JP3526132B2 - Supercritical water oxidation treatment method - Google Patents

Supercritical water oxidation treatment method

Info

Publication number
JP3526132B2
JP3526132B2 JP09258596A JP9258596A JP3526132B2 JP 3526132 B2 JP3526132 B2 JP 3526132B2 JP 09258596 A JP09258596 A JP 09258596A JP 9258596 A JP9258596 A JP 9258596A JP 3526132 B2 JP3526132 B2 JP 3526132B2
Authority
JP
Japan
Prior art keywords
reactor
salt
water
supercritical
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09258596A
Other languages
Japanese (ja)
Other versions
JPH09276880A (en
Inventor
謙三 堀
康彦 畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP09258596A priority Critical patent/JP3526132B2/en
Publication of JPH09276880A publication Critical patent/JPH09276880A/en
Application granted granted Critical
Publication of JP3526132B2 publication Critical patent/JP3526132B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高温、高圧の超臨
界状態のリアクタ内で有機物を含む廃棄物を水酸化処理
する超臨界水酸化処理方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a supercritical water oxidation method for hydroxylating waste containing organic substances in a reactor in a high temperature and high pressure supercritical state.

【0002】[0002]

【従来の技術】超臨界状態の、いわゆる超臨界水は活性
を有しており、有機物に対する優れた溶媒特性を示す。
このため、超臨界水に酸化源を添加して有機物を処理す
る超臨界水酸化処理方法は、有機物の酸化分解処理にお
いて迅速、かつ分解処理達成率が高い方法である。
2. Description of the Related Art So-called supercritical water in a supercritical state is active and exhibits excellent solvent properties for organic substances.
Therefore, the supercritical water oxidation treatment method of treating an organic matter by adding an oxidation source to supercritical water is a method that is rapid in the oxidative decomposition treatment of the organic matter and has a high decomposition treatment achievement rate.

【0003】しかしながら、超臨界水では塩類の溶解度
が極めて低いため、超臨界状態のリアクタの内部に塩類
が析出し、この析出した塩類によってリアクタは閉塞現
象をおこす。そこで、安定した超臨界水酸化状態を維持
するためには、上記析出塩を定期的に除去する必要があ
る。
However, since the solubility of salts in supercritical water is extremely low, salts are deposited inside the reactor in a supercritical state, and the deposited salts cause a clogging phenomenon in the reactor. Therefore, in order to maintain a stable supercritical water oxidation state, it is necessary to regularly remove the precipitated salt.

【0004】超臨界状態では、塩化ナトリウムに代表さ
れる中性塩は、水への溶解度が激減する。これは、例え
ば、塩化ナトリウムの溶解度は常温では30%である
が、400℃前後では0.01%以下になる。この現象
のため、上記したように、超臨界状態でのリアクタ内に
は析出する塩が蓄積し、リアクタが閉塞してしまうこと
がある。通常、無機の塩は当初の流入水中に含まれてい
る場合もあるし、酸化処理中に中和の結果として生成す
る場合もあるが、いずれも超臨界条件では不溶解であ
る。
In the supercritical state, the neutral salt represented by sodium chloride has drastically reduced solubility in water. For example, the solubility of sodium chloride is 30% at room temperature, but becomes 0.01% or less at around 400 ° C. Due to this phenomenon, as described above, precipitated salt may accumulate in the reactor in the supercritical state, and the reactor may be blocked. Usually, the inorganic salt may be contained in the initial inflow water or may be formed as a result of neutralization during the oxidation treatment, but both are insoluble under supercritical conditions.

【0005】このようなことから、従来から、例えば特
公平6−511190号に示されるように、リアクタに
は、これに蓄積される固体を除去するための固体除去シ
ステムを備えており、ブラシを管状のリアクタの長さ方
向に通すことにより、この長く伸びた管状リアクタに蓄
積する固体状粒子及びスケールを定期的に除去するよう
にしたものがある。
For this reason, conventionally, for example, as shown in Japanese Patent Publication No. 6-511190, a reactor is equipped with a solid removal system for removing solids accumulated therein, and a brush is used. There is a type in which solid particles and scale accumulated in the elongated tubular reactor are periodically removed by passing the tubular reactor in the longitudinal direction.

【0006】また他の従来例として、特公平3−500
264号公報に示されるように、大型のリアクタを用
い、固形状の塩を慣性作用により衝突させ、これの重力
作用によりリアクタの下部に落下させるようにしてい
る。リアクタ下部には超臨界温度よりも低温のサブゾー
ンが形成されており、上記落下された固形状の塩はここ
で溶解させている。
As another conventional example, Japanese Patent Publication No. 3-500
As shown in Japanese Laid-Open Patent Publication No. H264, a large reactor is used, and solid salt is caused to collide by an inertial action and dropped to the lower part of the reactor by a gravity action of the solid salt. A subzone having a temperature lower than the supercritical temperature is formed in the lower part of the reactor, and the dropped solid salt is dissolved therein.

【0007】[0007]

【発明が解決しようとする課題】上記従来の技術では、
リアクタの構造が複雑になり、そのほかにも、リアクタ
内に異なる温度に熱分布を持たせるため、リアクタの巨
大化、制御の複雑化するという問題があった。
SUMMARY OF THE INVENTION In the above conventional technique,
In addition to the complicated structure of the reactor, heat distribution at different temperatures in the reactor has a problem of enlarging the reactor and complicating control.

【0008】本発明は上記のことにかんがみなされたも
ので、臨界状態に曝されるリアクタをシンプルで小型化
でき、強度にも優れ、効率的な熱制御を行うことができ
るようにした超臨界水酸化処理方法を提供しようとする
ものである。
The present invention has been made in view of the above, and it is a supercritical system capable of simplifying and miniaturizing a reactor exposed to a critical state, having excellent strength, and performing efficient thermal control. It is intended to provide a method for hydroxylation treatment.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に、本発明に係る超臨界水酸化処理方法は、有機物を含
む廃棄物と酸化源をリアクタに導入し、超臨界状態の水
を溶媒として上記有機物を酸化分解する超臨界水酸化処
理方法において、リアクタ内に塩吸着可能媒体を上記廃
棄物と共に存在させ、リアクタ内で析出する無機塩を積
極的に上記塩吸着可能媒体の表面に析出、吸着させ、こ
の塩が付着した媒体をリアクタの系外へ搬出することに
よってリアクタ内での析出塩をリアクタ外へ排出する。
In order to solve the above-mentioned problems, the method for supercritical water oxidation according to the present invention introduces a waste containing an organic matter and an oxidation source into a reactor and uses water in a supercritical state as a solvent. In the supercritical water oxidation treatment method of oxidatively decomposing the organic matter as described above, a salt-adsorbable medium is allowed to exist together with the waste in the reactor, and an inorganic salt precipitated in the reactor is positively deposited on the surface of the salt-adsorbable medium. By adsorbing and adsorbing the medium to which the salt adheres to the outside of the reactor system, the precipitated salt in the reactor is discharged to the outside of the reactor.

【0010】そして、上記塩吸着可能媒体は水中で流動
可能な粒状の担体であり、この担体をリアクタ内に連続
的に、あるいは間欠的に添加し、処理液と共に排出す
る。
The salt-adsorbable medium is a granular carrier that can flow in water, and the carrier is continuously or intermittently added to the reactor and discharged together with the treatment liquid.

【0011】また、上記塩吸着可能媒体はリアクタ内に
滞留可能であり、この滞留可能な塩吸着可能媒体の表面
に無機塩がある程度析出、吸着したところで、この塩吸
着可能媒体をリアクタの系外へ搬出するようにした。
Further, the salt adsorbable medium can be retained in the reactor, and when the inorganic salt is deposited and adsorbed to some extent on the surface of the retainable salt adsorbable medium, the salt adsorbable medium is removed from the reactor system. I decided to carry it out to.

【0012】また上記超臨界状態のリアクタ内で析出し
た塩が付着したリアクタ内で滞留可能にした塩吸着可能
媒体は、これをリアクタの系外へ搬出することにかえ
て、リアクタを超臨界状態を脱した状態にしてから、こ
れに水を注入して上記塩を、この水で溶解し、この水と
共に塩だけをリアクタの系外へ搬出するようにしてもよ
い。
Further, the salt-adsorbable medium made storable in the reactor to which the salt deposited in the reactor in the supercritical state adheres is replaced by carrying out the medium out of the system of the reactor. It is also possible that after removing the water, water is injected into this to dissolve the salt with the water, and only the salt is carried out of the reactor together with the water.

【0013】[0013]

【作 用】超臨界水中の塩類は塩吸着可能媒体の表面
に析出、吸着され、リアクタの内壁にはほとんど析出、
付着されない。そして上記析出、吸着された塩は塩吸着
可能媒体をリアクタの系外へ搬出することにより、ある
いはこれをリアクタ内で水に溶解してこの水と共に、リ
アクタ外へ排出される。
[Operation] Salts in supercritical water are deposited and adsorbed on the surface of the salt adsorbable medium, and are mostly deposited on the inner wall of the reactor.
Not attached. Then, the precipitated and adsorbed salt is discharged to the outside of the reactor by carrying out the salt-adsorbable medium to the outside of the reactor or by dissolving it in water in the reactor.

【0014】[0014]

【発明の効果】本発明によれば、超臨界状態に曝される
リアクタを何ら変えることなく、通常のシンプルで小型
にすることができ、強度も優れたものとすることができ
る。そして被処理物中の塩分をこれのリアクタ内の処理
中にほとんど全量を析出、吸着することができてこれを
リアクタ外へ排出することができる。また、上記処理中
において、リアクタ内の塩析出を制御するためにリアク
タ内の温度や圧力を制御する必要がなくなり、リアクタ
の温度及び圧力は被処理物の処理のためにだけ制御すれ
ばよくなり、効率的な熱制御を行うことができる。
According to the present invention, the reactor exposed to the supercritical state can be made simple and small in size and can be made excellent in strength without any change. Almost all the salt in the substance to be treated can be deposited and adsorbed during the treatment in the reactor, and the salt can be discharged to the outside of the reactor. Further, during the above treatment, it is not necessary to control the temperature and pressure in the reactor in order to control the salt precipitation in the reactor, and the temperature and pressure in the reactor need only be controlled for treating the object to be treated. , Efficient heat control can be performed.

【0015】[0015]

【発明の実施の形態】本発明の実施の形態を図面を参照
して説明する。図1は処理フローを示すもので、1は超
臨界状態に圧力及び温度を制御可能にしたリアクタであ
り、このリアクタ1内に空気圧縮機2にて酸化源となる
空気と、高圧送液ポンプ3にて塩濃度の高い有機物廃水
を供給する。このとき、有機物廃水中に微粒子状のセラ
ミック等の担体を混入しておく。なおこのとき、リアク
タ1内へは必要に応じて水酸化ナトリウム(NaOH)
を添加する。上記担体は連続的にあるいは間欠的に混入
する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a processing flow. Reference numeral 1 is a reactor in which pressure and temperature can be controlled in a supercritical state. Air serving as an oxidation source in an air compressor 2 in the reactor 1 and a high-pressure liquid feed pump. At 3, the organic wastewater having a high salt concentration is supplied. At this time, a carrier such as fine particle ceramics is mixed in the organic waste water. At this time, sodium hydroxide (NaOH) is introduced into the reactor 1 if necessary.
Is added. The carrier is mixed continuously or intermittently.

【0016】超臨界状態のリアクタ1内での有機物廃水
は酸化分解される。そしてこのとき、リアクタ1内では
塩の溶解度が低下するので、この塩が析出するが、リア
クタ1内に担体が存在するので、この析出塩はリアクタ
1の壁面より担体表面に析出されてこの担体表面に吸着
される。そしてこの塩を吸着した担体は上記処理液と共
に連続的に減圧弁4及び気液分離槽5を経てリアクタ1
外へ排出し、あるいはある程度担体が塩でふくれあがっ
たところで担体をリアクタ1外へ排出する。なお上記気
液分離槽5へは100°程度の温度で流入する。
The organic waste water in the reactor 1 in the supercritical state is oxidatively decomposed. Then, at this time, the solubility of the salt decreases in the reactor 1, so that the salt is deposited, but since the carrier exists in the reactor 1, the precipitated salt is deposited on the surface of the carrier from the wall surface of the reactor 1 and the carrier is deposited. Adsorbed on the surface. Then, the carrier having adsorbed the salt is continuously passed through the pressure reducing valve 4 and the gas-liquid separation tank 5 together with the treatment liquid, and then the reactor 1
The carrier is discharged to the outside, or the carrier is discharged to the outside of the reactor 1 when the carrier is swelled with salt to some extent. The gas-liquid separation tank 5 flows at a temperature of about 100 °.

【0017】塩を吸着した担体はリアクタ1の外へ排出
されて超臨界状態を脱すると、塩は水に対する溶解度が
あがるため、気液分離槽5を経て流入した固液分離槽5
a内での排水中に溶解し、ここで塩が吸着していない担
体が他の固形物と共に分離除去される。
When the carrier having adsorbed the salt is discharged out of the reactor 1 and comes out of the supercritical state, the solubility of the salt increases in water, so that the solid-liquid separation tank 5 flowing through the gas-liquid separation tank 5 flows.
It is dissolved in the waste water in a, and the carrier on which salt is not adsorbed is separated and removed together with other solid substances.

【0018】図2は他の実施の形態を示すもので、リア
クタ1内で塩を吸着した担体を減圧弁4より減圧槽6に
供給して、これの超臨界状態を高温の状態で一気に脱す
ることで、これに付着している水分を蒸発させる。これ
により、塩が吸着乾固した状態の担体7を得ることがで
きる。
FIG. 2 shows another embodiment, in which the carrier having adsorbed salt in the reactor 1 is supplied from the pressure reducing valve 4 to the pressure reducing tank 6, and the supercritical state of the carrier is rapidly removed at high temperature. By doing so, the water adhering to this is evaporated. As a result, the carrier 7 with the salt adsorbed to dryness can be obtained.

【0019】図3,図4はリアクタ1内に粒状の担体に
代えてリアクタ1内に滞留可能にした塩吸着機8を内装
した例を示す。この滞留可能にした塩吸着機8は幹部材
9に多数の枝部材10を回動自在に連結し、この各枝部
材10は図4に示すように金属約11にセラミックから
なる担体12を棒状に焼結固着した構成になっている。
3 and 4 show an example in which a salt adsorber 8 capable of staying in the reactor 1 is installed in the reactor 1 instead of the granular carrier. The salt adsorber 8 which can be retained has a large number of branch members 10 rotatably connected to a trunk member 9, and each branch member 10 has a rod-shaped carrier 12 made of ceramics on a metal 11 as shown in FIG. It has a structure that is fixed by sintering.

【0020】この構成によれば、リアクタ1内を通る有
機物廃水中の塩は塩吸着機8の各枝部材10の担体12
に接触してこの担体12に析出される。この塩吸着機8
は定期的にリアクタ1より取り出して水にて洗浄して再
利用する。
According to this structure, the salt in the organic waste water passing through the reactor 1 is the carrier 12 of each branch member 10 of the salt adsorber 8.
And is deposited on the carrier 12. This salt adsorber 8
Is periodically taken out from the reactor 1, washed with water and reused.

【0021】また上記滞留可能な塩吸着機8に付着した
塩をリアクタ1の系外へ搬出する手段としては、上記手
段のほかに、それをリアクタ1内で水洗いするようにし
た手段を用いてもよい。すなわち、図3に鎖線で示すよ
うに、リアクタ1に注水管13を接続し、この注水管1
3よりバルブ14を介して超臨界状態を脱した状態のリ
アクタ1内に水を注入して、この水に上記塩吸着器8に
付着した塩を溶かし、その後この水を系外へ搬出する。
As means for carrying out the salt adhering to the storable salt adsorber 8 to the outside of the system of the reactor 1, in addition to the above means, means for washing it in the reactor 1 is used. Good. That is, as shown by the chain line in FIG. 3, the water injection pipe 13 is connected to the reactor 1, and the water injection pipe 1
Water is injected into the reactor 1 from the state 3 through the valve 14 in a state where the supercritical state is removed, the salt adhering to the salt adsorber 8 is dissolved in this water, and then this water is carried out of the system.

【0022】〔実施例1〕食塩を含む有機物廃水の超臨
界水酸化反応において、塩分をリアクタより除去した。 実験条件 リアクタ:内容積100ccのステンレス製耐圧容器 反応温度及び圧力:600℃、300気圧の超臨界状態 対象液:3%塩化ナトリウム溶液+10%ぶどう糖。こ
れを10ml/minで連続的にリアクタ内に導入し、
連続的に処理液として排出した。 塩吸着可能な担体:セラミック粉体(粒径1〜2mm)
を対象液に0.2g/mlの割合で添加した。 酸化源:空気 上記実験条件にて図1に示す処理フローにて処理を行っ
た。
Example 1 In a supercritical water oxidation reaction of organic waste water containing salt, salt was removed from the reactor. Experimental conditions Reactor: stainless steel pressure-resistant container having an internal volume of 100 cc Reaction temperature and pressure: 600 ° C., 300 atm in supercritical state Target liquid: 3% sodium chloride solution + 10% glucose. This was continuously introduced into the reactor at 10 ml / min,
The solution was continuously discharged. Carrier capable of adsorbing salt: Ceramic powder (particle size 1-2 mm)
Was added to the target liquid at a rate of 0.2 g / ml. Oxidation source: air The treatment was performed according to the treatment flow shown in FIG. 1 under the above experimental conditions.

【0023】対象液に担体を添加したものを、空気圧縮
機2による高圧空気と共に高圧送液ポンプ3にて高圧状
態で連続的にリアクタ1内に導入した。リアクタ1は6
00℃、300気圧に加温加圧された状態になってお
り、ここで対象液の有機物が酸化分解される。リアクタ
1を出た処理液は減圧弁4を100°前後となってを通
過し、超臨界状態を脱する温度、圧力に冷却、減圧さ
れ、その後、気液分離槽5に導かれ、有機物が分解され
て生成されたCO2 は大気中に放出される。次に固液分
離槽5aで担体と処理液は沈殿分離される。
The target liquid to which the carrier was added was continuously introduced into the reactor 1 under high pressure by the high pressure liquid feed pump 3 together with the high pressure air from the air compressor 2. Reactor 1 has 6
It is in a state of being heated and pressurized to 00 ° C. and 300 atm, where the organic matter of the target liquid is oxidized and decomposed. The treatment liquid exiting the reactor 1 passes through the pressure reducing valve 4 at about 100 °, is cooled and depressurized to a temperature and pressure at which the supercritical state is removed, and then is introduced into the gas-liquid separation tank 5 to remove organic substances. The CO 2 generated by decomposition is released into the atmosphere. Next, the carrier and the treatment liquid are separated by precipitation in the solid-liquid separation tank 5a.

【0024】担体に吸着した塩は減圧弁4を通過した時
点で超臨界状態から解放されるため、水に対する溶解度
は大きくなり、処理水中に溶解しはじめる。従って、固
液分離槽5aで沈殿分離された担体表面には塩は吸着さ
れておらず、再利用することも可能である。結 果固液
分離処理された処理水の塩化ナトリウム濃度は約3%、
有機炭素濃度は5ppmとなり、有機分は99.99%
以上分解されるのに対して、塩化ナトリウムは略100
%担体と共に排出されていることが確認された。そして
連続処理を5時間行った後、対象液の送液を停止してリ
アクタ1内を観察したところ、担体と塩化ナトリウムの
結晶はほとんど認められなかった。
The salt adsorbed on the carrier is released from the supercritical state when passing through the pressure reducing valve 4, so that the solubility in water increases and the salt begins to dissolve in the treated water. Therefore, salt is not adsorbed on the surface of the carrier that has been separated by precipitation in the solid-liquid separation tank 5a, and can be reused. Concentration of sodium chloride in treated water after fruit solid-liquid separation is about 3%,
Organic carbon concentration is 5ppm, organic content is 99.99%
In contrast to the above decomposition, sodium chloride is approximately 100
It was confirmed that it was discharged together with the carrier. After continuous treatment for 5 hours, the liquid feed of the target liquid was stopped and the inside of the reactor 1 was observed. As a result, almost no crystals of the carrier and sodium chloride were observed.

【0025】〔比較試験〕担体を添加しないで上記実施
例1と同様の試験を行った。反応開始直後、排出液の塩
化ナトリウム濃度を測定したところ、これの濃度は3%
を下回り、リアクタ1内圧力の上昇と共に、次第に排出
液量が低下することが観察された。反応後、リアクタ1
の内部を観察したところ、壁面に析出塩が大量に付着し
ていた。このため、この析出塩によりリアクタ1の内部
が次第に閉塞したものと推定される。
[Comparative Test] The same test as in Example 1 was carried out without adding a carrier. Immediately after starting the reaction, the concentration of sodium chloride in the discharged liquid was measured and found to be 3%.
It was observed that the amount of discharged liquid gradually decreased as the pressure inside the reactor 1 increased. After the reaction, reactor 1
When the inside of the was observed, a large amount of precipitated salt adhered to the wall surface. Therefore, it is presumed that the inside of the reactor 1 was gradually blocked by this precipitated salt.

【0026】以上の試験から、担体をコアとして塩が排
出されることが認められた。この担体はセラミック粉体
以外に、同程度の粒径のゼオライト、沸騰石、フェライ
ト粒子、バーミュキュライトでも同様な効果を有する。
またこの担体は、超臨界水状態で変性しない無機物が望
ましい。例えば、粘土鉱物、セラミック、アルミナ等の
無機酸化物、フェライト、金属粉等があげられる。さら
に、この担体は、常温の水中で容易に分離回収でき、か
つそれ自体が溶解しないことが望ましい。担体がフェラ
イトである場合は、沈殿分離以外に磁気分離も可能であ
る。
From the above test, it was confirmed that salt was discharged with the carrier as the core. In addition to ceramic powder, this carrier has the same effect on zeolite, boiling stone, ferrite particles, and vermiculite having similar particle sizes.
In addition, this carrier is preferably an inorganic substance that does not denature in the supercritical water state. Examples thereof include clay minerals, ceramics, inorganic oxides such as alumina, ferrite, and metal powder. Furthermore, it is desirable that this carrier can be easily separated and recovered in water at room temperature and that it itself does not dissolve. When the carrier is ferrite, magnetic separation is possible in addition to precipitation separation.

【0027】〔実施例2〕超臨界水酸化リアクタ中で中
和により生じる塩を排出した。 実験条件 対象液:含ハロゲン有機物である3%トリクロロエチレ
ンと2.5%水酸化ナトリウムの混合物を100ml/
minで連続的にリアクタ内に導入し、連続的に処理液
として排出した。超臨界状態のリアクタ内では、トリク
ロロエチレンが分解して塩素、 もしくは塩
化水素が生じるので、これを中和するために水酸化ナト
リウムをトリクロロエチレン液と等モル量
添加した。ここではトリ クロロエチレン中
の塩素と、水酸化ナトリウムは等モルで反応する
ものとみなした。 塩吸着可能な担体:固定式塩吸着機 他の実験条件:実施例1と同じ 処理工程:実施例1と同じ 結果 リアクタ1からの排出液の有機炭素濃度は5ppmとな
り、塩化ナトリウム濃度は0.6%となった。またpH
は6.8で安定した。すなわち、期待されたようにトリ
クロロエチレンは99.9%以上分解されていることが
確認された。また、発生する塩分はほぼ完全に中和され
ていた。そしてリアクタ内部にはハロゲンによる腐食、
塩類集積はほとんど認められなかった。
Example 2 Salts produced by neutralization were discharged in a supercritical water oxidation reactor. Experimental condition Target liquid: 100 ml of a mixture of 3% trichlorethylene which is a halogen-containing organic substance and 2.5% sodium hydroxide
It was continuously introduced into the reactor at min, and continuously discharged as a treatment liquid. In the reactor in the supercritical state, trichlorethylene is decomposed to generate chlorine or hydrogen chloride.
Lithium was added in an equimolar amount to the trichlorethylene solution. Here, chlorine in trichloroethylene and sodium hydroxide react in equimolar amounts.
Regarded as a thing. Carrier capable of adsorbing salt: Fixed salt adsorber Other experimental conditions: The same treatment step as in Example 1: The same result as in Example 1 Results The effluent from the reactor 1 had an organic carbon concentration of 5 ppm and a sodium chloride concentration of 0. It was 6%. Also pH
Stabilized at 6.8. That is, it was confirmed that trichlorethylene was decomposed by 99.9% or more as expected. Moreover, the generated salt was almost completely neutralized. And inside the reactor, corrosion due to halogen,
Almost no salt accumulation was observed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施の形態を示すブロック図で
ある。
FIG. 1 is a block diagram showing a first embodiment of the present invention.

【図2】本発明の第2の実施の形態を示すブロック図で
ある。
FIG. 2 is a block diagram showing a second embodiment of the present invention.

【図3】滞留可能な塩吸着機の一例を示す説明図であ
る。
FIG. 3 is an explanatory diagram showing an example of a salt adsorber capable of staying.

【図4】滞留可能な塩吸着機の要部を示す拡大図であ
る。
FIG. 4 is an enlarged view showing a main part of a salt adsorber capable of staying.

【符号の説明】[Explanation of symbols]

1…リアクタ 2…空気圧縮機 3…高圧送液ポンプ 4…減圧弁 5…気液分離槽 5a…固液分離槽 6…減圧槽 7,12…担体 8…固定式塩吸着機 9…幹部分 10…枝部分 11…金属線 13…注水管。 1 ... Reactor 2 ... Air compressor 3 ... High-pressure liquid feed pump 4 ... Pressure reducing valve 5 ... Gas-liquid separation tank 5a ... Solid-liquid separation tank 6. Decompression tank 7, 12 ... Carrier 8 ... Fixed salt adsorber 9 ... Trunk 10 ... Branch 11 ... Metal wire 13 ... Water injection pipe.

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C02F 1/74 A62D 3/00 B01J 3/00 B09B 3/00 C02F 1/28 C02F 11/08 Front page continued (58) Fields surveyed (Int.Cl. 7 , DB name) C02F 1/74 A62D 3/00 B01J 3/00 B09B 3/00 C02F 1/28 C02F 11/08

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 有機物を含む廃棄物と酸化源をリアクタ
に導入し、超臨界状態の水を溶媒として上記有機物を酸
化分解する超臨界水酸化処理方法において、 リアクタ内に塩吸着可能媒体を上記廃棄物と共に存在さ
せ、リアクタ内で析出する無機塩を積極的に上記塩吸着
可能媒体の表面に析出、吸着させ、この塩が付着した媒
体をリアクタの系外へ搬出することによってリアクタ内
での析出塩をリアクタ外へ排出するようにしたことを特
徴とする超臨界水酸化処理方法。
1. A supercritical water oxidation treatment method in which a waste containing an organic matter and an oxidation source are introduced into a reactor, and the organic matter is oxidatively decomposed using water in a supercritical state as a solvent. The inorganic salt that exists with the waste and precipitates in the reactor is positively precipitated and adsorbed on the surface of the salt-adsorbable medium, and the medium to which this salt adheres is carried out of the reactor system to A supercritical water oxidation treatment method characterized in that the precipitated salt is discharged to the outside of the reactor.
【請求項2】 塩吸着可能媒体は水中で流動可能な粒状
の担体であり、この担体をリアクタ内に連続的に、ある
いは間欠的に添加し、処理液と共に排出することを特徴
とする請求項1記載の超臨界水酸化処理方法。
2. The salt adsorbable medium is a granular carrier that can flow in water, and the carrier is continuously or intermittently added into the reactor and discharged together with the treatment liquid. The supercritical water oxidation treatment method according to 1.
【請求項3】 塩吸着可能媒体はリアクタ内に滞留可能
にしこの滞留可能な塩吸着可能媒体の表面に無機塩があ
る程度析出、吸着したところで、この塩吸着可能媒体を
リアクタの系外へ搬出するようにしたことを特徴とする
請求項1記載の超臨界水酸化処理方法。
3. The salt adsorbable medium is allowed to stay in the reactor, and when the inorganic salt is deposited and adsorbed to some extent on the surface of the salt adsorbable medium, the salt adsorbable medium is carried out of the reactor system. The supercritical water oxidation treatment method according to claim 1, wherein
【請求項4】 有機物を含む廃棄物と酸化源をリアクタ
に導入し、超臨界状態の水を溶媒として上記有機物を酸
化分解する超臨界水酸化処理方法において、 リアクタ内に、リアクタ内に滞留可能にした塩吸着可能
媒体を上記廃棄物と共に存在させ、リアクタ内で析出す
る無機塩を積極的に上記塩吸着可能媒体の表面に析出、
吸着させ、ついで、リアクタを上記超臨界状態を脱する
状態にしてからこのリアクタ内に水を注入し、この水に
上記塩吸着可能媒体の表面に付着している塩を溶かし、
この水を共に上記塩をリアクタの系外へ搬出するように
したことを特徴とする超臨界水酸化処理方法。
4. In a supercritical water oxidation treatment method in which a waste containing an organic matter and an oxidation source are introduced into a reactor, and water in a supercritical state is used as a solvent to oxidize and decompose the above organic matter, it is possible to stay in the reactor. Existing salt adsorbable medium together with the waste, the inorganic salt that precipitates in the reactor is positively deposited on the surface of the salt adsorbable medium,
After adsorbing, the reactor is brought out of the supercritical state, water is injected into the reactor, and the salt adhering to the surface of the salt adsorbable medium is dissolved in the water.
A supercritical water oxidation treatment method characterized in that the salt is carried out of the reactor together with this water.
JP09258596A 1996-04-15 1996-04-15 Supercritical water oxidation treatment method Expired - Fee Related JP3526132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09258596A JP3526132B2 (en) 1996-04-15 1996-04-15 Supercritical water oxidation treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09258596A JP3526132B2 (en) 1996-04-15 1996-04-15 Supercritical water oxidation treatment method

Publications (2)

Publication Number Publication Date
JPH09276880A JPH09276880A (en) 1997-10-28
JP3526132B2 true JP3526132B2 (en) 2004-05-10

Family

ID=14058525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09258596A Expired - Fee Related JP3526132B2 (en) 1996-04-15 1996-04-15 Supercritical water oxidation treatment method

Country Status (1)

Country Link
JP (1) JP3526132B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1213097C (en) * 1997-08-20 2005-08-03 东芝株式会社 Method and equipment for processing waste materials

Also Published As

Publication number Publication date
JPH09276880A (en) 1997-10-28

Similar Documents

Publication Publication Date Title
JPS5929317B2 (en) Wastewater treatment method
JP2000514351A (en) Method for cleaning and / or regenerating a totally or partially deactivated flue gas denitrification catalyst
CN101119934A (en) Method for producing iron oxyhydroxide and adsorbing material comprising iron oxyhydroxide
JP2002273494A (en) Method of treating organic solid containing inorganic salt, particularly sewer sludge
JP3526132B2 (en) Supercritical water oxidation treatment method
JP2007175673A (en) Treatment method of ammonia-containing drain
JP2000334451A (en) Physicochemical treatment of nitrogen-containing waste water
JP4013010B2 (en) Method for cleaning and regenerating catalyst
JP4177521B2 (en) Method for treating wastewater containing metal and ammonia
JP2005087927A (en) In situ catalyst for supercritical water oxidation and supercritical water oxidation method and device using the catalyst
JP3226565B2 (en) Wastewater treatment method
KR20180043825A (en) A purification treatment method for a harmful substance-containing liquid and a purification treatment device for a harmful substance-containing liquid
JPH11207365A (en) Treatment of selenium-containing waste water
JP3263968B2 (en) Treatment of wastewater containing nitrate
JP3238741B2 (en) Method of treating ammonium fluoride-containing water
JP4450146B2 (en) COD component-containing water treatment method
JPH078971A (en) Treatment of ammonium fluoride-containing water
JP2003080276A (en) Method for treating hard-to-decompose organic substance
JPH07185540A (en) Adsorbent for waste water treatment, treatment of waste water using the same and method of regenerating adsorbent
JP2003300910A (en) Method for treatment of organic halogen compound
JP2000167570A (en) Treatment of waste water
JPH02152592A (en) Treatment of metal-contaminated solution
JPH07260997A (en) Method and device for treating radioactive waste liquid containing organic matter
JP2756230B2 (en) Cleaning method for wet oxidation treatment equipment
JP2001314879A (en) Wastewater treatment method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees