JP3522064B2 - Thermal head - Google Patents

Thermal head

Info

Publication number
JP3522064B2
JP3522064B2 JP1934197A JP1934197A JP3522064B2 JP 3522064 B2 JP3522064 B2 JP 3522064B2 JP 1934197 A JP1934197 A JP 1934197A JP 1934197 A JP1934197 A JP 1934197A JP 3522064 B2 JP3522064 B2 JP 3522064B2
Authority
JP
Japan
Prior art keywords
common electrode
heating resistor
electrode
conductive layer
ground electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1934197A
Other languages
Japanese (ja)
Other versions
JPH10217520A (en
Inventor
浩史 舛谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP1934197A priority Critical patent/JP3522064B2/en
Publication of JPH10217520A publication Critical patent/JPH10217520A/en
Application granted granted Critical
Publication of JP3522064B2 publication Critical patent/JP3522064B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、ワードプロセッサ
やファクシミリ等のプリンタ機構として組み込まれるサ
ーマルヘッドの改良に関する。 【0002】 【従来の技術】従来、ワードプロセッサ等のプリンタ機
構として組み込まれるサーマルヘッドは、例えば図3に
示す如く、アルミナセラミックス製の絶縁基板11上
に、複数個の発熱抵抗体13と、該発熱抵抗体13に接
続される個別電極14および共通電極15と、前記発熱
抵抗体13等の表面を被覆する保護層17とを順次、被
着した構造を有している。 【0003】そして上述のサーマルヘッドは、各個別電
極14を図示しないスイッチング手段を介して基準電位
(例えば0V)に、また共通電極15を外部電源(例え
ば24V)にそれぞれ接続し、前記スイッチング手段を
印画信号に基づいて開閉することによって個別電極14
及び共通電極15間に電力を印加し、発熱抵抗体13を
個々に選択的にジュール発熱させるとともに、該発熱し
た熱をインクリボンや感熱記録紙等の記録媒体に伝導さ
せ、記録媒体に所定の印画を形成することによってサー
マルヘッドとして機能する。 【0004】尚、前記保護層17は、発熱抵抗体13や
個別電極14等を、大気中に含まれている水分等の接触
による腐食や記録媒体の摺接による摩耗等から保護する
ためのものであり、硬質で高抵抗の無機質材料、例えば
窒化珪素等をスパッタリング法等によって発熱抵抗体1
3等の上面に被着させることにより形成される。 【0005】また前記共通電極15は、厚膜共通電極1
5b上に薄膜共通電極15aの一部を積層させて成り、
薄膜共通電極15aによって発熱抵抗体13の各他端に
接続し、厚膜共通電極15bによって大電流を許容する
ようにしている。 【0006】 【発明が解決しようとする課題】しかしながら、この従
来のサーマルヘッドにおいては、スパッタリング法等に
よって形成した保護層17の内部には、成膜工程におけ
る異物の付着等に起因してピンホールp等の膜欠陥が多
数形成される。このため、記録媒体を発熱抵抗体13上
に搬送して印画を行うと、記録媒体中に含まれているナ
トリウムイオン(Na+ )、カリウムイオン(K+ )、
マグネシウムイオン(Mg2+)等の金属イオンIが保護
層17中の膜欠陥を介して発熱抵抗体13等に接触し、
腐食を発生させる。この結果、発熱抵抗体13の電気抵
抗値が短時間で大幅に変動し、発熱抵抗体13を所定温
度にジュール発熱させて所望の印画を形成することが不
可となる欠点を有していた。 【0007】そこで上記欠点を解消するために、前記保
護層17上に導電層を被着させるとともに、この導電層
を共通電極15に接続させておくことにより、記録媒体
に含まれている金属イオンIを導電層のクーロン力によ
って捕獲し、これを共通電極15を介して外部に逃がす
ことが提案されている。 【0008】しかしながら、前記共通電極15は、通
常、24V程度の電位に保たれており、このため、除電
効果が弱く、正電荷をもった金属イオンIを十分に捕獲
し得るものではなかった。 【0009】また、サーマルヘッドが組み込まれるプリ
ンタ等の内部には様々な金属製の部品が存在している
が、これらの多くは接地されている。このため、前記導
電層と接地された金属製部品との間に大気中の水分を吸
収した紙カス等が付着すると、両者間に電位差が生じて
漏れ電流が流れ、これによって導電層が腐食するといっ
た欠点も有していた。 【0010】 【課題を解決するための手段】本発明は、上記欠点に鑑
み案出されたもので、絶縁基板上に、複数個の発熱抵抗
体と、該発熱抵抗体の一端側で各発熱抵抗体に個別に接
続される個別電極と、前記発熱抵抗体の他端側で発熱抵
抗体に共通に接続される共通電極と、少なくとも前記発
熱抵抗体と共通電極の一部とを被覆する保護層と、該保
護層上に被着される導電層とを備えてなるサーマルヘッ
ドであって、前記絶縁基板もしくは保護層上で且つ前記
共通電極の外側に、該共通電極に沿って、表面粗さが中
心線平均粗さRaで0.1μm〜0.5μmに設定され
た接地電極を設け、該接地電極上に前記導電層を被着さ
せて電気的に接続するとともに、前記接地電極及び前記
共通電極の端部を発熱抵抗体の前記一端側に導出し、接
地電極、共通電極及び個別電極の端部を前記絶縁基板の
一辺に沿って配列したことを特徴とするものである。 【0011】 【0012】 【発明の実施の形態】以下、本発明を添付図面に基づい
て詳細に説明する。図1は、本発明のサーマルヘッドの
一形態を示す平面図、図2は図1のサーマルヘッドの平
面図であり、1は絶縁基板、3は発熱抵抗体、4は個別
電極、5は共通電極、7は保護層、8は導電層、9は接
地電極である。 【0013】前記絶縁基板1はアルミナセラミックスや
ガラス等の電気絶縁性材料から成っており、その上面
で、グレーズ層2、発熱抵抗体3、個別電極4及び共通
電極5、保護層7、導電層8、接地電極9等を支持して
いる。前記絶縁基板1は、アルミナセラミックスから成
る場合、アルミナ、シリカ、マグネシア等のセラミック
ス原料粉末に適当な有機溶剤、溶媒を添加混合して泥漿
状と成すとともにこれを従来周知のドクターブレード法
やカレンダーロール法等を採用することによってセラミ
ックグリーンシートを形成し、しかる後、前記セラミッ
クグリーンシートを所定の長方形状に打ち抜き加工する
とともに高温で焼成することによって製作される。 【0014】また前記絶縁基板1の上面には断面円弧状
のグレーズ層2が絶縁基板1の長手方向に帯状に被着形
成されている。前記グレーズ層2はガラスやポリイミド
樹脂等の低熱伝導性材料から成っており、その上面に被
着される発熱抵抗体3の発する熱を蓄積及び放散してサ
ーマルヘッドの熱応答特性を良好に維持する作用を為
す。尚、前記グレーズ層2は、ガラスから成る場合、所
定のガラスペーストを従来周知のスクリーン印刷等によ
って帯状に印刷・塗布し、これを高温で焼き付けること
によって例えば高さ35〜150 μm、幅0.8 〜3.0 mm、
曲率半径2.5 〜28.0mmの外形となるように被着・形成
される。 【0015】また前記グレーズ層2上には、直線状に配
列された複数個の発熱抵抗体3と該各発熱抵抗体3の両
端に接続される個別電極4及び共通電極5とがそれぞれ
被着されている。前記発熱抵抗体3は窒化タンタル等の
電気抵抗材料から成っているため、個別電極4及び共通
電極5を介して外部電源からの電力が印加されると、記
録媒体に印画を形成するのに必要な所定の温度にジュー
ル発熱する作用を為す。 【0016】また前記発熱抵抗体3に接続された個別電
極4及び共通電極5はアルミニウムや銅等の金属により
形成されており、個別電極4は発熱抵抗体3の各一端を
図示しないスイッチング手段を介して基準電位に個別に
接続し、また共通電極5は発熱抵抗体3の各他端を外部
電源(例えば24V)に共通接続する。これら個別電極4
及び共通電極5は、個別電極4のに接続されるスイッチ
ング手段を印画信号に基づいて開閉させることにより発
熱抵抗体3に所定の電力を印加する作用を為す。尚、前
記共通電極5は、スクリーン印刷等の厚膜手法によって
形成される厚膜共通電極5b上にスパッタリング法及び
フォトリソグラフィー技術等の薄膜手法によって形成さ
れる薄膜共通電極5aの一部を積層させて成り、前記薄
膜共通電極5aによって発熱抵抗体3の各他端に接続
し、前記厚膜共通電極5bによって共通電極5に印加さ
れる大きな電流の流れを許容するようになっている。 【0017】また一方、前記絶縁基板1上に取着された
発熱抵抗体3、個別電極4、共通電極5等の上面には、
保護層7が被着されている。前記保護層7は硬質(ビッ
カース硬度Hv:1500以上)で高抵抗(1012Ωcm以
上)の無機質材料、例えば窒化珪素等から成り、発熱抵
抗体3等を大気中に含まれている水分等の接触による腐
食や記録媒体の摺接による摩耗等から保護する作用を為
す。尚、前記保護層7はスパッタリング法等の薄膜手法
によって約4〜10μmの厚みをもって被着・形成さ
れ、その結果、保護層7の内部には成膜工程における異
物の付着等に起因してピンホールp(径数μm〜数十μ
mの穴)等の膜欠陥が多数形成されることとなる。 【0018】また前記保護層7の上面には導電性を有し
た材料から成る導電層8が被着されている。前記導電層
8はそのシート抵抗が、例えば 2×102 〜 5×106 Ω/
□の範囲に、好適には 2×103 〜 1×106 Ω/□に設定
され、後述する接地電極9に電気的に接続されることに
より、印画動作時に発熱抵抗体3上に搬送される記録媒
体中の金属イオン(Na+ 、K+ 、Mg2+等)をクーロ
ン力によって捕獲する作用を為す。これによって金属イ
オンが保護層7中の膜欠陥を介して発熱抵抗体3等に接
触するのが有効に防止される。 【0019】尚、このような導電層8としては、TiC
やTaSiO2 ,TaN,TiSiO2 ,CrSiO2
等のビッカース硬度Hv300 以上の硬度を有した導電材
料を用いるのが好ましい。 【0020】そして前記絶縁基板1の上面で、共通電極
5の外側には、共通電極5との間に0.5〜1.0mm
の間隔を開けるようにして接地電極9が設けられてい
る。 【0021】前記接地電極9は、印画動作時、常に0V
の電位に保持されるようになっており、その上面には前
記導電層8の一部が被着されているため、記録媒体を発
熱抵抗体3上に搬送して印画を行う際、記録媒体中に含
まれている金属イオンを導電層8によって良好に捕獲
し、金属イオンの電荷を接地電極9を介して外部に逃が
すことができる。これにより、発熱抵抗体3の電気抵抗
値が大幅に変動することはなくなり、長期間にわたって
良好な印画を形成することが可能となる。 【0022】またこの場合、前記導電層8と接地された
外部の金属製部品との間に大気中の水分を吸収した紙カ
ス等が付着しても、導電層8と前記金属部分との間に電
位差は生じず、漏れ電流等は一切流れない。この結果、
導電層8の電気抵抗値を長期にわたって略一定に保つこ
とができるようになり、記録媒体に含まれている金属イ
オンの捕獲が導電層8によって確実に行われる。 【0023】更に前記接地電極9は共通電極5の外側に
共通電極5に沿って形成されており、接地電極9と個別
電極4との間には共通電極5が配されているため、金属
イオンの捕獲に伴って接地電極9に瞬間的に大きな電流
が流れても、個別電極4に電磁誘導が起きることはな
く、個別電極4の電位を略一定に保つことができる。よ
って全ての発熱抵抗体3に正しく電流を供給してサーマ
ルヘッドを常に正確に動作させることができる。尚、前
述の電磁誘導によって共通電極5の電位が少し変化する
こともあるが、共通電極5は全ての発熱抵抗体3に接続
されているので個々の発熱抵抗体3に与える影響は無視
できる程度に小さく、印画の形成にあたって実質的な問
題はない。 【0024】このような接地電極9は、前述した厚膜共
通電極5bと同様に、厚膜手法等を採用することによっ
て形成される。具体的には、銅粉末等を用いて作製した
所定の導電ペーストを従来周知のスクリーン印刷等によ
って例えば幅0.5mm以上、厚み約30μmで印刷・
塗布し、これを高温で焼き付けることによって被着・形
成される。このとき、厚膜共通電極5bと接地電極9の
パターンを1枚のスクリーンに形成し、同時に印刷を行
うようにすれば、厚膜共通電極5bと接地電極9の印刷
及び焼き付け工程が一度で済み、サーマルヘッドの製造
工程を簡略化することができる。また前記導電層8は、
保護層7及び接地電極9の上面に従来周知のスパッタリ
ング法等によってTiC等の硬質導電材料を数300Å
〜3000Åの厚みに堆積させることによって被着・形
成され、これによって導電層8と接地電極9との接続が
同時に行われる。 【0025】かくして上述したサーマルヘッドは、個別
電極4と共通電極5との間に印画信号に基づいて所定の
電力を印加し、発熱抵抗体3を個々に選択的にジュール
発熱させるとともに、該発熱した熱を記録媒体に伝導さ
せ、記録媒体に所定の印画を形成することによってサー
マルヘッドとして機能する。 【0026】(実験例)次に本発明のサーマルヘッドに
係る実験例について説明する。まず、発熱抵抗体等が被
着された絶縁基板の上面に窒化珪素から成る保護層7を
約5μmの厚みに被着させ、その上にTaSiO2 系の
導電材料から成る導電層を被着させた46個のサーマル
ヘッドサンプルを作製した。ここで各サンプルの導電層
の厚みは80〜4,200 Åの範囲で10段階、また熱伝導率
はTaとSiO2 の組成比率を変化させることにより7
段階、準備した。 【0027】そして次に、各サンプルを用いて実際に印
画動作を行い(走行距離:30km)、各サンプルによ
って記録された印画ドットの鮮明度と導電層の被着状態
についてそれぞれ観察した。その結果を表1に示す。 【0028】 【表1】 【0029】この表1によれば、導電層の厚みを300 Å
よりも薄くしたサンプルでは、記録媒体の摺接により導
電層の一部が磨耗し、保護層の表面が露出した。また導
電層の厚みを3,000 Åよりも厚くしたサンプルでは、導
電層が途中で剥離し、金属イオンの捕獲機能が喪失され
た。これは導電層と保護層との間に印加される熱応力が
導電層の厚みと共に大きくなったためと考えられる。ま
た導電層の熱伝導率を0.005(cal/sec ・cm・℃) よりも
大きく設定したサンプルでは、発熱抵抗体の発した熱が
導電層中を拡散して印画ドットの輪郭がぼける傾向があ
った。これに対し、導電層の厚みを300 〜3,000 Å、熱
伝導率を0.005(cal/sec ・cm・℃) 以下としたサンプル
では、導電層が磨耗して保護層の表面を露出させたり、
導電層が剥離してしまったものは一切なく、また記録媒
体には印画ぼけの無い鮮明な印画ドットが形成された。 【0030】これらのことから、前記導電層8の厚みは
300 〜3,000 Åに、熱伝導率は0.005(cal/sec ・cm・
℃) 以下に設定するのが好ましいことが判る。 【0031】尚、本発明は上述の形態に限定されるもの
ではなく、本発明の要旨を逸脱しない範囲において種々
の変更、改良等が可能であり、例えば、上述した形態で
は接地電極を発熱抵抗体等が被着されている絶縁基板の
上面に形成したが、これに代えて、接地電極を絶縁基板
の端面に形成したり、或いは、端面から裏面にかけての
広い領域にわたって形成しても良い。この場合、絶縁基
板の上面には接地電極を配置するためのスペースが不要
となり、サーマルヘッドの小型化が可能になる。また前
記接地電極は、上述した形態では絶縁基板1上に形成し
たが、これに代えて、保護層7上に形成しても構わな
い。 【0032】更に、上述した図1のサーマルヘッドにお
いて接地電極9の表面粗さを中心線平均粗さRaで0.
1μm以上になしておけば、その上に形成される導電層
8をアンカー効果によって接地電極9の表面に強固に被
着させておくことができ、サーマルヘッドの信頼性が向
上されるようになる。尚、接地電極9の表面粗さが中心
線平均粗さRaで0.5μmを超えると、印画動作時、
記録媒体がスティッキングを起こし印画品質を低下させ
ることがある。従って接地電極9の表面粗さは中心線平
均粗さRaで0.1〜0.5μmの範囲になしておくこ
とが好ましい。 【0033】 【発明の効果】本発明のサーマルヘッドによれば、上記
構成により、接地電極上に形成される導電層をアンカー
効果によって接地電極の表面に強固に被着させておくこ
とができ、サーマルヘッドの信頼性を向上させることが
可能となる。 【0034】また本発明のサーマルヘッドによれば、上
記構成により、共通電極の外側に存在する接地電極を、
個別電極、共通電極とともに、外部配線基板の信号配線
等に一括して接続することができ、製造工程の簡略化が
可能となる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a thermal head incorporated as a printer mechanism in a word processor, a facsimile or the like. 2. Description of the Related Art Conventionally, a thermal head incorporated as a printer mechanism such as a word processor includes a plurality of heating resistors 13 on an insulating substrate 11 made of alumina ceramics, as shown in FIG. It has a structure in which an individual electrode 14 and a common electrode 15 connected to the resistor 13 and a protective layer 17 covering the surface of the heating resistor 13 and the like are sequentially applied. In the above thermal head, each individual electrode 14 is connected to a reference potential (for example, 0 V) via switching means (not shown), and the common electrode 15 is connected to an external power supply (for example, 24 V). The individual electrodes 14 are opened and closed based on the print signal.
Power is applied between the common electrode 15 and the heating resistors 13 to selectively and individually generate Joule heat, and the generated heat is conducted to a recording medium such as an ink ribbon or a thermosensitive recording paper, and a predetermined amount is applied to the recording medium. It functions as a thermal head by forming a print. The protective layer 17 protects the heating resistor 13, the individual electrodes 14 and the like from corrosion due to contact with moisture or the like contained in the air and abrasion due to sliding contact of the recording medium. The heating resistor 1 is made of a hard, high-resistance inorganic material such as silicon nitride by sputtering or the like.
It is formed by being attached to the upper surface such as 3. The common electrode 15 is a thick film common electrode 1.
5b, a portion of the thin film common electrode 15a is laminated on
The thin-film common electrode 15a is connected to each other end of the heating resistor 13, and the thick-film common electrode 15b allows a large current. [0006] However, in this conventional thermal head, a pinhole is formed inside the protective layer 17 formed by a sputtering method or the like due to adhesion of foreign matter in a film forming process. Many film defects such as p are formed. For this reason, when printing is performed by transporting the recording medium onto the heating resistor 13, sodium ions (Na + ), potassium ions (K + ),
Metal ions I such as magnesium ions (Mg 2+ ) come into contact with the heating resistor 13 and the like via film defects in the protective layer 17,
Causes corrosion. As a result, the electric resistance value of the heating resistor 13 fluctuates greatly in a short period of time, and has a drawback that it is impossible to form a desired print by causing the heating resistor 13 to generate Joule heat to a predetermined temperature. In order to solve the above-mentioned drawback, a conductive layer is deposited on the protective layer 17 and the conductive layer is connected to the common electrode 15 so that the metal ions contained in the recording medium can be removed. It has been proposed that I be captured by the Coulomb force of the conductive layer and escape to the outside via the common electrode 15. However, the common electrode 15 is normally kept at a potential of about 24 V, so that the charge removing effect is weak and the common metal ions I having a positive charge cannot be sufficiently captured. There are various metal parts inside a printer or the like in which the thermal head is incorporated, and most of them are grounded. Therefore, if paper dust or the like that absorbs moisture in the air adheres between the conductive layer and the grounded metal part, a potential difference occurs between the two and a leakage current flows, thereby corroding the conductive layer. There was also a disadvantage such as. SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned drawbacks. A plurality of heating resistors are provided on an insulating substrate, and each heating resistor is provided at one end of the heating resistor. An individual electrode individually connected to the resistor; a common electrode commonly connected to the heating resistor at the other end of the heating resistor; and protection for covering at least a part of the heating resistor and the common electrode. A thermal head comprising a layer and a conductive layer deposited on the protective layer, wherein the surface roughness is provided on the insulating substrate or the protective layer and outside the common electrode along the common electrode. Is provided with a ground electrode having a center line average roughness Ra set to 0.1 μm to 0.5 μm, and the conductive layer is applied on the ground electrode to be electrically connected, and the ground electrode and the ground electrode are provided. The end of the common electrode is led out to the one end of the heating resistor, and the And it is characterized in that the end portion of the common electrode and the individual electrodes are arranged along one side of the insulating substrate. Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a plan view showing one embodiment of the thermal head of the present invention, and FIG. 2 is a plan view of the thermal head of FIG. 1, wherein 1 is an insulating substrate, 3 is a heating resistor, 4 is an individual electrode, and 5 is a common electrode. An electrode, 7 is a protective layer, 8 is a conductive layer, and 9 is a ground electrode. The insulating substrate 1 is made of an electrically insulating material such as alumina ceramics or glass. On its upper surface, the glaze layer 2, the heating resistor 3, the individual electrodes 4 and the common electrode 5, the protective layer 7, the conductive layer 8, the ground electrode 9 and the like are supported. When the insulating substrate 1 is made of alumina ceramics, a ceramic material powder of alumina, silica, magnesia, or the like is mixed with an appropriate organic solvent and a solvent to form a slurry. The ceramic green sheet is formed by employing a method or the like, and thereafter, the ceramic green sheet is punched into a predetermined rectangular shape and fired at a high temperature. A glaze layer 2 having an arc-shaped cross section is formed on the upper surface of the insulating substrate 1 in a strip shape in the longitudinal direction of the insulating substrate 1. The glaze layer 2 is made of a low thermal conductive material such as glass or polyimide resin, and accumulates and dissipates heat generated by the heat generating resistor 3 attached to the upper surface thereof, thereby maintaining good thermal response characteristics of the thermal head. To act. When the glaze layer 2 is made of glass, a predetermined glass paste is printed and applied in a belt shape by a conventionally known screen printing or the like, and is baked at a high temperature, for example, to a height of 35 to 150 μm and a width of 0.8 to 0.8 μm. 3.0 mm,
It is adhered and formed to have an outer shape with a radius of curvature of 2.5 to 28.0 mm. On the glaze layer 2, a plurality of heating resistors 3 arranged in a straight line and individual electrodes 4 and common electrodes 5 connected to both ends of each heating resistor 3 are attached. Have been. Since the heating resistor 3 is made of an electric resistance material such as tantalum nitride, when power from an external power source is applied through the individual electrode 4 and the common electrode 5, it is necessary to form a print on a recording medium. It acts to generate Joule heat at a predetermined temperature. The individual electrode 4 and the common electrode 5 connected to the heating resistor 3 are formed of a metal such as aluminum or copper. The other end of the heating resistor 3 is commonly connected to an external power supply (for example, 24 V). These individual electrodes 4
The common electrode 5 applies a predetermined power to the heating resistor 3 by opening and closing switching means connected to the individual electrode 4 based on a printing signal. The common electrode 5 is formed by laminating a part of a thin film common electrode 5a formed by a thin film technique such as a sputtering method and a photolithography technique on a thick film common electrode 5b formed by a thick film technique such as screen printing. The thin-film common electrode 5a is connected to each other end of the heating resistor 3, and the thick-film common electrode 5b allows a large current to be applied to the common electrode 5. On the other hand, on the upper surfaces of the heating resistor 3, the individual electrode 4, the common electrode 5 and the like attached on the insulating substrate 1,
A protective layer 7 has been applied. The protective layer 7 is made of a hard (Vickers hardness Hv: 1500 or more) inorganic material having a high resistance (10 12 Ωcm or more), for example, silicon nitride. It functions to protect against corrosion due to contact and wear due to sliding contact of the recording medium. The protective layer 7 is deposited and formed with a thickness of about 4 to 10 μm by a thin film technique such as a sputtering method. As a result, a pin is formed inside the protective layer 7 due to adhesion of foreign matter in a film forming process. Hole p (several μm to several tens μm in diameter)
A large number of film defects such as holes (m) are formed. On the upper surface of the protective layer 7, a conductive layer 8 made of a conductive material is applied. The conductive layer 8 has a sheet resistance of, for example, 2 × 10 2 to 5 × 10 6 Ω /.
In the range of □, preferably set to 2 × 10 3 to 1 × 10 6 Ω / □, and by being electrically connected to a ground electrode 9 described later, the sheet is conveyed onto the heating resistor 3 during printing operation. To capture metal ions (Na + , K + , Mg 2+, etc.) in the recording medium by Coulomb force. This effectively prevents metal ions from coming into contact with the heating resistor 3 and the like via film defects in the protective layer 7. The conductive layer 8 is made of TiC
And TaSiO 2 , TaN, TiSiO 2 , CrSiO 2
It is preferable to use a conductive material having a hardness of not less than Vickers hardness Hv300. On the upper surface of the insulating substrate 1 and outside the common electrode 5, a distance of 0.5 to 1.0 mm
The ground electrode 9 is provided so as to leave an interval. During the printing operation, the ground electrode 9 always has 0V.
And a part of the conductive layer 8 is adhered to the upper surface thereof, so that when printing is performed by transporting the recording medium onto the heating resistor 3, The metal ions contained therein can be satisfactorily captured by the conductive layer 8, and the charges of the metal ions can escape to the outside via the ground electrode 9. As a result, the electric resistance value of the heating resistor 3 does not fluctuate significantly, and a good print can be formed over a long period of time. In this case, even if paper dust or the like that absorbs atmospheric moisture adheres between the conductive layer 8 and the external metal part grounded, the conductive layer 8 and the metal part are not No potential difference occurs, and no leakage current or the like flows at all. As a result,
The electric resistance value of the conductive layer 8 can be kept substantially constant for a long time, and the metal layer contained in the recording medium can be reliably captured by the conductive layer 8. Further, the ground electrode 9 is formed outside the common electrode 5 along the common electrode 5, and the common electrode 5 is disposed between the ground electrode 9 and the individual electrode 4, so that the metal ion Even if a large current instantaneously flows through the ground electrode 9 as a result of the capture, no electromagnetic induction occurs in the individual electrode 4 and the potential of the individual electrode 4 can be kept substantially constant. Therefore, the current can be supplied to all the heating resistors 3 correctly, and the thermal head can always be operated accurately. The potential of the common electrode 5 may slightly change due to the above-described electromagnetic induction. However, since the common electrode 5 is connected to all the heating resistors 3, the influence on each heating resistor 3 can be ignored. And there is no substantial problem in forming a print. Such a ground electrode 9 is formed by employing a thick film method or the like, similarly to the above-mentioned thick film common electrode 5b. Specifically, a predetermined conductive paste produced using a copper powder or the like is printed by, for example, conventionally well-known screen printing with a width of 0.5 mm or more and a thickness of about 30 μm.
It is applied and formed by applying and baking it at a high temperature. At this time, if the pattern of the thick film common electrode 5b and the ground electrode 9 is formed on one screen and printing is performed simultaneously, the printing and printing process of the thick film common electrode 5b and the ground electrode 9 can be performed only once. In addition, the manufacturing process of the thermal head can be simplified. The conductive layer 8 is
A hard conductive material such as TiC is coated on the upper surfaces of the protective layer 7 and the ground electrode 9 by a known sputtering method or the like for several 300 Å.
The conductive layer 8 and the ground electrode 9 are connected at the same time by being deposited and formed by depositing to a thickness of about 3000 °. Thus, in the above-described thermal head, a predetermined power is applied between the individual electrode 4 and the common electrode 5 based on the print signal, and the heating resistors 3 are individually selectively heated to generate Joule heat. The generated heat is conducted to the recording medium, and a predetermined print is formed on the recording medium to function as a thermal head. (Experimental Example) Next, an experimental example relating to the thermal head of the present invention will be described. First, a protective layer 7 made of silicon nitride is applied to a thickness of about 5 μm on the upper surface of an insulating substrate on which a heating resistor or the like is applied, and a conductive layer made of a TaSiO 2 -based conductive material is applied thereon. Forty-six thermal head samples were produced. Here, the thickness of the conductive layer of each sample is 10 steps in the range of 80 to 4,200 °, and the thermal conductivity is 7 by changing the composition ratio of Ta and SiO 2.
Stage, prepared. Next, the printing operation was actually performed using each sample (traveling distance: 30 km), and the sharpness of the printing dots recorded by each sample and the adhesion state of the conductive layer were observed. Table 1 shows the results. [Table 1] According to Table 1, the thickness of the conductive layer is 300 mm.
In the thinner sample, a part of the conductive layer was worn by sliding contact of the recording medium, and the surface of the protective layer was exposed. In the sample in which the thickness of the conductive layer was more than 3,000 mm, the conductive layer was peeled off in the middle, and the function of capturing metal ions was lost. This is probably because the thermal stress applied between the conductive layer and the protective layer increased with the thickness of the conductive layer. In a sample in which the thermal conductivity of the conductive layer was set to be larger than 0.005 (cal / seccm.degree.C), the heat generated by the heating resistor diffused through the conductive layer and the outline of the printing dot was likely to be blurred. Was. On the other hand, in a sample in which the thickness of the conductive layer is 300 to 3,000 mm and the thermal conductivity is 0.005 (cal / seccm.degree. C.) or less, the conductive layer is worn to expose the surface of the protective layer,
None of the conductive layers were peeled off, and clear printing dots without blurring were formed on the recording medium. From the above, the thickness of the conductive layer 8 is
300 ~ 3,0003,000, thermal conductivity 0.005 (cal / sec ・ cm ・
° C) It is understood that it is preferable to set the following. It should be noted that the present invention is not limited to the above-described embodiment, and various changes and improvements can be made without departing from the spirit of the present invention. Although the ground electrode is formed on the upper surface of the insulating substrate on which the body and the like are attached, the ground electrode may be formed on the end surface of the insulating substrate, or may be formed over a wide area from the end surface to the back surface. In this case, no space is required on the upper surface of the insulating substrate for disposing the ground electrode, and the thermal head can be reduced in size. The ground electrode is formed on the insulating substrate 1 in the above-described embodiment, but may be formed on the protective layer 7 instead. Further, in the above-described thermal head of FIG. 1, the surface roughness of the ground electrode 9 is defined as a center line average roughness Ra of 0.
If the thickness is 1 μm or more, the conductive layer 8 formed thereon can be firmly adhered to the surface of the ground electrode 9 by the anchor effect, and the reliability of the thermal head is improved. . When the surface roughness of the ground electrode 9 exceeds 0.5 μm in the center line average roughness Ra, at the time of printing operation,
In some cases, the recording medium sticks to lower the printing quality. Therefore, it is preferable that the surface roughness of the ground electrode 9 is in the range of 0.1 to 0.5 μm in center line average roughness Ra. According to the thermal head of the present invention, the conductive layer formed on the ground electrode can be firmly adhered to the surface of the ground electrode by the anchor effect by the above structure. It is possible to improve the reliability of the thermal head. According to the thermal head of the present invention, the ground electrode existing outside the common electrode can be replaced by the above structure.
Together with the individual electrodes and the common electrode, they can be collectively connected to the signal wiring and the like of the external wiring board, and the manufacturing process can be simplified.

【図面の簡単な説明】 【図1】本発明のサーマルヘッドの一形態を示す断面図
である。 【図2】図1のサーマルヘッドの平面図である。 【図3】従来のサーマルヘッドの断面図である。 【符号の説明】 1 絶縁基板 3 発熱抵抗体 4 個別電極 5 共通電極 7 保護層 8 導電層 9 接地電極
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view showing an embodiment of a thermal head according to the present invention. FIG. 2 is a plan view of the thermal head of FIG. FIG. 3 is a sectional view of a conventional thermal head. [Description of Signs] 1 Insulating substrate 3 Heating resistor 4 Individual electrode 5 Common electrode 7 Protective layer 8 Conductive layer 9 Ground electrode

Claims (1)

(57)【特許請求の範囲】 【請求項1】絶縁基板上に、複数個の発熱抵抗体と、該
発熱抵抗体の一端側で各発熱抵抗体に個別に接続される
個別電極と、前記発熱抵抗体の他端側で発熱抵抗体に共
通に接続される共通電極と、少なくとも前記発熱抵抗体
と共通電極の一部とを被覆する保護層と、該保護層上に
被着される導電層とを備えてなるサーマルヘッドであっ
て、 前記絶縁基板もしくは保護層上で且つ前記共通電極の外
側に、該共通電極に沿って、表面粗さが中心線平均粗さ
Raで0.1μm〜0.5μmに設定された接地電極を
設け、該接地電極上に前記導電層を被着させて電気的に
接続するとともに、前記接地電極及び前記共通電極の端
部を発熱抵抗体の前記一端側に導出し、接地電極、共通
電極及び個別電極の端部を前記絶縁基板の一辺に沿って
配列したことを特徴とするサーマルヘッド。
(57) Claims: 1. A plurality of heating resistors, an individual electrode individually connected to each heating resistor at one end of the heating resistor, on the insulating substrate , At the other end of the heating resistor,
A common electrode, a protective layer that covers at least the heating resistor and a part of the common electrode, and a conductive head that is provided on the protective layer. On the insulating substrate or the protective layer and outside the common electrode, along the common electrode , the surface roughness has a center line average roughness.
A ground electrode set to 0.1 μm to 0.5 μm in Ra is provided , and the conductive layer is deposited on the ground electrode to electrically
Connected to the ground electrode and the common electrode.
Part is led out to the one end side of the heating resistor, and the ground electrode and common
Edges of the electrodes and the individual electrodes along one side of the insulating substrate
A thermal head characterized by being arranged.
JP1934197A 1997-01-31 1997-01-31 Thermal head Expired - Fee Related JP3522064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1934197A JP3522064B2 (en) 1997-01-31 1997-01-31 Thermal head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1934197A JP3522064B2 (en) 1997-01-31 1997-01-31 Thermal head

Publications (2)

Publication Number Publication Date
JPH10217520A JPH10217520A (en) 1998-08-18
JP3522064B2 true JP3522064B2 (en) 2004-04-26

Family

ID=11996709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1934197A Expired - Fee Related JP3522064B2 (en) 1997-01-31 1997-01-31 Thermal head

Country Status (1)

Country Link
JP (1) JP3522064B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3989120B2 (en) * 1999-03-25 2007-10-10 富士フイルム株式会社 Thermal head
JP2008254423A (en) * 2007-03-13 2008-10-23 Tdk Corp Thermal head, printing device, and manufacturing method of thermal head

Also Published As

Publication number Publication date
JPH10217520A (en) 1998-08-18

Similar Documents

Publication Publication Date Title
US20090207229A1 (en) Thermal print head and method for manufacturing same
JP3522064B2 (en) Thermal head
JPH11277781A (en) Thermal head
JP3481829B2 (en) Thermal head
JP4163921B2 (en) Thermal head and thermal printer using the same
US6441839B1 (en) Thermal head
JPS6072752A (en) Thermal head
JPS63278867A (en) Thermal print head
JP3476938B2 (en) Thermal head
JP2000246929A (en) Manufacture of thermal head
JP3476945B2 (en) Thermal head
JP3481809B2 (en) Thermal head
JPH08150750A (en) Thermal head
JP3488368B2 (en) Thermal head
JPH11157111A (en) Thermal head
JP3472478B2 (en) Thermal head
JPH02266959A (en) Thermal head
JP4284079B2 (en) Thermal printer
JPH09234895A (en) Thermal head
JPH0383660A (en) Thermal head
JP2837026B2 (en) Thermal head
JPS6072750A (en) Thermosensitive recording head
JP2004230583A (en) Thermal head and thermal printer using the same
JPH07125277A (en) Manufacture of thermal head
JP3329970B2 (en) Thermal head

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040203

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees