) Amorphous Fe-B-Si-C alloy with soft magnetic properties useful for low frequency applications
JPH07268566A (en) Production of fe-base soft-magnetic alloy and laminated magnetic core using the same
EP0072893A1 (en) Metallic glasses having a combination of high permeability, low coercivity, low AC core loss, low exciting power and high thermal stability
JP2552274B2 (en) Glassy alloy with perminer characteristics
KR100698606B1 (en) Magnetic glassy alloys for high frequency applications
KR100311922B1 (en) Bulk magnetic core and laminated magnetic core
KR102231316B1 (en) Fe-based alloy composition, soft magnetic material, magnetic member, electrical/electronic related parts and devices
CA1145162A (en) Iron-boron silicon ternary amorphous alloys
JP3532390B2 (en) Laminated core
KR100278372B1 (en) The core of the glass with the FE-base metal glass alloy
EP2320436A1 (en) Amorphous magnetic alloys, associated articles and methods
JP2721165B2 (en) Magnetic core for choke coil
JP2713373B2 (en) Magnetic core
JP2004519554A (en) Metallic glass alloys for electronic article surveillance
US4834814A (en) Metallic glasses having a combination of high permeability, low coercivity, low AC core loss, low exciting power and high thermal stability
JPH0917623A (en) Nano crystal alloy magnetic core and its manufacture
JP3709149B2 (en) Fe-based amorphous alloy ribbon with high magnetic flux density
JP3532392B2 (en) Bulk core
JP3532391B2 (en) Laminated core

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040303

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term