JP3525190B2 - Strain producing ε-poly-L-lysine in remarkable quantity and method for producing ε-poly-L-lysine using the same - Google Patents
Strain producing ε-poly-L-lysine in remarkable quantity and method for producing ε-poly-L-lysine using the sameInfo
- Publication number
- JP3525190B2 JP3525190B2 JP11324096A JP11324096A JP3525190B2 JP 3525190 B2 JP3525190 B2 JP 3525190B2 JP 11324096 A JP11324096 A JP 11324096A JP 11324096 A JP11324096 A JP 11324096A JP 3525190 B2 JP3525190 B2 JP 3525190B2
- Authority
- JP
- Japan
- Prior art keywords
- strain
- lysine
- poly
- εpl
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P21/00—Preparation of peptides or proteins
- C12P21/02—Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
- C12N1/205—Bacterial isolates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/01—Bacteria or Actinomycetales ; using bacteria or Actinomycetales
- C12R2001/465—Streptomyces
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Biomedical Technology (AREA)
- Virology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ε−ポリ−L−リ
ジン(以下、εPLという)を著量に生産する菌株と該
菌株を用いて発酵法によりεPLを製造する方法に関す
る。εPLは、必須アミノ酸であるL−リジンのポリマ
−であるため安全性が高く、また、カチオン含量が高い
ので、特異な物性を有する。したがってトイレタリ−用
品、化粧品、飼料添加物、医薬、農薬、食品添加物、電
子材料等の用途が期待できる。特に食品添加物の分野で
は、天然物系の添加物として注目されている。TECHNICAL FIELD The present invention relates to a strain producing a large amount of ε-poly-L-lysine (hereinafter referred to as εPL) and a method for producing εPL by a fermentation method using the strain. Since εPL is a polymer of L-lysine which is an essential amino acid, it has high safety, and since it has a high cation content, it has unique physical properties. Therefore, applications such as toiletry products, cosmetics, feed additives, medicines, agricultural chemicals, food additives, electronic materials, etc. can be expected. In particular, in the field of food additives, it has attracted attention as a natural product-based additive.
【0002】[0002]
【従来の技術】従来、発酵法によるεPLの製造法とし
ては、自然界から分離されたストレプトマイセス属に属
するεPL生産株であるストレプトマイセス・アルブラ
ス・サブスピ−シズ・リジノポリメラス(Streptomyces
albulus subsp.lysinopolymerus) No.346-D株(微工研
菌寄第3834号)を培地に培養し、得られる培養物からε
PLを分離、精製して得る方法が知られている(特公昭
59-20359号公報)。また、該ストレプトマイセス・アル
ブラス・サブスピ−シズ・リジノポリメラスNo.346-D株
を、L−リジンのアナログ物質であるS−(2−アミノ
エチル)−L−システインに耐性を有する変異株に変異
処理して、得られた変異株であるストレプトマイセス・
アルブラス・リジノポリメラス11011A-1株(微工研条寄
第1109号)を培地に培養して、得られる培養物から、分
離、精製して該εPLを得る方法も知られている(特公
平3-42070号公報、特公平3-78998号公報)。しかしなが
ら、種々の用途に対応しうる安価なεPLを製造するに
は、該11011A-1株を用いても、εPLの生産量及び対糖
収率は未だ充分ではないとう点もあり、さらにεPL生
産能を高めた改良株及び該改良株を用いて工業的に安価
で効率的なεPLの製造法の開発が望まれていた。2. Description of the Related Art Conventionally, as a method of producing εPL by fermentation, Streptomyces albus subspices lysinopolymeris, which is an εPL-producing strain belonging to the genus Streptomyces isolated from nature.
albulus subsp.lysinopolymerus) No. 346-D strain (Microtechnology Research Institute No. 3834) is cultivated in a medium, and ε is extracted from the obtained culture.
A method for separating and purifying PL is known (Japanese Patent Publication No.
59-20359 publication). In addition, the Streptomyces albus subspides lysinopolymeris No. 346-D strain was mutated to a mutant strain having resistance to S- (2-aminoethyl) -L-cysteine which is an analog substance of L-lysine. The resulting mutant strain, Streptomyces
There is also known a method of culturing Albrus lysinopolymeris 11011A-1 strain (Mikoken Kenjoyori No. 1109) in a medium, separating and purifying from the resulting culture to obtain the εPL (Japanese Patent Publication No. 42070 and Japanese Patent Publication No. 3-78998). However, in order to produce inexpensive εPL that can be used for various purposes, the production amount of εPL and the yield with respect to sugar are still insufficient even if the 11011A-1 strain is used. It has been desired to develop an improved strain having a higher yield and an industrially inexpensive and efficient process for producing εPL using the improved strain.
【0003】[0003]
【発明が解決しようとする課題】本発明者らは、従来の
εPL生産株またはその変異株にくらべて、εPL生産
能をさらに高めたεPL生産株を得るべく鋭意研究を重
ねた。その結果、20mg/ml 以上の高濃度のS−(2−ア
ミノエチル)−L−システイン(以下、AECという)
に対して耐性を有する変異株がεPLを著量に生産する
ことのできる菌株になることを見いだすとともに、該菌
株を好気的に培地に培養することにより、εPLを著量
に生産することができることを見い出し、これらの知見
に基づき、本研究を完成した。以上の記述から明らかな
ように、本発明の目的は、従来のεPL生産株またはそ
の改良株に比べてさらにεPLの生産能が高く、εPL
の生産性を向上させることのできる菌株を提供するとと
もに、該菌株を用いてεPLを安価で、著量に製造する
方法を提供することである。DISCLOSURE OF INVENTION Problems to be Solved by the Invention The present inventors have conducted extensive studies to obtain an εPL-producing strain having a higher εPL-producing ability than the conventional εPL-producing strain or its mutant strain. As a result, a high concentration of 20 mg / ml or more of S- (2-aminoethyl) -L-cysteine (hereinafter referred to as AEC)
It was found that a mutant strain resistant to E. coli becomes a strain capable of producing a large amount of εPL, and by culturing the strain aerobically in a medium, a large amount of εPL can be produced. We have found what we can do, and completed this research based on these findings. As is clear from the above description, the object of the present invention is that the εPL productivity is higher than that of the conventional εPL-producing strain or its improved strain.
And a method for producing εPL at low cost and in a large amount using the strain.
【0004】[0004]
【課題を解決するための手段】本発明は以下の技術的手
段で構成される。
(1)ε−ポリ−L−リジンの生産能を有するストレプ
トマイセス・アルブラス( Streptomyces albulus)種の
微生物を変異処理して得られ、20mg/ml 以上の高濃度の
S−(2−アミノエチル)−L−システインに対して耐
性を有するε−ポリ−L−リジンを著量に生産する菌
株。
(2)ストレプトマイセス・アルブラス・サブスピ−シ
ズ・リジノポリメラス(Streptomyces albulus subsp. l
ysinopolymerus)11011A-1株(微工研条寄第1109号)を
変異処理して得られ、20mg/ml 以上の高濃度のS−(2
−アミノエチル)−L−システインに対して耐性を有す
るε−ポリ−L−リジンを著量に生産するB21021 株
(寄託番号FERM P−15193号)。
(3)20mg/ml 以上の高濃度のS−(2−アミノエチ
ル)−L−システインに対して耐性を有し、かつε−ポ
リ−L−リジン生産能を有するストレプトマイセス属に
属する微生物を、好気的に培地に培養し、培養液中に生
成蓄積したε−ポリ−L−リジンを採取することを特徴
とするε−ポリ−L−リジンの製造法。
(4)前記第2項記載のB21021株を好気的に培地に培養
し、培養液中に生成蓄積したε−ポリ−L−リジンを採
取することを特徴とするε−ポリ−L−リジンの製造
法。The present invention comprises the following technical means. (1) S- (2-aminoethyl at a high concentration of 20 mg / ml or more , obtained by mutating a microorganism of Streptomyces albulus species capable of producing ε-poly-L-lysine. ) A strain producing a large amount of ε-poly-L-lysine having resistance to -L-cysteine. (2) Streptomyces albulus subsp. L
It was obtained by mutating ysinopolymerus) 11011A-1 strain (Microtechnology Research Institute No. 1109) and has a high concentration of 20 mg / ml or higher S- (2
B21021 strain (deposition number FERM P-15193) that produces a significant amount of ε-poly-L-lysine having resistance to -aminoethyl) -L-cysteine. (3) A microorganism belonging to the genus Streptomyces that is resistant to high concentrations of 20 mg / ml or more of S- (2-aminoethyl) -L-cysteine and has the ability to produce ε-poly-L-lysine. Is aerobically cultivated in a medium, and ε-poly-L-lysine produced and accumulated in the culture solution is collected, which is a method for producing ε-poly-L-lysine. (4) The ε-poly-L-lysine, which is characterized in that the B21021 strain described in the above item 2 is aerobically cultured in a medium, and ε-poly-L-lysine produced and accumulated in the culture solution is collected. Manufacturing method.
【0005】本発明で用いるAECは、L−リジンの構
造類似物質(アナログ物質)であり、L−リジンとは、
4位の炭素原子が硫黄原子と交換されていることのみが
異なった構造の化合物である。該AECを培地中に添加
すると菌の生育阻害を引き起こすが、さらにL−スレオ
ニンを組み合わせることにより、生育阻害が明らかによ
り強く示される。AEC used in the present invention is a structural analogue (analog substance) of L-lysine, and L-lysine means
It is a compound having a different structure except that the carbon atom at the 4-position is replaced with a sulfur atom. Addition of the AEC to the medium causes growth inhibition of the bacterium, but the combination of L-threonine further clearly shows the growth inhibition.
【0006】特公平3-42070 号公報に開示の11011A-1株
は、L−リジンのアナログ物質であるAECに対する耐
性を有するεPL生産株ではあるが、2mg/mlの濃度のA
EC存在下でスクリ−ニングしたものであり、その生育
範囲はAEC濃度がせいぜい5 mg/ml以下の場合だけ
で、AEC濃度が10mg/ml 以上では全く生育を示さな
い。The 11011A-1 strain disclosed in Japanese Examined Patent Publication No. 3-42070 is an εPL-producing strain having resistance to AEC, which is an analog substance of L-lysine, but has a concentration of 2 mg / ml of A.
Screening was carried out in the presence of EC, and the growth range was only when the AEC concentration was at most 5 mg / ml, and no growth was shown when the AEC concentration was 10 mg / ml or more.
【0007】本発明の改良株は、10mg/ml以上の濃度の
AEC存在下でスクリ−ニングしたもので、AEC濃度
が40mg/mlでも生育可能な耐性度を有するストレプトマ
イセス属に属する微生物であり、さらに菌学的性質も親
株である11011A-1株とは一部で違いが認められる。The improved strain of the present invention is a microorganism belonging to the genus Streptomyces which has been screened in the presence of AEC at a concentration of 10 mg / ml or more and has a resistance level capable of growing even at an AEC concentration of 40 mg / ml. There are some differences in mycological properties from the parent strain 11011A-1.
【0008】かかる改良株を得る際に使用される親株と
しては、εPLを生産するストレプトマイセス属の微生
物であれば使用できるが、ストレプトマイセス・アルブ
ラス・リジノポリメラス 11011A-1 株(微工研条寄第11
09号)が好ましい。As a parent strain used for obtaining such an improved strain, a microorganism belonging to the genus Streptomyces that produces εPL can be used, but Streptomyces alblas lysinopolymeris 11011A-1 strain (Microtechnology Research Institute) No. 11
No. 09) is preferable.
【0009】本発明で変異処理とは、εPLを生産する
ストレプトマイセス属の微生物(菌株)を、20mg/ml 以
上の高濃度のAECに対して耐性を有する改良株に変異
させる処理のことをいい、かかる変異処理の方法として
は、N−メチル−N' −ニトロ−N−ニトロソグアニジ
ン(以下NTGという)を、緩衝液1ml当たり0.1mg〜3m
gの濃度になるように添加して、10分間〜2時間該菌
株と該NTGを接触させる方法や、紫外線を照射線量10
0〜1000J/cm 2 で該菌株に照射する方法、5−ブロモウラ
シル等の薬剤で処理する方法、その他慣用の化学的もし
くは物理的変異処理方法を挙げることができる。[0009] The mutation treatment in the present invention, of the genus Streptomyces to produce εPL microorganisms (strain), 20mg / ml or more
It refers to a treatment for mutating to an improved strain resistant to the above high concentration of AEC. As a method for such a mutation treatment, N-methyl-N'-nitro-N-nitrosoguanidine (hereinafter referred to as NTG) is used. , 0.1 mg to 3 m per 1 ml of buffer solution
added so as to have a concentration of g and contacting the strain with the NTG for 10 minutes to 2 hours, or an irradiation dose of ultraviolet rays of 10
Examples include a method of irradiating the strain at 0 to 1000 J / cm 2 , a method of treating with a drug such as 5-bromouracil, and other conventional chemical or physical mutation treatment methods.
【0010】変異処理した菌株をスクリーニングする方
法としては、培地1ml当たりAECを10mg以上になるよ
うに、さらにL−スレオニンを培地1ml当たり1mgになる
ように添加した最少寒天培地上に接種し、該培地上に生
育してくる菌株を採取する方法を挙げることができる。A method for screening the strains subjected to mutation treatment is to inoculate on a minimal agar medium supplemented with AEC of 10 mg or more per 1 ml of the medium and L-threonine added to 1 mg per ml of the medium. A method of collecting a strain growing on the medium can be mentioned.
【0011】以下に本発明を詳細に説明する。AEC高
濃度耐性株である本発明の改良株の具体的な取得方法の
1つは、εPL生産株であるストレプトマイセス・アル
ブラス・サブスピ−シズ・リジノポリメラス 11011A-1
株の胞子をトリス−マレイン酸緩衝液(pH 6.0)に懸濁
し、NTGを該緩衝液1mL当たり1.5 mgとなるように該
緩衝液に添加して、37℃で60分間接触させる。その
後、遠心分離により胞子を集め、リン酸緩衝液(0.05M,
pH 7.0)で洗浄したあと、液体栄養培地(グルコ−ス5
%、硫酸アンモニウム1%、酵母エキス 0.5%、K2HPO4
0.08 %、 KH2PO4 0.136%、 MgSO4・7H2O 0.05 %、 ZnSO
4・7H2O 0.004%、 FeSO4・7H2O O.003% pH6.8、ただし、
%とはg/dl%をいう)中で一夜培養する。培養後、遠心
分離で菌体を集め、リン酸緩衝液(0.05M,pH 7.0)で洗浄
したのち、培地1ml当たりAECを20mg及び培地1ml当た
りL−スレオニンを1mg含む最少寒天培地(グルコ−ス
5%、硫酸アンモニウム1%、K2HPO4 0.08%、 KH2PO4
0.136%、 MgSO4・7H2O 0.05 %、 ZnSO4・7H2O 0.004%、
FeSO4・7H2O O.003% pH6.8、 寒天1.5 %、ただし、%は
g/dl%をいう)上に塗布し、30℃で3〜4日間培養
し、生育したコロニ−を採取する。 こうして得られた
AEC高濃度耐性株についてεPLの生産性の評価を行
い、最も生産性の高い菌株がストレプトマイセス・アル
ブラス・サブスピ−シズ・リジノポリメラス B21021株
(寄託番号FERM P−15193号)であり、これ
に続くのがB22107株、B22201株である。The present invention will be described in detail below. One of the specific methods for obtaining the improved strain of the present invention, which is an AEC high-concentration resistant strain, is a method of producing εPL, Streptomyces alblas subspices lysinopolymeris 11011A-1.
The spores of the strain are suspended in Tris-maleic acid buffer solution (pH 6.0), and NTG is added to the buffer solution so as to be 1.5 mg per mL of the buffer solution, followed by contact at 37 ° C. for 60 minutes. Then, the spores were collected by centrifugation and the phosphate buffer solution (0.05M,
After washing with pH 7.0), liquid nutrient medium (glucose 5
%, Ammonium sulfate 1%, yeast extract 0.5%, K 2 HPO 4
0.08%, KH 2 PO 4 0.136 %, MgSO 4 · 7H 2 O 0.05%, ZnSO
4 · 7H 2 O 0.004%, FeSO 4 · 7H 2 O O.003% pH6.8, however,
% Means g / dl%) and culture overnight. After culturing, the cells were collected by centrifugation and washed with phosphate buffer (0.05 M, pH 7.0), and then the agar medium (glucose) containing 20 mg of AEC per 1 ml of the medium and 1 mg of L-threonine per 1 ml of the medium (glucose). 5%, ammonium sulfate 1%, K 2 HPO 4 0.08%, KH 2 PO 4
0.136%, MgSO 4 · 7H 2 O 0.05%, ZnSO 4 · 7H 2 O 0.004%,
FeSO 4 · 7H 2 O O.003% pH6.8, 1.5% agar, however, percent
g / dl%), and cultured at 30 ° C. for 3 to 4 days, and the grown colonies are collected. The AEC high-concentration-resistant strain thus obtained was evaluated for the productivity of εPL, and the strain having the highest productivity was Streptomyces albus subspides lysinopolymeris B21021 strain (deposit number FERM P-15193). Following this are the B22107 and B22201 strains.
【0012】得られた改良株であるAEC高濃度耐性株
のAECに対する耐性度は、次のようにして測定する。
すなわち、後述の表−1に記載した各濃度のAECとL
−スレオニンを培地1mg当たり1ml添加した最少寒天培
地(前記)のそれぞれに該耐性株を塗布して、30℃で
2日〜7日間培養し、生育を肉眼で観察することによ
り、耐性度を比較する。その結果を表1に示した。親株
である11011A-1株は、AEC濃度が 5mg/ml では生育が
認められるが、10mg/mlの濃度では全く生育を示さない
のに対して、高濃度耐性株であるB21021株は、AEC濃
度が40mg/ml でも生育が認められる。この様に、本発明
の改良株は、高濃度のAECに対するの耐性を有すると
いう点で、親株と明確に区別することができる。The degree of resistance of the obtained improved strain, AEC high-concentration resistant strain, to AEC is measured as follows.
That is, AEC and L of each concentration described in Table 1 below
-Comparing the degree of resistance by applying the resistant strain to each of the minimal agar media (above) containing 1 ml of threonine per mg of the culture medium, culturing at 30 ° C for 2 to 7 days, and observing the growth with the naked eye. To do. The results are shown in Table 1. The parent strain 11011A-1 grows at an AEC concentration of 5 mg / ml, but does not grow at a concentration of 10 mg / ml, whereas the high-concentration-resistant strain B21021 strain has an AEC concentration of 5 mg / ml. Even at 40 mg / ml, growth is observed. Thus, the improved strain of the present invention can be clearly distinguished from the parent strain in that it has resistance to high concentrations of AEC.
【0013】[0013]
【表1】 [Table 1]
【0014】次に、B21021株の菌学的性質を示すと次の
通りである。
(1)形態学的性質
胞子形成菌糸の分枝法及び形態
単純分枝、閉鎖らせん状(closed spiral)
胞子の数:数10個
胞子の表面構造及び大きさ
胞子は円ないし楕円形で大きさは約1.2 〜1.5μであ
り、その表面構造はスパ イニ−(Spiny) である。
鞭毛、菌核、胞子のうの有無:認められない。
胞子柄の着生位置:気菌糸上
(2)各種培地上における培養性状
表2の各種培地上における性状はそれぞれ30℃で10〜
14日間培養後の観察結果である。Next, the bacteriological properties of the B21021 strain are shown below. (1) Morphological properties Branching method and morphology of sporulating hyphae Simple branching, closed spiral Number of spores: several tens Surface structure and size of spores Spores are circular or elliptical in size Is about 1.2 to 1.5 μ, and its surface structure is spiny. Presence or absence of flagella, sclerotium, and sporangium: Not observed. Position of spore stalk: on aerial hyphae (2) Culture properties on various media The properties on various media in Table 2 are 10 to 30 at 30 ° C, respectively.
It is an observation result after culturing for 14 days.
【0015】[0015]
【表2】 [Table 2]
【0016】(3)生理的性質
生育温度範囲
約15〜40℃。生育最適温度:30℃付近。
ゼラチンの液化、でんぷんの加水分解及び脱脂牛乳の
ペプトン化すべて陽性
脱脂牛乳の凝固:陰性
メラニン様色素の生成
チロシン寒天培地上では褐色の色素を生成する。
細胞壁組成
細胞壁組成成分中のジアミノピメリン酸の型についてベ
ッカ−(Becker)らの方法[アプライド・マイクロバイ
オロジ−(Applied Microbiology)第13巻、p236
(1965年)]により分析した結果、L,L型であった。
(4)炭素源の利用性(プリドハム・ゴットリ−ブ寒天
培地)
L−アラビノ−ス −
D−キシロ−ス −
D−グルコ−ス +
D−フラクト−ス +
L−ラムノ−ス −
D−ガラクト−ス +
シュ−クロ−ス −
ラフィノ−ス −
D−マンニト−ル +
イノシト−ル +
サリシン +
+:利用する、−:利用しない(3) Physiological properties Growth temperature range: about 15-40 ° C. Optimal growth temperature: around 30 ° C. Liquefaction of gelatin, hydrolysis of starch and peptone of skim milk Coagulation of positive skim milk: negative Coagulation of melanin-like pigment A brown pigment is formed on tyrosine agar medium. Cell Wall Composition Regarding the type of diaminopimelic acid in cell wall composition components, the method of Becker et al. [Applied Microbiology, Vol. 13, p236].
(1965)], it was L and L type. (4) Utilization of carbon source (Pridham Gottlieb agar medium) L-arabinose-D-xylose-D-glucose + D-fructose + L-rhamnose-D-galacto -Su + Sucrose-Raffinose-D-Mannitol + Inositol + Salicin + +: Used,-: Not used
【0017】以上記述したように、本発明の改良株の1
つであるB21021株の菌学的性質は、親株である11011A-1
株の菌学的性質といくつかの点において違いが認められ
る。例えば、炭素源の利用性において、11011A-1株はサ
リシンを利用できないが、B21021株は利用できる。ま
た、培養性状においても、シュ−クロ−ス・硝酸塩寒天
培地上で、11011A-1株は灰褐色の気菌糸が生育するが、
B21021株は生育しない。栄養寒天培地上では、11011A-1
株は白色の気菌糸が豊富に生育するが、B21021株では気
菌糸の生育がわずかである。さらに溶解性色素が、1101
1A-1株ではグルコ−ス・アスパラギン寒天培地及びグリ
セロ−ル・アスパラギン寒天培地でも認められるのに対
して、B21021株では両方の培地ともに認められない。こ
の様に、菌学的性質においてもB21021株は親株である11
011A-1株と明確に区別ができる。As described above, one of the improved strains of the present invention
The bacteriological properties of the B21021 strain, which is one of them, is 11011A-1 which is the parent strain.
There are some differences with the mycological properties of the strains. For example, in terms of availability of carbon source, the 11011A-1 strain cannot utilize salicin, but the B21021 strain does. Also in the culture properties, on sucrose nitrate nitrate agar, 11011A-1 strain gray-brown aerial mycelium grows,
B21021 strain does not grow. 11011A-1 on nutrient agar
The strain grows abundantly in white aerial hyphae, but in the B21021 strain, aerial hyphae grow only slightly. In addition, the soluble dye is 1101
Strain 1A-1 is also found on glucose asparagine agar and glycerol asparagine agar, whereas strain B21021 is not found on both media. Thus, the B21021 strain is a parent strain in terms of mycological properties as well.
It can be clearly distinguished from the 011A-1 strain.
【0018】得られた改良株を用いてεPLを生産する
には、該改良株を培地に接種して培養し、培養液から生
成蓄積したεPLを分離、精製する。培地としては、炭
素源、窒素源、無機物及びその他栄養物を適当に含有す
る培地ならばいずれも使用できる。炭素源としては、グ
ルコ−ス、フラクト−ス、グリセリン、スタ−チ等の該
改良株が資化可能なものなら制限されず、その含有量は
1〜5%(%はg/dl%)が好ましい。窒素源としては、
ペプトン、カゼイン加水分解物、アミノ酸、無機アンモ
ニウム塩等いずれでもかまわないが、好ましくは硫酸ア
ンモニウムである。窒素源の含有量は、0.2 〜2%(%は
g/dl%)が好ましい。培養途中で、炭素源及び窒素源を
逐次添加しても良い。無機物としてはリン酸イオン、カ
リウムイオン、ナトリウムイオン、マグネシウムイオ
ン、亜鉛イオン、鉄イオン、マンガンイオン、ニッケル
イオン、硫酸イオン等が挙げられる。また酵母エキスを
0.1〜0.5 %(%はg/dl%)含有させると、菌の生育を
良好にし、εPLの生産においても好ましい結果を与え
る。In order to produce εPL using the obtained improved strain, the improved strain is inoculated into a medium and cultivated, and εPL generated and accumulated from the culture solution is separated and purified. As the medium, any medium can be used as long as it appropriately contains a carbon source, a nitrogen source, an inorganic substance and other nutrients. The carbon source is not limited as long as the improved strain such as glucose, fructose, glycerin and starch can be assimilated, and the content thereof is 1 to 5% (% is g / dl%). Is preferred. As a nitrogen source,
Any of peptone, casein hydrolyzate, amino acid, inorganic ammonium salt and the like may be used, but ammonium sulfate is preferable. The content of nitrogen source is 0.2-2% (% is
g / dl%) is preferred. A carbon source and a nitrogen source may be sequentially added during the culture. Examples of the inorganic substance include phosphate ion, potassium ion, sodium ion, magnesium ion, zinc ion, iron ion, manganese ion, nickel ion, and sulfate ion. In addition, yeast extract
When it is contained in an amount of 0.1 to 0.5% (% is g / dl%), the growth of the bacterium is improved and favorable results are obtained in the production of εPL.
【0019】培養は、好気的条件下で振とう培養、撹拌
培養等で行う。培養温度は25〜35℃が好ましい。培
地のpHは中性付近(pH6〜8)が好ましいが、培養
開始後、菌の生育とともにpHは低下する。pHが4ま
で低下した時点で、アルカリを添加してpHを4に維持
させる。添加するアルカリはアンモニア水が好ましい
が、水酸化ナトリウム、水酸化カリウム等でも差し支え
ない。通常1〜7日間でεPLは培養液中に蓄積され
る。The culture is carried out by shaking culture, stirring culture, etc. under aerobic conditions. The culture temperature is preferably 25 to 35 ° C. The pH of the medium is preferably around neutrality (pH 6 to 8), but the pH decreases with the growth of the bacterium after the start of culturing. When the pH drops to 4, alkali is added to maintain the pH at 4. Ammonia water is preferable as the alkali to be added, but sodium hydroxide, potassium hydroxide or the like may be used. Usually, εPL is accumulated in the culture medium in 1 to 7 days.
【0020】上記培養液から遠心分離もしくはフィルタ
−で菌体を除いたのち、菌体除去液を精製、脱色し、こ
れを濃縮する。濃縮液からアセトン、エタノ−ル等の有
機溶媒で晶析することにより、εPLが得られる。After the cells are removed from the above culture solution by centrifugation or a filter, the cell removal solution is purified, decolorized and concentrated. ΕPL can be obtained by crystallizing the concentrated solution with an organic solvent such as acetone or ethanol.
【0021】[0021]
【実施例】本発明を実施例により更に詳細に説明する。
培養液中のεPL生産量の測定は、イツアキ(Itzhaki)
らのアナリテイカルバイオケミストリ(Analytical Bioc
hemistry),50,569、(1972)に記載の方法により測定し
た。すなわち、培養液を遠心分離して菌体を除いたの
ち、上澄液(εPL:0 〜200μg )2mlと1mMメチル
オレンジ水溶液2mlとを混合し、室温で30分放置後、
生じたεPL−メチルオレンジコンプレックスを遠心分
離で除き、その上澄水の465nmにおける吸光度を測
定し、培養液中のεPL量を求める。また、実施例、比
較例中の%は特に断らない限り重量(g)/容量(dl)%であ
る。EXAMPLES The present invention will be described in more detail by way of examples.
The production of εPL in the culture medium can be measured by Itzhaki.
Et al. Analytical Biochemistry
hemistry), 50, 569, (1972). That is, after centrifuging the culture solution to remove the bacterial cells, 2 ml of the supernatant (εPL: 0 to 200 μg) and 2 ml of a 1 mM methyl orange aqueous solution were mixed and allowed to stand at room temperature for 30 minutes,
The resulting εPL-methyl orange complex is removed by centrifugation, and the absorbance of the supernatant water at 465 nm is measured to determine the amount of εPL in the culture solution. In addition,% in Examples and Comparative Examples is weight (g) / volume (dl)% unless otherwise specified.
【0022】実施例1
グルコ−ス5%、酵母エキス 0.5%、硫酸アンモニウム
1%、K2HPO4 0.08%、KH2PO4 0.136%、MgSO4・7H2O 0.
05 %、 ZnSO4・7H2O 0.004%、 FeSO4・7H2O 0.003%、 pH
6.8 の培地2リットルを調製し、3リットル容ジャ−
に入れ、これに取得した改良株であるストレプトマイセ
ス・アルブラス・サブスピ−シズ・リジノポリメラスB2
1021株の前培養液 100mlを接種し、30℃、700rpm
、通気量3リットル/分で72時間、好気培養を行っ
た。ただし、pHの調整は、10%アンモニア水を用いて
pH4に維持した。また、グルコ−ス及び硫酸アンモニ
ウムについては、残存濃度が低下した時点で逐次添加を
行った。72時間培養後のεPL生産量及び対糖収率を
表3に示した。ここで対糖収率(%)とは(εPL生産
量/グルコ−ス消費量)×100で表される値のことで
ある。Example 1 Glucose 5%, yeast extract 0.5%, ammonium sulfate 1%, K 2 HPO 4 0.08%, KH 2 PO 4 0.136%, MgSO 4 .7H 2 O 0.
05%, ZnSO 4 · 7H 2 O 0.004%, FeSO 4 · 7H 2 O 0.003%, pH
Prepare 2 liters of 6.8 medium and use a 3 liter volume jar.
And obtained the improved strain of Streptomyces albula subspides lysinopolymeris B2.
Inoculate 100 ml of the pre-cultured solution of 1021 strain, 30 ℃, 700rpm
Aerobic culture was carried out for 72 hours at an aeration rate of 3 l / min. However, the pH was adjusted to 4 by using 10% aqueous ammonia. Further, glucose and ammonium sulfate were sequentially added when the residual concentration decreased. Table 3 shows the amount of εPL production and the yield based on sugar after 72 hours of culture. Here, the yield with respect to sugar (%) is a value represented by (εPL production amount / glucose consumption amount) × 100.
【0023】実施例2
ストレプトマイセス・アルブラス・サブスピ−シズ・リ
ジノポリメラスB21021株の代わりに、ストレプトマイセ
ス・アルブラス・サブスピ−シズ・リジノポリメラスB2
2107株を用いる以外は実施例1に準拠して培養し、培養
液中のεPL量を測定した。72時間培養後のεPL生
産量及び対糖収率を表3に示した。Example 2 Instead of Streptomyces alblas subspices lysinopolymeris B21021 strain, Streptomyces alblas subspices lysinopolymeris B2
Culturing was carried out in accordance with Example 1 except that strain 2107 was used, and the amount of εPL in the culture solution was measured. Table 3 shows the amount of εPL production and the yield based on sugar after 72 hours of culture.
【0024】実施例3
ストレプトマイセス・アルブラス・サブスピ−シズ・リ
ジノポリメラスB21021株の代わりに、ストレプトマイセ
ス・アルブラス・サブスピ−シズ・リジノポリメラスB2
2201株を用いる以外は実施例1に準拠して培養し、培養
液中のεPL量を測定した。72時間培養後のεPL生
産量及び対糖収率を表3に示した。Example 3 Instead of the Streptomyces alblas subspices lysinopolymeris B21021 strain, the Streptomyces alblas subspices lysinopolymeris B2 was used.
Culture was carried out in accordance with Example 1 except that strain 2201 was used, and the amount of εPL in the culture solution was measured. Table 3 shows the amount of εPL production and the yield based on sugar after 72 hours of culture.
【0025】比較例1
ストレプトマイセス・アルブラス・サブスピ−シズ・リ
ジノポリメラスB21021株の代わりに、親株であるストレ
プトマイセス・アルブラス・サブスピ−シズ・リジノポ
リメラス11011A-1株を用いる以外は実施例1に準拠して
行った。72時間培養後のεPL生産量及び対糖収率を
表3に示した。Comparative Example 1 Same as Example 1 except that the parent strain Streptomyces alblas subspices lysinopolymeris 11011A-1 was used in place of the Streptomyces alblas subspices lysinopolymeris B21021 strain. I went. Table 3 shows the amount of εPL production and the yield based on sugar after 72 hours of culture.
【0026】実施例4
グルコ−ス5%、酵母エキス 0.5%、硫酸アンモニウム
1%、K2HPO4 0.08%、KH2PO4 0.136%、MgSO4・7H2O 0.
05 %、 ZnSO4・7H2O 0.004%、 FeSO4・7H2O 0.003%、 pH
6.8 の培地2リットルを調製し、3リットル容ジャ−
に入れ、これに取得した改良株であるストレプトマイセ
ス・アルブラス・サブスピ−シズ・リジノポリメラスB2
1021株の前培養液 100mlを接種し、30℃、700rpm
、通気量3リットル/分で168時間、好気培養を行
った。ただし、pHの調整は、10%アンモニア水を用い
てpH4に維持した。また、グルコ−ス及び硫酸アンモ
ニウムについては、残存濃度が低下した時点で逐次添加
を行った。168時間培養後のεPL生産量及び対糖収
率を表4に示した。Example 4 Glucose 5%, yeast extract 0.5%, ammonium sulfate 1%, K 2 HPO 4 0.08%, KH 2 PO 4 0.136%, MgSO 4 .7H 2 O 0.
05%, ZnSO 4 · 7H 2 O 0.004%, FeSO 4 · 7H 2 O 0.003%, pH
Prepare 2 liters of 6.8 medium and use a 3 liter volume jar.
And obtained the improved strain of Streptomyces albula subspides lysinopolymeris B2.
Inoculate 100 ml of the pre-cultured solution of 1021 strain, 30 ℃, 700rpm
Aerobic culture was carried out for 168 hours at an aeration rate of 3 l / min. However, the pH was adjusted to 4 by using 10% aqueous ammonia. Further, glucose and ammonium sulfate were sequentially added when the residual concentration decreased. Table 4 shows the εPL production amount and the sugar yield after 168 hours of culture.
【0027】実施例5
ストレプトマイセス・アルブラス・サブスピ−シズ・リ
ジノポリメラスB21021株の代わりに、ストレプトマイセ
ス・アルブラス・サブスピ−シズ・リジノポリメラスB2
2107株を用いる以外は実施例4に準拠して培養し、培養
液中のεPL量を測定した。168時間培養後のεPL
生産量及び対糖収率を表4に示した。Example 5 Instead of Streptomyces alblas subspices lysinopolymeris B21021 strain, Streptomyces alblas subspices lysinopolymeris B2
Culture was carried out in accordance with Example 4 except that strain 2107 was used, and the amount of εPL in the culture solution was measured. ΕPL after 168 hours of culture
The production amount and the yield based on sugar are shown in Table 4.
【0028】実施例6
ストレプトマイセス・アルブラス・サブスピ−シズ・リ
ジノポリメラスB21021株の代わりに、ストレプトマイセ
ス・アルブラス・サブスピ−シズ・リジノポリメラスB2
2201株を用いる以外は実施例4に準拠して培養し、培養
液中のεPL量を測定した。168時間培養後のεPL
生産量及び対糖収率を表4に示した。Example 6 In place of the Streptomyces alblas subspices lysinopolymeris B21021 strain, Streptomyces alblas subspices lysinopolymeris B2
Culture was carried out in accordance with Example 4 except that 2201 strain was used, and the amount of εPL in the culture solution was measured. ΕPL after 168 hours of culture
The production amount and the yield based on sugar are shown in Table 4.
【0029】比較例2
ストレプトマイセス・アルブラス・サブスピ−シズ・リ
ジノポリメラスB21021株の代わりに、親株であるストレ
プトマイセス・アルブラス・サブスピ−シズ・リジノポ
リメラス11011A-1株を用いる以外は実施例4に準拠して
行った。168時間培養後のεPL生産量及び対糖収率
を表4に示した。Comparative Example 2 According to Example 4, except that the parent strain of Streptomyces alblas subspices lysinopolymeris 11011A-1 was used in place of the Streptomyces alblas subspices lysinopolymeris B21021 strain. I went. Table 4 shows the εPL production amount and the sugar yield after 168 hours of culture.
【0030】実施例7
実施例4で168時間培養した培養液について、この培
養液を遠心分離して菌体を除き、pH7.5に調整してか
ら、IRC−50(カチオン交換樹脂)、IRA−40
2(アニオン交換樹脂)、XT−1006(カチオン交
換樹脂)の各イオン交換樹脂で分離、精製し、逆浸透膜
(RO)で濃縮してεPLを得た。その収量を表5に示
した。Example 7 Regarding the culture broth cultivated in Example 4 for 168 hours, the culture broth was centrifuged to remove the cells, and the pH was adjusted to 7.5. Then, IRC-50 (cation exchange resin) and IRA were used. -40
2 (anion exchange resin) and XT-1006 (cation exchange resin) were separated and purified with ion exchange resins, and concentrated with a reverse osmosis membrane (RO) to obtain εPL. The yield is shown in Table 5.
【0031】比較例3
比較例2で168時間培養した培養液について、実施例
7と同様に培養液を遠心分離して菌体を除き、pH7.5
に調整してから、IRC−50(カチオン交換樹脂)、
IRA−402(アニオン交換樹脂)、XT−1006
(カチオン交換樹脂)の各イオン交換樹脂で分離、精製
し、逆浸透膜で濃縮して、εPLを得た。その収量を表
5に示した。Comparative Example 3 The culture broth cultivated for 168 hours in Comparative Example 2 was centrifuged to remove the cells in the same manner as in Example 7, and the pH was adjusted to 7.5.
After adjusting to, IRC-50 (cation exchange resin),
IRA-402 (anion exchange resin), XT-1006
(Cation exchange resin) was separated and purified with each ion exchange resin, and concentrated with a reverse osmosis membrane to obtain εPL. The yield is shown in Table 5.
【0032】表3、表4及び表5の結果から明かなよう
に、B21021株のεPL生産量及び対糖収率はともに、11
011A-1株のそれに比べて顕著に増大していることが分か
る。As is clear from the results of Table 3, Table 4 and Table 5, both the B21021 strain produced εPL and the yield based on sugar were 11
It can be seen that the strain is remarkably increased as compared with that of the 011A-1 strain.
【0033】[0033]
【発明の効果】本発明のAEC高濃度耐性を有する改良
株は、高生産かつ高収率でεPLを生産する能力を有
し、該生産株を用いることにより、高い生産性と高収率
でεPLを製造することが可能である。EFFECT OF THE INVENTION The improved strain of the present invention having a high concentration tolerance of AEC has the ability to produce εPL with high production and high yield, and by using the production strain, high productivity and high yield can be obtained. It is possible to manufacture εPL.
【0034】[0034]
【表1】[Table 1]
【0035】[0035]
【表2】[Table 2]
【0036】[0036]
【表3】 [Table 3]
【0037】[0037]
【表4】 [Table 4]
【0038】[0038]
【表5】 [Table 5]
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C12R 1:465) (56)参考文献 特開 昭63−49075(JP,A) 特開 昭63−49097(JP,A) 特開 平3−143398(JP,A) (58)調査した分野(Int.Cl.7,DB名) C12N 1/00 - 1/38 C12P 13/00 - 13/24 JSTPlus(JOIS) BIOSIS/WPI(DIALOG)─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI C12R 1: 465) (56) References JP-A-63-49075 (JP, A) JP-A-63-49097 (JP, A) JP-A-3-143398 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C12N 1/00-1/38 C12P 13/00-13/24 JSTPlus (JOIS) BIOSIS / WPI (DIALOG)
Claims (4)
トレプトマイセス・アルブラス( Streptomyces albulu
s)種の微生物を変異処理して得られ、20mg/ml 以上の高
濃度のS−(2−アミノエチル)−L−システインに対
して耐性を有するε−ポリ−L−リジンを著量に生産す
る菌株。1. Streptomyces albulu having the ability to produce ε-poly-L-lysine.
s) species of microorganisms obtained by mutation treatment and having a high concentration of ε-poly-L-lysine having resistance to high concentrations of 20 mg / ml or more of S- (2-aminoethyl) -L-cysteine. The strain to produce.
ピ−シズ・リジノポリメラス(Streptomyces albulus su
bsp. lysinopolymerus)11011A-1株(微工研条寄第1109
号)を変異処理して得られ、20mg/ml 以上の高濃度のS
−(2−アミノエチル)−L−システインに対して耐性
を有するε−ポリ−L−リジンを著量に生産するB21021
株(寄託番号FERM P−15193号)。2. Streptomyces albulus su
bsp. lysinopolymerus) 11011A-1 strain
No.), a high concentration of S of 20 mg / ml or more
B21021 which produces a significant amount of ε-poly-L-lysine having resistance to-(2-aminoethyl) -L-cysteine
Strain (deposit number FERM P-15193).
エチル)−L−システインに対して耐性を有し、かつε
−ポリ−L−リジン生産能を有するストレプトマイセス
属に属する微生物を、好気的に培地に培養し、培養液中
に生成蓄積したε−ポリ−L−リジンを採取することを
特徴とするε−ポリ−L−リジンの製造法。3. Resistant to a high concentration of 20 mg / ml or more of S- (2-aminoethyl) -L-cysteine, and ε
-A microorganism belonging to the genus Streptomyces having a poly-L-lysine-producing ability is aerobically cultured in a medium, and ε-poly-L-lysine produced and accumulated in the culture solution is collected. Process for producing ε-poly-L-lysine.
培養し、培養液中に生成蓄積したε−ポリ−L−リジン
を採取することを特徴とするε−L−リジンの製造法。4. The B21021 strain according to claim 2 is cultivated aerobically in a medium, and the ε-poly-L-lysine produced and accumulated in the culture medium is collected. Manufacturing method.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11324096A JP3525190B2 (en) | 1995-10-24 | 1996-04-09 | Strain producing ε-poly-L-lysine in remarkable quantity and method for producing ε-poly-L-lysine using the same |
PCT/JP1997/001403 WO1998048033A1 (en) | 1995-10-24 | 1997-04-23 | STRAIN PRODUCING REMARKABLE AMOUNT OF ε-POLY-L-LYSINE AND PROCESS FOR PRODUCING ε-POLY-L-LYSINE BY USING THE SAME |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29893495 | 1995-10-24 | ||
JP7-298934 | 1995-10-24 | ||
JP11324096A JP3525190B2 (en) | 1995-10-24 | 1996-04-09 | Strain producing ε-poly-L-lysine in remarkable quantity and method for producing ε-poly-L-lysine using the same |
PCT/JP1997/001403 WO1998048033A1 (en) | 1995-10-24 | 1997-04-23 | STRAIN PRODUCING REMARKABLE AMOUNT OF ε-POLY-L-LYSINE AND PROCESS FOR PRODUCING ε-POLY-L-LYSINE BY USING THE SAME |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09173057A JPH09173057A (en) | 1997-07-08 |
JP3525190B2 true JP3525190B2 (en) | 2004-05-10 |
Family
ID=27308279
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11324096A Expired - Lifetime JP3525190B2 (en) | 1995-10-24 | 1996-04-09 | Strain producing ε-poly-L-lysine in remarkable quantity and method for producing ε-poly-L-lysine using the same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP3525190B2 (en) |
WO (1) | WO1998048033A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008066182A1 (en) | 2006-11-30 | 2008-06-05 | Bmg Incorporated | Self-degradable adhesive for medical use of two-component reactant system comprising powder-liquid or powder-powder |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002330797A (en) * | 2001-05-08 | 2002-11-19 | Chisso Corp | METHOD FOR PRODUCING epsi-POLY-L-LYSINE |
CN102094066B (en) * | 2010-12-13 | 2013-07-31 | 华南农业大学 | Method for screening epsilon-polylysine producing strains |
CN107164417A (en) * | 2017-05-17 | 2017-09-15 | 郑州拜纳佛生物工程股份有限公司 | A kind of production method of ε polylysines |
WO2019039544A1 (en) | 2017-08-23 | 2019-02-28 | 公立大学法人福井県立大学 | ε-POLY-L-LYSINE DERIVATIVE HAVING CLICK FUNCTIONAL GROUP, METHOD FOR PRODUCING SAME, AND USE THEREOF |
CN110804572A (en) * | 2019-12-04 | 2020-02-18 | 江南大学 | Streptomyces and method for preparing epsilon-polylysine by using same |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5920359B2 (en) * | 1976-12-10 | 1984-05-12 | 平一 酒井 | Production method of polylysine |
JPS6349075A (en) * | 1986-08-19 | 1988-03-01 | Chisso Corp | Microbial strain capable of producing large amount of epsilon-poly-l-lysine and use of said strain |
JPH066061B2 (en) * | 1988-01-19 | 1994-01-26 | チッソ株式会社 | Method for producing ε-polylysine and ε-polylysine-producing bacterium |
JPH0693838B2 (en) * | 1988-03-03 | 1994-11-24 | チッソ株式会社 | Method for producing purified ε-polylysine |
JP3653766B2 (en) * | 1994-12-15 | 2005-06-02 | チッソ株式会社 | Production method of ε-poly-L-lysine |
-
1996
- 1996-04-09 JP JP11324096A patent/JP3525190B2/en not_active Expired - Lifetime
-
1997
- 1997-04-23 WO PCT/JP1997/001403 patent/WO1998048033A1/en active IP Right Grant
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008066182A1 (en) | 2006-11-30 | 2008-06-05 | Bmg Incorporated | Self-degradable adhesive for medical use of two-component reactant system comprising powder-liquid or powder-powder |
Also Published As
Publication number | Publication date |
---|---|
JPH09173057A (en) | 1997-07-08 |
WO1998048033A1 (en) | 1998-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3525190B2 (en) | Strain producing ε-poly-L-lysine in remarkable quantity and method for producing ε-poly-L-lysine using the same | |
KR100433741B1 (en) | Strain producing remarkable amount of ε-poly-L-lysine and process for producing ε-poly-L-lysine by using the same | |
JPH01187090A (en) | Production of epsilon-polylysine and microorganism capable of producing epsilon-polylysine | |
JP2620795B2 (en) | Method for producing colominic acid | |
JP3915505B2 (en) | Process for producing ε-poly-L-lysine | |
US5496715A (en) | Process for preparing indigo | |
JP3122990B2 (en) | Process for producing O-methyl-L-tyrosine and L-3- (1-naphthyl) alanine | |
JPS5810074B2 (en) | new microorganisms | |
JPH0342070B2 (en) | ||
JP2708536B2 (en) | Rhodococcus bacteria and method for producing 2-hydroxybutyric acid using the same | |
JPH0568537A (en) | Microbial strain of producing epsilon-poly-l-lysine | |
JPH0378998B2 (en) | ||
JP3873512B2 (en) | Method for producing D-3- (2-naphthyl) alanine | |
JPH10290688A (en) | Strain capable of producing epsilon-poly-l-lysine in remarkable amount and production of epsilon-poly-l-lysine using the same | |
JPS6228678B2 (en) | ||
JPH0342075B2 (en) | ||
JPS62257382A (en) | Novel streptococcus zooepidemicus | |
JPH11137287A (en) | Production of epsilon-poly-l-lysine | |
JPH0362397B2 (en) | ||
JPH027631B2 (en) | ||
JPH0144721B2 (en) | ||
JPH07327690A (en) | Production of indigo | |
JPH10174596A (en) | Production of epsilon-poly-l-lysine | |
JPS6328385A (en) | Production of cell body of microorganism | |
JPH0464674B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20031208 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040113 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040126 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080227 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090227 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100227 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100227 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110227 Year of fee payment: 7 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110227 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120227 Year of fee payment: 8 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120227 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120227 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130227 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140227 Year of fee payment: 10 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |