JP3531569B2 - Manufacturing method of electro-optical device - Google Patents

Manufacturing method of electro-optical device

Info

Publication number
JP3531569B2
JP3531569B2 JP2000069394A JP2000069394A JP3531569B2 JP 3531569 B2 JP3531569 B2 JP 3531569B2 JP 2000069394 A JP2000069394 A JP 2000069394A JP 2000069394 A JP2000069394 A JP 2000069394A JP 3531569 B2 JP3531569 B2 JP 3531569B2
Authority
JP
Japan
Prior art keywords
color
electro
optical device
reflectance
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000069394A
Other languages
Japanese (ja)
Other versions
JP2000310773A (en
Inventor
信也 百瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP5052567A external-priority patent/JPH06265879A/en
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2000069394A priority Critical patent/JP3531569B2/en
Publication of JP2000310773A publication Critical patent/JP2000310773A/en
Application granted granted Critical
Publication of JP3531569B2 publication Critical patent/JP3531569B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、カラー反射板に関
し、詳しくはカラー反射板と電極に関する。さらに、本
発明は、電気光学装置に関し、詳しくはカラー反射板を
有する電気光学装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a color reflector, and more particularly to a color reflector and an electrode. Furthermore, the present invention relates to an electro-optical device, and more particularly to an electro-optical device having a color reflector.

【0002】[0002]

【従来の技術】従来、カラーフィルター上に透明電極を
形成する方法として特開昭61−233720号公報,
特開昭61−260224号公報や特開昭61−198
131号公報、又は特開昭62−153826号公報の
様にカラーフィルター及び、保護層等の形状、材質につ
いて提案されている。また、特開昭62−121701
号公報にて提案されている高表示容量対応可能な電気光
学装置(以下、NTNという)と上記カラーフィルター
形成方法とを組合せセルを形成する方法が提案されてい
る。又、特開昭64−50019号公報にて赤(以下R
という),緑(以下Gという),青(以下Bという)の
3色の光を主として透過するカラーフィルターを有した
カラー液晶表示装置の各カラーフィルターの各色に応じ
て液晶層の厚みを変化させる方法が提案されている。
2. Description of the Related Art Conventionally, a method for forming a transparent electrode on a color filter is disclosed in Japanese Patent Laid-Open No. 233720/1986.
JP-A-61-260224 and JP-A-61-198.
No. 131 or JP-A-62-153826, the shapes and materials of the color filter and the protective layer are proposed. Also, Japanese Patent Laid-Open No. 62-121701
There has been proposed a method of forming a cell by combining an electro-optical device (hereinafter referred to as NTN) capable of supporting a high display capacity proposed in Japanese Patent Publication and the above color filter forming method. In addition, red (hereinafter R
The thickness of the liquid crystal layer is changed according to each color of each color filter of the color liquid crystal display device having a color filter that mainly transmits light of three colors, green (hereinafter referred to as G) and blue (hereinafter referred to as B). A method has been proposed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前述の
従来技術では、カラーフィルター上に透明電極を形成す
る方法については、その平坦化、耐熱性等の問題から、
セルギャップムラによる表示ムラや表示電極例えばIT
Oの比抵抗が大きいことによる電気光学特性の低下等に
対する特性改善が検討されているが、白黒性と明るさの
要求される反射型パネルにおいては実用レベルのものは
ない。前記反射型パネルに光学補償層として液晶セルを
用いたもの、或いは、光学補償フィルムを用いたものを
応用すれば表示容量が大きく白黒表示可能なカラー電気
光学装置が提供できる可能性があるが、NTNの場合図
7の分光反射率カーブに示す様に、分光反射率曲線は低
い電圧10V〜60Vに於いては短波長側が良く反射
し、電圧を上げるに従い、反射率の高い波長が長波長側
へ移行する為、NTNにR,G,B3色一体のカラー反
射板を組み合わせた場合、3色のカラーフィルターを同
時に駆動させ白表示をさせた時、電気光学装置を通過し
反射する光は、低い電圧でBの反射率が高く、電圧を上
げるに従いR,Gの反射率が上がり、Bの反射率が下が
り、全体として青味がかった色から黄色味がかった色へ
と動き、色バランスが良くないという問題を有してい
る。
However, in the above-mentioned prior art, the method of forming the transparent electrode on the color filter has the following problems due to its flatness and heat resistance.
Display unevenness due to cell gap unevenness and display electrodes such as IT
Although the improvement of the characteristics against the deterioration of the electro-optical characteristics due to the large specific resistance of O has been studied, there is no practical type in the reflection type panel which requires black and white and brightness. If a liquid crystal cell is used as the optical compensation layer in the reflective panel, or if an optical compensation film is used, it is possible to provide a color electro-optical device having a large display capacity and capable of displaying in black and white. In the case of NTN, as shown in the spectral reflectance curve of FIG. 7, the spectral reflectance curve is well reflected on the short wavelength side at a low voltage of 10V to 60V, and as the voltage is increased, the wavelength of high reflectance is on the long wavelength side. In order to move to NTN, when combining a color reflector of R, G, B three colors integrated, when the three color filters are driven simultaneously and white display is performed, the light passing through the electro-optical device and reflected is The reflectance of B is high at a low voltage, the reflectances of R and G increase as the voltage increases, and the reflectance of B decreases, moving from a bluish color to a yellowish color as a whole, and the color balance is well There is a problem that had.

【0004】また、全体の光の反射率が低下しR,G,
B各々のカラーフィルター層の厚みを変化させ、該各々
のカラーフィルター上の実効液晶層の厚みを制御して、
液晶層のシャッター性を制御する方法が提案されている
が、カラーフィルター層の厚みを常に同じ膜厚差で制御
する事は難しく、又、特にNTN、FTNの様に液晶の
ねじれ角を大きくして、光学的な応答の急峻性を上げる
場合該液晶層の配向安定性が各カラーフィルターにより
液晶層厚が異なり確保する事が難しいという問題も有し
ている。
Further, the reflectance of the whole light is lowered, and R, G,
B By changing the thickness of each color filter layer and controlling the thickness of the effective liquid crystal layer on each color filter,
Although a method of controlling the shutter property of the liquid crystal layer has been proposed, it is difficult to always control the thickness of the color filter layer with the same film thickness difference. In particular, it is necessary to increase the twist angle of the liquid crystal like NTN and FTN. In addition, there is also a problem that it is difficult to secure the alignment stability of the liquid crystal layer when the liquid crystal layer thickness is different depending on each color filter when the steepness of the optical response is increased.

【0005】そこで、本発明は上記問題を解決するもの
で、その目的とする所は、明るく白、黒レベルの再現性
が良い高品位のカラー表示可能な反射型電気光学装置を
容易に、安価に提供する事に有る。
Therefore, the present invention solves the above problems, and an object of the present invention is to provide a reflective electro-optical device capable of high-quality color display with good reproducibility of bright white and black levels easily and inexpensively. To provide to.

【0006】[0006]

【課題を解決するための手段】本発明の電気光学装置の
製造方法は、反射層が設けられた基板を有する電気光学
装置の製造方法において、前記反射層に3種類の電界を
かけて前記反射層上に3色の着色層を設ける工程と、前
記着色層上に電極を設ける工程と、を有することを特徴
とする。
According to the method of manufacturing an electro-optical device of the present invention, in the method of manufacturing an electro-optical device having a substrate provided with a reflective layer, the reflective layer is applied with three kinds of electric fields. The method includes the step of providing colored layers of three colors on the layer and the step of providing electrodes on the colored layer.

【0007】本発明の電気光学装置の製造方法は、反射
層が設けられた基板を有する電気光学装置の製造方法に
おいて、3種類の電解浴中で前記反射層に電界をかけて
前記反射層上に金属、無機物、有機物質の積層からなる
3色の着色層を設ける工程と、前記着色層上に電極を設
ける工程と、を有することを特徴とする。
The method of manufacturing an electro-optical device according to the present invention is the method of manufacturing an electro-optical device having a substrate provided with a reflective layer, wherein an electric field is applied to the reflective layer in three types of electrolytic baths to form a layer on the reflective layer. And a step of providing a colored layer of three colors formed by stacking a metal, an inorganic substance, and an organic substance, and a step of providing an electrode on the colored layer.

【0008】本発明の電気光学装置の製造方法は、前記
着色層を設ける工程の後に、隣り合う前記着色層の間に
微粒子化した酸化金属を析出させてブラックマスクを設
ける工程を更に有することを特徴とする。
The method for manufacturing an electro-optical device according to the present invention further comprises, after the step of providing the colored layer, a step of depositing finely divided metal oxide between the adjacent colored layers to provide a black mask. Characterize.

【0009】本発明の電気光学装置の製造方法は、前記
着色層を設ける工程の後に、ポリシングして平坦化する
工程を更に有することを特徴とする。
The method for manufacturing an electro-optical device of the present invention is characterized by further including a step of polishing and planarizing after the step of providing the colored layer.

【0010】本発明の電気光学装置の製造方法は、前記
着色層を設ける工程の後に、前記着色層が設けられた前
記反射層を陽極酸化による絶縁化処理によって低反射部
分を形成する工程を更に有することを特徴とする。ま
た、本発明の電気光学装置の製造方法は、前記着色層を
設ける工程において、電解電圧を変えることにより前記
着色層の膜厚を制御することを特徴とする。
In the method for manufacturing an electro-optical device of the present invention, after the step of providing the colored layer, a step of forming a low reflection portion by an insulating treatment by anodizing the reflective layer provided with the colored layer is further provided. It is characterized by having. Further, the manufacturing method of the electro-optical device of the present invention is characterized in that, in the step of providing the colored layer, the film thickness of the colored layer is controlled by changing the electrolytic voltage.

【0011】[0011]

【発明の実施の形態】以下、本発明を実施例に基づき、
より詳細に説明する。尚、本発明の電気光学装置として
は、従来より用いられている周知の配向処理によるねじ
れ配向されるものばかりでなく基板と平行に配向(ねじ
れていない)するものでも適用できるので以下に述べる
実施例に限定されるものではない。更に、ねじれ配向さ
せる場合には、そのねじれ角に制限があるわけではない
が、コントラスト、表示特性、製造上の安定性から90
゜〜360゜が望ましい。しかし、ねじれ角に制限があ
るわけではないので90゜未満や360゜以上でも適用
は可能である。又、図1では光学的異方体として液晶セ
ル3を用いて調光用セル(以下Aセル)4の上方に配置
している。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described based on Examples.
This will be described in more detail. As the electro-optical device of the present invention, not only those which are twisted and aligned by a well-known conventional alignment treatment but also those which are aligned (not twisted) in parallel with the substrate are applicable. It is not limited to the example. Furthermore, in the case of twist orientation, the twist angle is not limited, but it is 90% from the viewpoint of contrast, display characteristics and manufacturing stability.
Degrees of 360 to 360 are desirable. However, since the twist angle is not limited, it can be applied at less than 90 ° or at 360 ° or more. Further, in FIG. 1, a liquid crystal cell 3 is used as an optically anisotropic body and is arranged above a light control cell (hereinafter referred to as A cell) 4.

【0012】本実施例に用いた電気光学装置の構造を図
1を用いて説明する。図1に示した様にカラー反射板を
内部に有しセル厚7μmで左ツイスト230゜と設定し
てAセル4とし、本実施例では光学的異方体としてAセ
ル4と同じ複屈折性(セルギャップ:dと液晶もしくは
光学的異方体の屈折率異方性:△nの積 △n×d=
0.9、△n=0.129)を持ちAセル4を光学的に
補償出来る様に液晶セル3を偏光体1,2の間に設置し
た。本実施例では液晶セル3は△n×d=0.9として
d=8μm,△n=0.113とした。ここで、Aセル
4と液晶セル3の相接する面の配向方向のなす角は70
゜〜110゜の範囲が望ましく、更に望ましくは90゜
である。本実施例では90゜とした。又、各々の偏光体
の偏光軸とAセル4、液晶セル3各々の相接する面側の
配向方向のなす角を20〜50゜で振り本実施例で用い
ている複屈折性と屈折率分散の値では非点灯時に黒く全
点灯時に白となる条件は45゜である。但し配向方向に
対して偏光軸が電気光学装置の上からみて右か左かはポ
ジかネガかの相違であり本実施例ではネガとなるように
した。しかし、上述した様に光学的異方体としてはAセ
ルと同じ複屈折性を有しておれば同様の効果があり、例
えばポリビニルアルコールやポリカーボネート等の延伸
した高分子フィルムを用いても良く、制約はされない。
The structure of the electro-optical device used in this embodiment will be described with reference to FIG. As shown in FIG. 1, with a color reflector inside, a cell thickness of 7 μm and a left twist of 230 ° were set as A cell 4, and in the present embodiment, the same birefringence as A cell 4 was used as an optically anisotropic body. (Cell gap: product of d and refractive index anisotropy of liquid crystal or optically anisotropic substance: Δn Δn × d =
0.9, Δn = 0.129), and the liquid crystal cell 3 was installed between the polarizers 1 and 2 so that the A cell 4 can be optically compensated. In this embodiment, the liquid crystal cell 3 has Δn × d = 0.9, d = 8 μm, and Δn = 0.113. Here, the angle formed by the orientation directions of the surfaces where the A cell 4 and the liquid crystal cell 3 are in contact with each other is 70
The range is preferably in the range of 90 ° to 110 °, more preferably 90 °. In this embodiment, the angle is 90 °. Further, the angle formed between the polarization axis of each polarizer and the orientation direction on the side where the A cell 4 and the liquid crystal cell 3 are in contact with each other is set to 20 to 50 °, and the birefringence and the refractive index used in this example are adjusted. With respect to the dispersion value, the condition for black when not lit and white when all lit is 45 °. However, whether the polarization axis is right or left when viewed from the top of the electro-optical device with respect to the alignment direction is positive or negative, and in this embodiment, it is made negative. However, as described above, the optically anisotropic body has the same effect as long as it has the same birefringence as that of the A cell. For example, a stretched polymer film such as polyvinyl alcohol or polycarbonate may be used, There are no restrictions.

【0013】又、本発明に於いてはカラー反射板の光学
特性が重要であり、B、G、Rの各々の色座標が広いこ
とが色再現性に対して良い事は言うまでもないが、一般
的にカラー反射板の色純度(彩度)と反射率(明度)は
金属電着法を用いた場合、数種類の金属を析出して形成
するため、金属化合物自体と電着条件の選択幅が狭く、
析出金属の粒子サイズの粒度分布に起因する。すなわ
ち、粒度分布がシャープで、ある一定サイズの粒子がそ
ろっていれば、一定波長の光を吸収又は散乱して原色に
近い色を与え、逆に粒度分布がブロードであると、くす
んだ色やブロンズ系の色になりやすい。そして本方法の
場合は、色純度と反射率の関係は、逆の関係となる。よ
って、色純度を大幅に悪くさせない範囲で反射率を上げ
る事が望ましい。そこで、色純度と反射率の関係より、
Bに於いては反射率最大値はカラー反射板単体で100
0〜3000オングストローム時に80%以上とし、反
射率はこの範囲内で制御する事が望ましい。又、各々の
カラー反射板の反射率最大値の比が1.8以内更に望ま
しくは1.5以内に有るとより白色の再現性が良い事よ
り各々のカラー反射板の反射率最大値の比を本実施例で
は1.5以内に設定した。以下実施例に於いてはこの関
係に従った例を用いて説明する。尚、反射率最大値の比
がずれると、色バランスが崩れ、反射率の大きな色側に
全体の白色がずれる事となる。次に、反射率最大波長の
関係を説明する。前記液晶セル条件に於いてスタティッ
ク電圧印加時のカラー反射板が無い場合の分光特性を図
7に示す。但し、図中の数字は光学的応答が完全に飽和
した時を100とし以下100に対して応答が何%にな
っているかを示す。又R、G,Bの各々の反射率最大値
の波長をずらして形成した場合の分光特性を図8に示
す。液晶セルや延伸した高分子フィルムを光学的異方体
として用いた場合、図7より印加される電圧が高くなる
と段々長波長側へ分光反射率曲線が移行する事が分か
る。そこで、図8に示したGとBの反射率最大波長が各
々490nmと520nmのときの値より、GとBの最
大反射率波長が近いと、Bが多く抜け、Gの反射率最大
波長より短波長側の分光反射率と重なり合い短波長側が
抜け青味が強く成る事が容易に理解出来る。又図2に示
したGとBの反射率最大波長が各々450nmと540
nmのときの値より、GとBの最大反射率波長が離れる
程液晶の光学特性とカラー反射板の分光特性を掛け合わ
せた時の全体の分光特性でR,G,Bの3原色が分離さ
れ、きれいな加法混色関係が成立する。本実施例に於い
ては、Bの最大反射率波長を480nm以下、更に望ま
しくは465nm以下にし、Gの最大透過率波長を53
0nm以上、更に望ましくは540nmから560nm
の間に設定した。
In the present invention, the optical characteristics of the color reflector are important, and it goes without saying that wide color coordinates of B, G and R are good for color reproducibility. When the metal electrodeposition method is used, the color purity (saturation) and reflectance (brightness) of the color reflector are generally formed by depositing several kinds of metals, so the selection range of the metal compound itself and the electrodeposition conditions is limited. Narrow,
This is due to the particle size distribution of the particle size of the deposited metal. That is, if the particle size distribution is sharp and particles of a certain fixed size are lined up, light of a constant wavelength is absorbed or scattered to give a color close to the primary color. Conversely, if the particle size distribution is broad, a dull color or It tends to be a bronze color. In the case of this method, the relationship between color purity and reflectance is the opposite relationship. Therefore, it is desirable to increase the reflectance within a range that does not significantly deteriorate the color purity. Therefore, from the relationship between color purity and reflectance,
In B, the maximum reflectance is 100 with the color reflector alone.
It is desirable that the reflectance is 80% or more at 0 to 3000 angstroms, and the reflectance is controlled within this range. Further, the ratio of the maximum reflectance of each color reflector is within 1.8, and more preferably within 1.5, the white reproducibility is better. Was set within 1.5 in this example. In the following embodiments, an example according to this relationship will be described. It should be noted that if the ratio of the maximum reflectance values deviates, the color balance is lost, and the entire white color shifts to the color side with the higher reflectance. Next, the relationship of the maximum reflectance wavelength will be described. FIG. 7 shows the spectral characteristics under the above liquid crystal cell conditions when a static voltage is applied and there is no color reflector. However, the numbers in the figure show 100% when the optical response is completely saturated, and show what percentage the response is to 100 below. FIG. 8 shows the spectral characteristics when the wavelengths of the maximum reflectance values of R, G, and B are shifted and formed. When a liquid crystal cell or a stretched polymer film is used as an optically anisotropic body, it can be seen from FIG. 7 that the spectral reflectance curve gradually shifts to the long wavelength side as the applied voltage increases. Therefore, when the maximum reflectance wavelengths of G and B shown in FIG. 8 are closer to the maximum reflectance wavelengths of G and B than the values when the maximum reflectance wavelengths of G and B are 490 nm and 520 nm, respectively, more B is omitted, and It can be easily understood that the spectral reflectance on the short wavelength side overlaps with that on the short wavelength side and the bluish color becomes stronger. Also, the maximum reflectance wavelengths of G and B shown in FIG. 2 are 450 nm and 540, respectively.
The three primary colors R, G, and B are separated by the total spectral characteristics when the optical characteristics of the liquid crystal and the spectral characteristics of the color reflection plate are multiplied as the maximum reflectance wavelengths of G and B become more distant from the value in nm. Therefore, a beautiful additive color mixture relationship is established. In this embodiment, the maximum reflectance wavelength of B is 480 nm or less, more preferably 465 nm or less, and the maximum transmittance wavelength of G is 53.
0 nm or more, more preferably 540 nm to 560 nm
Set between.

【0014】〔実施例1〕 図3を用いて説明する。ガラス基板5上にR、G、Bの
各々に電解着色する金属化合物を溶解させた電解浴を電
解着色法により110μm幅でストライプ状に着色して
反射層6および着色層7を形成した。(ここで、反射層
6と着色層7を総称してカラー反射板という)。この際
カラー反射板は各々隣合う3色ストライプでその間にブ
ラックマスク8が0.1〜10μmとなるように微粒子
化した酸化金属を析出してブラックマスク8とする。ま
た、電極の抵抗を下げるために本金属カラー反射板とI
TO電極とコンタクトをとる場合は、カラー反射板の3
色ストライプ間に微粒子化した金属の酸化化合物を析出
させて絶縁性のあるブラックマスクの替わりとし、カラ
ー反射板の各々隣合う部分での色抜けを防止した。次
に、図4を用いて本実施例の電気光学装置の構造を説明
する。上記ガラス基板3のカラー反射板の上に透明絶縁
膜を形成し、その上に3色ストライプに沿ってITO電
極を形成する。そして、ガラス基板5上にITOにてマ
トリックス状に成るように透明電極9を形成する。この
後ポリイミドを用いて配向膜11を300〜400オン
グストロームで各々形成した。この時カラー反射板のあ
るガラス基板5の配向剤はシ−ル13の下より0.8m
m内側まで形成した後、ギャップ材12を介して液晶を
封入した。本実施例に於いては上記で説明した透明電極
を含む基板としての各色の反射率及び、反射率最大波長
を、Rは反射率70%、反射率最大波長は620nm、
Gは反射率60%、反射率最大波長は540nm、Bは
反射率55%、反射率最大波長は450nmとした。こ
の様にして形成した電気光学装置の光学特性を1/40
0デューティー相当の矩形波を印加してその時の分光反
射率を使って調べた所、図2で示したと同様な良好な3
原色混色関係が得られた。又、実際に、時分割駆動波形
を印加し、サイド光源として輝度1600nit、色座
標(x,y)=(0.320,0.336)の3波長形
冷陰極管を用いて駆動した所駆動範囲内で平均化して良
い白色の状態となり、特に点灯波形と非点灯波形印加時
の反射率比(以下コントラストという)最大の時の電気
光学装置表面ではコントラスト8.3、表面輝度52n
it、(x,y)=(0.321,0.325)と非常
に良い結果を得る事が出来、高品位の電気光学装置を形
成できた。
Example 1 will be described with reference to FIG. On the glass substrate 5, an electrolytic bath in which a metal compound for electrolytically coloring R, G, and B was dissolved was colored in a stripe shape with a width of 110 μm by the electrolytic coloring method to form the reflective layer 6 and the colored layer 7. (Here, the reflective layer 6 and the colored layer 7 are collectively referred to as a color reflective plate). At this time, the color reflectors are made up of adjacent three-color stripes, and the black mask 8 is formed by depositing finely divided metal oxide so that the black mask 8 has a thickness of 0.1 to 10 μm. In addition, in order to reduce the resistance of the electrode, the metal color reflector and I
To make contact with the TO electrode, use the color reflector 3
A finely divided metal oxide compound was deposited between the color stripes to replace the black mask having an insulating property to prevent color loss in adjacent portions of the color reflector. Next, the structure of the electro-optical device according to the present embodiment will be described with reference to FIG. A transparent insulating film is formed on the color reflector of the glass substrate 3, and an ITO electrode is formed on the transparent insulating film along the three-color stripe. Then, the transparent electrodes 9 are formed of ITO on the glass substrate 5 so as to form a matrix. After that, an alignment film 11 was formed in a thickness of 300 to 400 angstroms using polyimide. At this time, the orientation agent of the glass substrate 5 having the color reflector is 0.8 m below the seal 13.
After being formed to the inner side of m, liquid crystal was sealed via the gap material 12. In this embodiment, the reflectance and maximum reflectance wavelength of each color as the substrate including the transparent electrode described above are as follows: R is 70% reflectance, maximum reflectance wavelength is 620 nm,
G had a reflectance of 60% and a maximum reflectance wavelength of 540 nm, and B had a reflectance of 55% and a maximum reflectance wavelength of 450 nm. The optical characteristic of the electro-optical device formed in this way is 1/40
When a rectangular wave corresponding to 0 duty was applied and the spectral reflectance at that time was examined, it was found that a good 3 value similar to that shown in FIG.
A primary color mixture relationship was obtained. In addition, driving was actually performed by applying a time-division drive waveform and using a three-wavelength cold cathode tube with a luminance of 1600 nit and color coordinates (x, y) = (0.320, 0.336) as a side light source. A white state that can be averaged within the range is obtained. Particularly, the contrast is 8.3 and the surface brightness is 52n on the surface of the electro-optical device when the reflectance ratio (hereinafter referred to as contrast) when the lighting waveform and the non-lighting waveform are applied is maximum.
It, (x, y) = (0.321, 0.325) was obtained, which was a very good result, and a high-quality electro-optical device could be formed.

【0015】〔実施例2〕 図5、図6を用いて説明する。図5に本実施例のカラー
反射板付き基板の断面図を示す。ガラス基板5上に実施
例1と同様に電解着色法により着色層7をストライプ状
に電解着色後ポリシングしてカラー反射板を平坦化して
形成した。この時カラーストライプは100μm幅と
し、ストライプ間はポリシング後10μmに成るように
設定した。本実施例に於いては上記で説明した透明電極
9を含む基板としての各色の反射率及び反射率最大波長
は、Rは反射率75%、反射率最大波長は620nm、
Gは反射率60%、反射率最大波長は540nm、Bは
反射率60%、反射率最大波長は460nmとした。そ
の後、図6に示す様に実施例1と同様に電気光学装置を
形成した所同様に良好な結果を得る事が出来た。尚、本
方法においてカラーストライプ部分をフォトレジストで
被い陽極酸化処理を施すことにより低反射部分のみを絶
縁処理化することにより、樹脂材料による絶縁層を設け
る必要はないので工程の短縮ができ色純度と反射率が大
幅に改善された。
[Second Embodiment] A second embodiment will be described with reference to FIGS. FIG. 5 shows a sectional view of a substrate with a color reflector according to this embodiment. On the glass substrate 5, the colored layer 7 was electrolytically colored into stripes by the electrolytic coloring method in the same manner as in Example 1 and then polished to form a flat color reflector. At this time, the color stripes had a width of 100 μm, and the distance between the stripes was set to 10 μm after polishing. In the present embodiment, the reflectance and maximum reflectance wavelength of each color as the substrate including the transparent electrode 9 described above are as follows: R is 75% reflectance, maximum reflectance wavelength is 620 nm,
G had a reflectance of 60% and a maximum reflectance wavelength of 540 nm, and B had a reflectance of 60% and a maximum reflectance wavelength of 460 nm. After that, as shown in FIG. 6, when an electro-optical device was formed in the same manner as in Example 1, the same good result could be obtained. In this method, the color stripe portion is covered with a photoresist and subjected to anodizing treatment so that only the low reflection portion is subjected to an insulation treatment, so that it is not necessary to provide an insulating layer made of a resin material, so that the process can be shortened. Greatly improved purity and reflectivity.

【0016】〔実施例3〕 図5,6を用いてカラー反射板の製造方法について説明
する。図5に本実施例のカラー反射板付き基板の断面図
を示す。ガラス基板5上に少なくとも一層以上のアルミ
を真空めっきにて表面の全反射率90%以上且つ反射率
85%以上に形成したのち、マイクロポーラス層のでき
る溶液中で陽極酸化を行なった。次に、金属イオンを含
む溶液中たとえば、リン酸にSnS04を加えた浴で
青、MnSO4とFeSO4で赤、硫酸浴にCuSO4
加え2次電解することにより緑の発色をおこなった。或
いは、リン酸浴と硫酸浴にNi(CH3COO)2の場合
は、3種類の電界をかけることにより3色の発色をおこ
なった。或いは、3種類の浴槽にて2次電解を行う場合
は、金属塩の状態だけでなく、無機物、有機物質の各々
3種類の積層を形成し、発色をおこなった。このガラス
基板5上に実施例2と同様にカラー反射板をストライプ
状に電解着色後ポリシングしてカラー反射板を平坦化し
て形成した。この時カラーストライプは実施例2と同じ
に設定した。本実施例の特徴は、反射率が高く比抵抗の
低いアルミをカラー反射板に用いることにより、反射層
と電極とを兼ねることができ、しかも低反射部分を長時
間陽極酸化する事により絶縁性と反射率を3%以下にす
ることにより色ぬけ部分をなくした。実施例2のように
オーバーコートとITO膜がいらなくなったことによ
り、カラー反射板の構造が簡便になると共にオーバーコ
ートとITO膜があることにより発生していたアルカリ
ダメージ、ITOの密着不良等の不良項目がなくなり大
幅な歩留まり向上がはかれた。また、工程が減ることに
より生産性の向上とコストダウンがはかれた。
Example 3 A method of manufacturing a color reflector will be described with reference to FIGS. FIG. 5 shows a sectional view of a substrate with a color reflector according to this embodiment. At least one layer of aluminum was vacuum-plated on the glass substrate 5 to form a surface having a total reflectance of 90% or more and a reflectance of 85% or more, and then anodized in a solution capable of forming a microporous layer. Next, a solution containing metal ions for example, blue in the bath plus SnS0 4 phosphate, red MnSO 4 and FeSO 4, was subjected to green color by the secondary electrolysis added CuSO 4 in sulfuric acid bath . Alternatively, in the case of Ni (CH 3 COO) 2 in the phosphoric acid bath and the sulfuric acid bath, three kinds of electric fields were applied to develop three colors. Alternatively, when the secondary electrolysis is performed in three types of baths, not only the state of the metal salt, but also three types of each of the inorganic substance and the organic substance are laminated to develop the color. On this glass substrate 5, a color reflection plate was formed by electrolytically coloring the color reflection plate into stripes and polishing the flatness of the color reflection plate in the same manner as in Example 2. At this time, the color stripe was set to be the same as in Example 2. The feature of this embodiment is that by using aluminum, which has a high reflectance and a low specific resistance, as a color reflector, it is possible to serve as a reflection layer and an electrode. By removing the reflectance to 3% or less, the color loss part was eliminated. Since the overcoat and the ITO film are not required as in Example 2, the structure of the color reflection plate is simplified, and the alkali damage, the poor adhesion of the ITO, etc., which are caused by the presence of the overcoat and the ITO film. There were no defective items, and the yield was greatly improved. Moreover, productivity was improved and cost was reduced by reducing the number of steps.

【0017】〔実施例4〕 図3、4を用い実施例1で示した電気光学装置で説明す
る。実施例1、2、3で述べて来た様に本発明では、本
来光学的異方体として液晶セルや延伸した高分子フィル
ムを用いた電気光学装置の場合、上述したように、印加
される電圧により分光反射率曲線が低い電圧に於いては
短波長側が良く反射し、電圧を上げるに従い、反射率の
高い波長が長波長側へ移行する。したがって、該電気光
学装置にR,G,B3色のカラー反射板を組み合わせた
場合、3色のカラー反射板上の液晶層を同時に駆動させ
白表示をさせた時、電気光学装置を反射する光は、低い
電圧でBの反射率が高く、電圧を上げるに従いR,Gの
反射率が上がり、Bの反射率が下がり、全体として青味
がかった色から黄色味がかった色へと移行する事を考慮
し、カラー反射板とサイド光源の合わさった分光曲線と
して該カラー反射板の分光特性を制御し上記特性を補正
する考え方である。しかし、より光学的な配色を制御す
るには、カラー反射板間の液晶部を光学的無反射部分と
捉えると、液晶層の厚みが理想的に同一なら、先にBの
反射率が他色より少なく反射し、結果的にBの液晶シャ
ッターが遅く開くと同じ光学的挙動になるため、該B上
の液晶部のセル厚をG,Rに対して厚くし、液晶層にか
かる電界強度を他色に対して相対的に低くする事により
意図的にB部のシャッターを電圧に対して速くし、光学
的しきい値を合わせる事は効果がある。そこで、実施例
1で述べたカラー反射板を用いBの膜厚が他色の1.5
μmより0.05〜0.1μm薄く設定して分光反射率
は合わせ、透明電極6を含む基板としての各色の反射率
及び、反射率最大波長を、Rは反射率70%、反射率最
大波長は620nm、Gは反射率60%、反射率最大波
長は540nm、Bは反射率65%、反射率最大波長は
450nmとした。この様にして作成したカラー反射板
付き基板を用いて実施例1と同様に電気光学装置を作成
した所、Bと他色の光学的しきい値の揃った特性を持
ち、且つRの抜けに対してBが低電圧側でも揃った白レ
ベルの良い電気光学装置を作成出来た。
Example 4 An electro-optical device shown in Example 1 will be described with reference to FIGS. As described in Examples 1, 2, and 3, in the present invention, in the case of an electro-optical device that originally uses a liquid crystal cell or a stretched polymer film as an optically anisotropic body, the voltage is applied as described above. When the voltage has a low spectral reflectance curve, the short wavelength side is well reflected, and as the voltage is increased, the wavelength with high reflectance shifts to the long wavelength side. Therefore, when the electro-optical device is combined with R, G, and B color reflectors, the light reflected by the electro-optical device when the liquid crystal layers on the tri-color reflectors are simultaneously driven to display white. Indicates that the reflectance of B is high at a low voltage, the reflectances of R and G increase and the reflectance of B decreases as the voltage increases, and the overall bluish color changes to a yellowish color. In consideration of the above, the concept is to control the spectral characteristics of the color reflector by correcting the characteristics as a spectral curve in which the color reflector and the side light source are combined. However, in order to further control the optical color arrangement, if the liquid crystal portion between the color reflectors is regarded as an optically non-reflecting portion, if the thickness of the liquid crystal layer is ideally the same, the reflectance of B is different from that of other colors. Since the liquid crystal shutter reflects less, and consequently the liquid crystal shutter of B opens slowly, the same optical behavior is obtained. Therefore, the cell thickness of the liquid crystal portion on B is made thicker than G and R, and the electric field strength applied to the liquid crystal layer is It is effective to intentionally increase the shutter speed of the section B with respect to the voltage by setting the optical threshold value relatively lower than the other colors. Therefore, using the color reflection plate described in Embodiment 1, the thickness of B is 1.5 for other colors.
The spectral reflectance is set to be 0.05 to 0.1 μm thinner than μm, the reflectance of each color as the substrate including the transparent electrode 6 and the maximum reflectance wavelength, and R is 70% reflectance and the maximum reflectance wavelength. Is 620 nm, G is 60% reflectance, the maximum reflectance wavelength is 540 nm, B is 65% reflectance, and the maximum reflectance wavelength is 450 nm. When an electro-optical device was produced in the same manner as in Example 1 using the substrate with a color reflection plate produced in this way, it had characteristics that the optical threshold values of B and other colors were uniform, and that R was missing. On the other hand, it was possible to create an electro-optical device having a good white level in which B was even on the low voltage side.

【0018】以上実施例1、2と実施例3を例に説明し
てきたが、カラー反射板の分光特性を揃え、且つ加えて
該カラー反射板の膜厚を、電解電圧を5V,15V,6
5V,等に変えることにより制御し液晶のシャッター特
性と合わせる事より、更に高画質の電気光学装置を得る
事ができる。この時カラー反射板の膜厚は金属イオン濃
度や金属の粒径と形成条件と深い相関が有るため再現性
よく形成工程を管理することが重要である。
Although the first and second embodiments and the third embodiment have been described above as examples, the spectral characteristics of the color reflection plate are made uniform, and in addition, the film thickness of the color reflection plate is set to the electrolytic voltage of 5V, 15V, and 6V.
It is possible to obtain an electro-optical device with higher image quality by controlling the voltage by changing it to 5V or the like and matching it with the shutter characteristic of the liquid crystal. At this time, since the film thickness of the color reflection plate has a deep correlation with the metal ion concentration or the metal particle size and the forming conditions, it is important to control the forming process with good reproducibility.

【0019】[0019]

【発明の効果】以上述べてきたように、本発明によれ
ば、反射層上に平坦な着色層を容易に形成することがで
き、白、黒レベルの再現性が良い高品位のカラー表示可
能な反射型電気光学装置を製造することができる。ま
た、本発明によれば、着色層の各々隣り合う部分での色
抜けを防止できる電気光学装置を製造することができ
る。また、本発明によれば、着色層を形成した反射板の
分光反射率制御と膜厚制御を組み合わせることにより、
より光学的しきい値の揃った色純度と明度の高い高品位
の電気光学装置を製造することができる。
As described above, according to the present invention, a flat colored layer can be easily formed on the reflective layer, and high-quality color display with good reproducibility of white and black levels is possible. It is possible to manufacture various reflective electro-optical devices. Further, according to the present invention, it is possible to manufacture an electro-optical device capable of preventing color loss in adjacent portions of the colored layers. Further, according to the present invention, by combining the spectral reflectance control and the film thickness control of the reflector having the colored layer formed,
It is possible to manufacture a high-quality electro-optical device having a color purity with a more uniform optical threshold and a high brightness.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例で示す電気光学装置の構造を示
す図。
FIG. 1 is a diagram showing a structure of an electro-optical device shown in an embodiment of the present invention.

【図2】本発明の実施例で示すカラー反射板を有する電
気光学装置の分光特性を示す図。
FIG. 2 is a diagram showing a spectral characteristic of an electro-optical device having a color reflection plate shown in an embodiment of the present invention.

【図3】本発明の実施例1及び実施例4で示すカラー反
射板付き基板の断面図。
FIG. 3 is a cross-sectional view of a substrate with a color reflector shown in Examples 1 and 4 of the present invention.

【図4】本発明の実施例1及び実施例4で示す電気光学
装置の構造を示す図。
FIG. 4 is a diagram showing the structure of the electro-optical device shown in Examples 1 and 4 of the present invention.

【図5】本発明の実施例2及び実施例3で示すカラー反
射板付き基板の断面図。
FIG. 5 is a cross-sectional view of a substrate with a color reflector shown in Examples 2 and 3 of the present invention.

【図6】本発明の実施例2及び実施例3で示す電気光学
装置の構造を示す図。
FIG. 6 is a diagram showing the structure of the electro-optical device shown in Examples 2 and 3 of the present invention.

【図7】本発明の実施例で示す液晶光学特性の関係を示
す図。
FIG. 7 is a diagram showing the relationship of liquid crystal optical characteristics shown in Examples of the present invention.

【図8】本発明の実施例で示すカラー反射板を有する電
気光学装置の分光特性を示す図。
FIG. 8 is a diagram showing a spectral characteristic of an electro-optical device having a color reflecting plate shown in an example of the present invention.

【符号の説明】[Explanation of symbols]

1・上偏光体 2・下偏光体 3・液晶セル 4・Aセル 5・ガラス基板 6・反射層 7・着色層 8・ブラックマスク(陽極酸化層) 9・透明電極 10・透明絶縁膜 11・配向膜 12・ギャップ材 13・シール 1. Upper polarizer 2. Lower polarizer 3. Liquid crystal cell 4.A cell 5. Glass substrate 6. Reflective layer 7. Colored layer 8. Black mask (anodized layer) 9. Transparent electrode 10. Transparent insulating film 11. Alignment film 12. Gap material 13. Seal

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G02F 1/13 - 1/141 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) G02F 1/13-1/141

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板上に設けられた反射層に3種類の電界
をかけて前記反射層上に3色の着色層を設ける工程と、 前記着色層上に電極を設ける工程とを有することを特徴
とする電気光学装置の製造方法において、前記着色層を設ける工程の後に、前記着色層が設けられ
た前記反射層の陽極酸化による絶縁化処理によって低反
射部分を形成する工程を有する ことを特徴とする電気光
学装置の製造方法。
1. A method comprising: applying three types of electric fields to a reflective layer provided on a substrate to form colored layers of three colors on the reflective layer; and providing electrodes on the colored layer. In the method for manufacturing a characteristic electro-optical device, the colored layer is provided after the step of providing the colored layer.
In addition, the reflection resistance of the reflective layer is reduced by the anodizing treatment.
A method of manufacturing an electro-optical device, comprising the step of forming a projected portion .
【請求項2】前記着色層を設ける工程において、3種類
の電解浴中で前記反射層に電界をかけて前記反射層上に
金属、無機物、有機物質の積層からなる3色の着色層を
設ける工程を有することを特徴とする請求項1に記載の
電気光学装置の製造方法。
2. In the step of providing the colored layer, an electric field is applied to the reflective layer in three types of electrolytic baths to provide a colored layer of three colors composed of a stack of a metal, an inorganic substance and an organic substance on the reflective layer. The method of manufacturing an electro-optical device according to claim 1, further comprising a step.
【請求項3】前記着色層を設ける工程の後に、隣り合う
前記着色層の間に微粒子化した酸化金属を析出させてブ
ラックマスクを設ける工程を更に有することを特徴とす
る請求項1又は2に記載の電気光学装置の製造方法。
3. The method according to claim 1, further comprising, after the step of providing the colored layer, a step of depositing finely divided metal oxide between adjacent colored layers to provide a black mask. A method for manufacturing the electro-optical device described.
【請求項4】前記着色層を設ける工程の後に、ポリシン
グして平坦化する工程を更に有することを特徴とする請
求項1又は2に記載の電気光学装置の製造方法。
4. The method of manufacturing an electro-optical device according to claim 1, further comprising a step of polishing and planarizing after the step of providing the colored layer.
【請求項5】前記着色層を設ける工程において、電解電
圧を変えることにより前記着色層の膜厚を制御すること
を特徴とする請求項1又は2に記載の電気光学装置の製
造方法。
5. The method for manufacturing an electro-optical device according to claim 1, wherein in the step of providing the colored layer, the film thickness of the colored layer is controlled by changing an electrolytic voltage.
JP2000069394A 1993-03-12 2000-03-13 Manufacturing method of electro-optical device Expired - Fee Related JP3531569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000069394A JP3531569B2 (en) 1993-03-12 2000-03-13 Manufacturing method of electro-optical device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP5052567A JPH06265879A (en) 1993-03-12 1993-03-12 Color reflecting plate and its manufacture, and electrooptic device using the same and its manufacture
JP2000069394A JP3531569B2 (en) 1993-03-12 2000-03-13 Manufacturing method of electro-optical device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP5052567A Division JPH06265879A (en) 1993-03-12 1993-03-12 Color reflecting plate and its manufacture, and electrooptic device using the same and its manufacture

Publications (2)

Publication Number Publication Date
JP2000310773A JP2000310773A (en) 2000-11-07
JP3531569B2 true JP3531569B2 (en) 2004-05-31

Family

ID=32510485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000069394A Expired - Fee Related JP3531569B2 (en) 1993-03-12 2000-03-13 Manufacturing method of electro-optical device

Country Status (1)

Country Link
JP (1) JP3531569B2 (en)

Also Published As

Publication number Publication date
JP2000310773A (en) 2000-11-07

Similar Documents

Publication Publication Date Title
US6906765B2 (en) Color filter layer and display device using the same
JP3339334B2 (en) Reflective liquid crystal display
US7388635B2 (en) Liquid crystal display device and display equipment using the same
US4929060A (en) Color liquid crystal display device
JPH03105318A (en) Liquid crystal display device
JP2002236289A (en) Liquid crystal display device
JPH1096887A (en) Color liquid crystal display element
KR100385691B1 (en) Reflection liquid crystal display element
JP3723511B2 (en) Reflective / transmissive color liquid crystal display
JPS60159823A (en) Color liquid crystal display device
JP3531569B2 (en) Manufacturing method of electro-optical device
JP3210274B2 (en) Reflective liquid crystal display
JP3669308B2 (en) Electro-optic device
JP3669309B2 (en) Electro-optic device
JP3623242B2 (en) Liquid crystal display
JP3633530B2 (en) Electro-optic device
JPH0330126B2 (en)
JPH06265879A (en) Color reflecting plate and its manufacture, and electrooptic device using the same and its manufacture
JPH10115704A (en) Reflection type color filter and liquid crystal display device
JP2003149632A (en) Liquid crystal display device and color filter therefor
US5943108A (en) Matrix type liquid crystal display with substrate having blue filter for masking at least 75% of total planar area of auxiliary electrodes
JP4123294B2 (en) Liquid crystal display
JP3580994B2 (en) Liquid crystal display
JP3316156B2 (en) Reflective color liquid crystal display
JPH0675241A (en) Display element

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040105

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040223

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees