JP3521386B2 - Electric double layer capacitor, manufacturing method thereof, and polarizable electrode material - Google Patents

Electric double layer capacitor, manufacturing method thereof, and polarizable electrode material

Info

Publication number
JP3521386B2
JP3521386B2 JP2000002559A JP2000002559A JP3521386B2 JP 3521386 B2 JP3521386 B2 JP 3521386B2 JP 2000002559 A JP2000002559 A JP 2000002559A JP 2000002559 A JP2000002559 A JP 2000002559A JP 3521386 B2 JP3521386 B2 JP 3521386B2
Authority
JP
Japan
Prior art keywords
electrolyte solution
polarizable electrode
double layer
electric double
layer capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000002559A
Other languages
Japanese (ja)
Other versions
JP2001196276A (en
Inventor
安部  聡
Original Assignee
Necトーキン富山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necトーキン富山株式会社 filed Critical Necトーキン富山株式会社
Priority to JP2000002559A priority Critical patent/JP3521386B2/en
Publication of JP2001196276A publication Critical patent/JP2001196276A/en
Application granted granted Critical
Publication of JP3521386B2 publication Critical patent/JP3521386B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PROBLEM TO BE SOLVED: To provide an electric double layer capacitor which has a low equivalent series resistance and is superior in stability of the capacitance value for a long time. SOLUTION: Polarizable electrodes 3A, 3B made of active carbon powder, an electrolyte solution, and a binder are dotted with pores 6 each having a volume corresponding to a grain greater than the active carbon powder and less than a grain size of 10 μm. The electrolyte solution is held also in the pores 6 to increase the absolute quantity of the electrolyte solution contained in the polarizable electrodes, compared with the conventional one. This increases the ion conductivity between the polarizable electrodes 3A, 3B by the increment of the absolute quantity of the electrolyte solution, resulting in a low equivalent series resistance and a little influence of the decrease of the electrolyte solution due to dry up. The electrolyte solution uses e.g. an acid water solution such as sulfuric acid and grains soluble in the electrolyte solution e.g. P4VP are added in the material of the polarizable electrodes and dissolved in the electrolyte solution to form pores 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電気二重層コンデ
ンサ及びその製造方法並びに分極性電極材に関し、特
に、活性炭の粉末に電解質溶液を含ませた分極性電極を
用いる電気二重層コンデンサ及びその製造方法と、その
製造方法の実施に好適な分極性電極材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric double layer capacitor, a method for manufacturing the same, and a polarizable electrode material, and more particularly to an electric double layer capacitor using a polarizable electrode in which powder of activated carbon contains an electrolytic solution and its manufacture. The present invention relates to a method and a polarizable electrode material suitable for carrying out the manufacturing method.

【0002】[0002]

【従来の技術】この種の従来の電気二重層コンデンサと
その製造方法について、図4を用いて説明する。図4
は、従来の電気二重層コンデンサの製造途中の断面を、
工程順に示す図である。図4(d)が、完成したあとの
電気二重層コンデンサの断面を示す。図4を参照して、
先ず、導電性材料からなる平板状の集電体1を用意し、
これに電気絶縁性で額縁状をしたガスケット2を接着す
る(図4(a))。集電体1には、例えばカーボンを混
入させて導電性を持たせたブチルゴムシートなどが用い
られる。或いは、同様にカーボンを含ませて導電性を与
えたプラスチックフィルムを用いることもできる。ガス
ケット2には、カーボンを含まない絶縁性のブチルゴム
などを用いる。集電体1とガスケット2とを接着させる
には、圧力を加えて圧着したり、更に加熱を併用して熱
圧着したりする方法などが用いられる。
2. Description of the Related Art A conventional electric double layer capacitor of this type and its manufacturing method will be described with reference to FIG. Figure 4
Is a cross section of a conventional electric double layer capacitor in the process of being manufactured.
It is a figure shown in order of a process. FIG. 4D shows a cross section of the electric double layer capacitor after completion. Referring to FIG.
First, a flat plate current collector 1 made of a conductive material is prepared,
An electrically insulating gasket 2 having a frame shape is adhered to this (FIG. 4A). For the current collector 1, for example, a butyl rubber sheet in which carbon is mixed to have conductivity is used. Alternatively, it is also possible to use a plastic film similarly containing carbon to give conductivity. The gasket 2 is made of carbon-free insulating butyl rubber or the like. To bond the current collector 1 and the gasket 2 to each other, a method of applying pressure to perform pressure bonding, or a method of using heat in combination for thermocompression bonding is used.

【0003】上の工程とは別に、図示はしないが、活性
炭粉末とバインダーと電解質溶液とを混練して、ペース
ト状の分極性電極材を準備しておく。電解質溶液には、
例えば硫酸水溶液のような水溶液系のものや、例えばプ
ロピレンカーボネートやγ―ブチルラクトンなどの有機
溶媒にテトラエチルアンモニウムのホウフッ化塩や六フ
ッ化リン酸塩を溶質としたもののような、非水溶液系の
ものが用いられる。更には、特開昭59−090919
号公報や特開平1−196807号公報或いは特開平4
−079308号公報に開示された電気二重層コンデン
サのように、硫酸水溶液に予めポリ−4−ビニルピリジ
ンを含ませたものなどが用いられる。
Although not shown, a paste-like polarizable electrode material is prepared by kneading activated carbon powder, a binder and an electrolyte solution separately from the above steps. The electrolyte solution contains
For example, an aqueous solution such as an aqueous solution of sulfuric acid, or a non-aqueous solution such as an organic solvent such as propylene carbonate or γ-butyl lactone in which a borofluoride salt or tetrafluorophosphate salt of tetraethylammonium is solute is used. Things are used. Furthermore, JP-A-59-090919
Japanese Unexamined Patent Publication No. Hei 1-196807 or Japanese Unexamined Patent Publication No. Hei 4
As the electric double layer capacitor disclosed in Japanese Patent Laid-Open No. 079308, a solution in which poly-4-vinylpyridine is previously contained in an aqueous sulfuric acid solution is used.

【0004】次に、ガスケット2で囲まれる空間の中
に、予め用意しておいた上述のペースト状の分極性電極
材30を、ドクターブレード法などで充填する(図4
(b))。このような分極性電極材充填済みの集電体
を、2枚準備する。尚、以後、分極性電極材を集電体上
に所定の形状、体積となるように塗布し、堆積させ或い
は充填するなどの処理をした場合に、その処理によって
所定の形状、体積にされた後の分極性電極材を、分極性
電極と呼ぶこととする。
Next, the paste-like polarizable electrode material 30 prepared in advance is filled in the space surrounded by the gasket 2 by a doctor blade method or the like (FIG. 4).
(B)). Two current collectors filled with such polarizable electrode material are prepared. After that, when the polarizable electrode material was applied on the current collector so as to have a predetermined shape and volume, and was deposited or filled, it was formed into a predetermined shape and volume by the treatment. The later polarizable electrode material will be referred to as a polarizable electrode.

【0005】次いで、上述の分極性電極材充填済みの2
枚の集電体1A、1Bを、分極性電極30A,30Bど
うしが間にセパレータ5を挟んで対面するように配置
し、両方のガスケット2A,2Bどうしを接着して分極
性電極30A,30Bを封止し(図4(c))、従来の
電気二重層コンデンサを完成する(図4(d))。上記
のセパレータ5は、非電子伝導性でイオン透過性のもの
であって、例えば、微多孔性のポリプロピレンシートな
どが用いられる。2つのガスケット2A,2Bを接着さ
せるには、例えば、ガスケット2A,2Bに熱と圧力と
を加えて熱接着する方法などが用いられる。
Next, the above-mentioned 2 which has been filled with the polarizable electrode material
The current collectors 1A and 1B are arranged so that the polarizable electrodes 30A and 30B face each other with the separator 5 interposed therebetween, and the gaskets 2A and 2B are bonded to each other to form the polarizable electrodes 30A and 30B. After sealing (FIG. 4 (c)), a conventional electric double layer capacitor is completed (FIG. 4 (d)). The separator 5 is non-electroconductive and ion-permeable, and for example, a microporous polypropylene sheet or the like is used. In order to bond the two gaskets 2A and 2B, for example, a method of applying heat and pressure to the gaskets 2A and 2B to thermally bond the gaskets is used.

【0006】上述のようにして得られる電気二重層コン
デンサは、分極性電極30A,30Bがこれを構成する
活性炭粉末に存在する細孔のせいで非常に大きな比表面
積をもっていることと、電気二重層の厚さが分子の直径
と同等程度で非常に薄いという二つの理由で、大きな静
電容量を示す。
In the electric double layer capacitor obtained as described above, the polarizable electrodes 30A and 30B have a very large specific surface area due to the pores present in the activated carbon powder constituting them, and the electric double layer capacitor. It exhibits a large capacitance for two reasons: its thickness is as thin as the diameter of the molecule.

【0007】[0007]

【発明が解決しようとする課題】電気二重層コンデンサ
は、活性炭と電解質溶液との固・液界面に生じる電気二
重層によって電荷蓄積作用を発現するものであって、1
0〜50F/cm3 程度という、大容量コンデンサとし
て知られるアルミニウム電解コンデンサなどよりずっと
大きい静電容量が得られる点に特徴を有している。
The electric double layer capacitor has a function of accumulating charge by an electric double layer generated at a solid / liquid interface between activated carbon and an electrolyte solution.
It is characterized in that it has a much larger electrostatic capacity of about 0 to 50 F / cm 3 than that of an aluminum electrolytic capacitor known as a large capacity capacitor.

【0008】従って、電気二重層コンデンサの設計に当
っては、通常、上述の大容量性を損なわないように、或
いはより大きい静電容量が得られるように意を用いる。
すなわち、図4(b)において、ガスケット2で囲まれ
る空間が一定体積であるとき、その中に詰め込まれる分
極性電極30中の活性炭粉末の全量が極力多くなるよう
にする。分極性電極30の実効的な表面積は、用いられ
る活性炭粉末の比表面積が同じであれば、分極性電極中
に含まれる活性炭粉末の絶対量に比例するからである。
その場合、分極性電極材は活性炭粉末と電解質溶液とを
混練したペースト状のものであることから、電解質溶液
に対する活性炭粉末の割合を、電解質溶液量が電気二重
層の形成に不足を来さない範囲で、できる限り大きくす
ることが行われる。
Therefore, in designing an electric double layer capacitor, it is usually important not to impair the large capacitance described above or to obtain a larger capacitance.
That is, in FIG. 4B, when the space surrounded by the gasket 2 has a constant volume, the total amount of activated carbon powder in the polarizable electrode 30 packed in the space is maximized. This is because the effective surface area of the polarizable electrode 30 is proportional to the absolute amount of the activated carbon powder contained in the polarizable electrode if the specific surface area of the activated carbon powder used is the same.
In that case, since the polarizable electrode material is a paste-like material in which activated carbon powder and an electrolyte solution are kneaded, the ratio of the activated carbon powder to the electrolyte solution does not cause an insufficient amount of the electrolyte solution to form the electric double layer. The range is as large as possible.

【0009】ところが、上述のようにして静電容量を大
きくしようとすると、製造直後の静電容量の値(初期
値)は大きくなるものの、長期にわたる使用における静
電容量の減少が大きくなってしまう。また、ESR(E
quivalent Series Resistan
ce)の初期値が悪化してしまう。これは、分極性電極
中の活性炭粉末の割合が大きい、換言すれば電解質溶液
の絶対量が少ないからである。つまり、図4(d)に示
す電気二重層コンデンサにおいて、集電体1Aとガスケ
ット2Aとの間、集電体1Bとガスケット2Bとの間、
ガスケット2Aとガスケット2Bとの間の封止部分を通
して一定時間に抜け出て行く(ドライアップ)電解質溶
液の量が同じであれば、分極性電極30A,30Bに含
まれる電解質溶液の絶対量が少ない方が相対的にドライ
アップが激しくなるからである。また、分極性電極30
A,30B中の電解質溶液の絶対量が少なければ、分極
性電極30A,30B間のイオン伝導性が小さくなるの
で、ESRの初期値は大きくなってしまう。
However, if an attempt is made to increase the capacitance as described above, the capacitance value (initial value) immediately after manufacture will increase, but the capacitance will decrease greatly during long-term use. . In addition, ESR (E
quivalent Series Resistan
The initial value of (ce) becomes worse. This is because the ratio of the activated carbon powder in the polarizable electrode is large, in other words, the absolute amount of the electrolyte solution is small. That is, in the electric double layer capacitor shown in FIG. 4D, between the current collector 1A and the gasket 2A, between the current collector 1B and the gasket 2B,
If the amount of the electrolyte solution that escapes (dry-up) through the sealing portion between the gasket 2A and the gasket 2B in a certain time is the same, the absolute amount of the electrolyte solution contained in the polarizable electrodes 30A and 30B is smaller. However, the dry-up is relatively intense. In addition, the polarizable electrode 30
If the absolute amount of the electrolyte solution in A and 30B is small, the ionic conductivity between the polarizable electrodes 30A and 30B becomes small, and the initial value of ESR becomes large.

【0010】従って、本発明は、活性炭粉末に電解質溶
液を含ませた分極性電極を用いる電気二重層コンデンサ
において、製造後の初期には大きい静電容量と低いES
Rとを示し、長期にわたっては電解質溶液のドライアッ
プに起因する静電容量の減少の小さい電気二重層コンデ
ンサを提供すること目的とするものである。
Therefore, the present invention relates to an electric double layer capacitor using a polarizable electrode in which an activated carbon powder contains an electrolyte solution, and has a large capacitance and a low ES in the initial stage after manufacturing.
The purpose of the present invention is to provide an electric double layer capacitor that exhibits R and has a small decrease in electrostatic capacitance due to dry-up of the electrolyte solution over a long period of time.

【0011】[0011]

【課題を解決するための手段】本発明の電気二重層コン
デンサは、活性炭粉末とバインダーとを含む電極材から
作られかつ電解質溶液を含ませた分極性電極を用いる電
気二重層コンデンサにおいて、前記分極性電極中に、前
記活性炭粉末より大で10μmより小なる粒度の粒子に
相当する空孔を点在させ、その空孔内にも前記電解質溶
液を保持させたことを特徴とする。本発明の一態様によ
電気二重層コンデンサの製造方法は、活性炭粉末に電
解質溶液を含ませた分極性電極を用いる電気二重層コン
デンサの製造方法であって、少なくとも活性炭粉末と、
前記電解質溶液に可溶の重合体又は共重合体の粒子から
なる空孔形成材と、バインダーとを含むペースト状の分
極性電極材を形成する電極材形成工程と、前記分極性電
極材を電子伝導性で平板状の集電体の一方の表面の所定
部分に塗布して分極性電極となす分極性電極形成工程
と、前記集電体の前記分極性電極の外周に非電子伝導性
で枠状のガスケットを配置し、前記集電体と前記ガスケ
ットとを接着するガスケット装着工程と、前記分極性電
極に電解質溶液を含ませ、前記電解質溶液によって前記
空孔形成材を溶解し、前記空孔形成材の存在していた箇
所に空孔を形成する、含浸および空孔形成の工程と、前
記ガスケットと電解質溶液含有の分極性電極とを備える
集電体を、二つ、分極性電極どうしが非電子伝導性でイ
オン透過性のセパレータを介して対面するように配置
し、ガスケットどうしを接着する合体工程とを備える。
本発明の他の態様による電気二重層コンデンサの製造方
法は、活性炭粉末に電解質溶液を含ませた分極性電極を
用いる電気二重層コンデンサの製造方法であって、少な
くとも活性炭粉末と、前記電解質溶液に可溶な重合体又
は共重合体の粒子からなる空孔形成材と、バインダーと
を含むペースト状の分極性電極材を形成する電極材形成
工程と、電子伝導性で平板状の集電体に非電子伝導性で
枠状のガスケットを接着するガスケット装着工程と、前
記分極性電極材を、前記ガスケット装着工程終了後の集
電体とガスケットとで形成される空間内に充填して分極
性電極となす分極性電極形成工程と、前記分極性電極に
電解質溶液を含ませ、前記電解質溶液によって前記空孔
形成材を溶解し、前記空孔形成材の存在していた箇所に
空孔を形成する、含浸および空孔形成の工程と、前記ガ
スケットと電解質溶液含有の分極性電極とを備える集電
体を、二つ、分極性電極どうしが非電子伝導性でイオン
透過性のセパレータを介して対面するように配置し、ガ
スケットどうしを接着する合体工程とを備える。本発明
のさらに他の態様による電気二重層コンデンサの製造方
法は、活性炭粉末に電解質溶液を含ませた分極性電極を
用いる電気二重層コンデンサの製造方法であって、少な
くとも活性炭粉末と、前記電解質溶液に可溶の重合体又
は共重合体の粒子からなる空孔形成材と、バインダーと
を含むペースト状の分極性電極材を形成する電極材形成
工程と、前記分極性電極材を電子伝導性で平板状の集電
体の一方の表面の所定部分に塗布して分極性電極となす
分極性電極形成工程と、前記集電体の前記分極性電極の
外周に非電子伝導性で枠状のガスケットを配置し、前記
集電体と前記ガスケットとを接着するガスケット装着工
程と、前記分極性電極に電解質溶液を含ませる含浸工程
と、前記ガスケットと電解質溶液含有の分極性電極とを
備える集電体を、二つ、分極性電極どうしが非電子伝導
性でイオン透過性のセパレータを介して対面するように
配置し、ガスケットどうしを接着する合体工程とを備
え、前記空孔形成材に、ポリ−4−ビニルピリジン、ポ
リ−3−ビニルピリジン又はポリ−2−ビニルピリジン
から選ばれた少なくとも一種以上の粒子を用いることを
特徴とする。本発明のさらに他の態様による電気二重層
コンデンサの製造方法は、活性炭粉末に電解質溶液を含
ませた分極性電極を用いる電気二重層コンデンサの製造
方法であって、少なくとも活性炭粉末と、前記電解質溶
液に可溶な重合体又は共重合体の粒子からなる空孔形成
材と、バインダーとを含むペースト状の分極性電極材を
形成する電極材形成工程と、電子伝導性で平板状の集電
体に非電子伝導性で枠状のガスケットを接着するガスケ
ット装着工程と、前記分極性電極材を、前記ガスケット
装着工程終了後の集電体とガスケットとで形成される空
間内に充填して分極性電極となす分極性電極形成工程
と、前記分極性電極に電 解質溶液を含ませる含浸工程
と、前記ガスケットと電解質溶液含有の分極性電極とを
備える集電体を、二つ、分極性電極どうしが非電子伝導
性でイオン透過性のセパレータを介して対面するように
配置し、ガスケットどうしを接着する合体工程とを備
え、前記空孔形成材に、ポリ−4−ビニルピリジン、ポ
リ−3−ビニルピリジン又はポリ−2−ビニルピリジン
から選ばれた少なくとも一種以上の粒子を用いることを
特徴とする。
The electric double layer capacitor of the present invention comprises an electrode material containing activated carbon powder and a binder.
An electric double layer capacitor using a polarizable electrode made and containing an electrolyte solution, wherein the polarizable electrode is interspersed with pores corresponding to particles having a particle size larger than the activated carbon powder and smaller than 10 μm, It is characterized in that the electrolyte solution is held also in the pores. According to one aspect of the invention
The method for producing an electric double layer capacitor is a method for producing an electric double layer capacitor using a polarizable electrode containing an electrolyte solution in activated carbon powder, and at least activated carbon powder,
An electrode material forming step of forming a paste-like polarizable electrode material containing a pore-forming material composed of polymer or copolymer particles soluble in the electrolyte solution and a binder; A step of forming a polarizable electrode by applying it to a predetermined portion of one surface of a conductive flat plate current collector to form a polarizable electrode, and a non-electroconductive frame on the outer periphery of the polarizable electrode of the current collector. the Jo gasket placed, and a gasket mounting step of bonding said said collector gasket, said partial polar electrostatic
The electrolyte solution is included in the electrode, and the electrolyte solution
The pore-forming material was melted, and the pore-forming material was present.
The steps of impregnation and pore formation for forming pores in a place, and a collector provided with the gasket and the polarizable electrode containing the electrolyte solution are two, and the polarizable electrodes are non-electroconductive and ion-permeable. And a gasket, and the gaskets are arranged so as to face each other with a separator interposed therebetween, and the gaskets are bonded together.
Method for manufacturing electric double layer capacitor according to another aspect of the present invention
The method consists of using a polarizable electrode in which activated carbon powder is impregnated with an electrolyte solution.
A method of manufacturing an electric double layer capacitor used,
At least activated carbon powder and a polymer or a polymer soluble in the electrolyte solution.
Is a pore-forming material composed of copolymer particles, and a binder
Electrode material forming paste-like polarizable electrode material containing
The process and the electron-conducting flat current collector
Before the gasket mounting process to bond the frame-shaped gasket
The polarizable electrode material is collected after the gasket mounting process is completed.
Polarization by filling in the space formed by the electric body and gasket
Forming a polarizable electrode with a polarizable electrode, and
An electrolyte solution is included, and the pores are formed by the electrolyte solution.
Dissolve the forming material, and place it in the place where the hole forming material was present.
The steps of impregnation and pore formation for forming pores, and
Current collecting with a sket and a polarizable electrode containing an electrolyte solution
Two bodies, two polarizable electrodes are non-electron conductive and ionic
Place them face-to-face with a permeable separator, and
And a coalescing step of adhering the skets together. The present invention
For manufacturing an electric double layer capacitor according to still another aspect of the present invention
The method consists of using a polarizable electrode in which activated carbon powder is impregnated with an electrolyte solution.
A method of manufacturing an electric double layer capacitor used,
At least activated carbon powder and a polymer or a polymer soluble in the electrolyte solution.
Is a pore-forming material composed of copolymer particles, and a binder
Electrode material forming paste-like polarizable electrode material containing
Process and collecting the polarizable electrode material in the form of electron-conducting flat plate
Apply to a certain part of one surface of the body to make a polarizable electrode
Forming a polarizable electrode, and forming the polarizable electrode of the current collector
A non-electroconductive and frame-shaped gasket is placed on the outer periphery, and
Gasket mounting work for adhering the current collector and the gasket
And an impregnation step in which the polarizable electrode contains an electrolyte solution
And the gasket and the polarizable electrode containing the electrolyte solution
Two current collectors with polarizable electrodes are non-electron conducting
To face through a permeable, ion-permeable separator
Arrangement and bonding process to bond gaskets together
In the pore forming material, poly-4-vinyl pyridine,
Li-3-vinyl pyridine or poly-2-vinyl pyridine
Using at least one or more particles selected from
Characterize. Electric Double Layer According to Yet Another Embodiment of the Present Invention
The method of manufacturing capacitors is to include activated carbon powder and electrolyte solution.
Manufacture of an electric double layer capacitor using a polarizable electrode
A method comprising at least activated carbon powder and the electrolyte solution.
Pore formation consisting of liquid-soluble polymer or copolymer particles
Material and a paste-like polarizable electrode material containing a binder
Electrode material formation process and electron-conducting flat plate current collector
A gasket that adheres a non-electroconductive, frame-shaped gasket to the body
The gasket mounting step and the polarizable electrode material.
The space formed by the current collector and gasket after the mounting process is completed.
Polarizable electrode formation process to fill the space and form a polarizable electrode
When the impregnation step to include Kaishitsu solution conductivity to the polarizable electrode
And the gasket and the polarizable electrode containing the electrolyte solution
Two current collectors with polarizable electrodes are non-electron conducting
To face through a permeable, ion-permeable separator
Arrangement and bonding process to bond gaskets together
In the pore forming material, poly-4-vinyl pyridine,
Li-3-vinyl pyridine or poly-2-vinyl pyridine
Using at least one or more particles selected from
Characterize.

【0012】[0012]

【0013】また、本発明の分極性電極材は、少なくと
も活性炭粉末と、バインダーと、求核性を有する重合体
又は共重合体の粒子からなる空孔形成材とを含んでい
る。
The polarizable electrode material of the present invention contains at least activated carbon powder, a binder, and a pore-forming material composed of particles of a nucleophilic polymer or copolymer.

【0014】[0014]

【発明の実施の形態】次に、本発明の実施の形態につい
て、図面を参照して説明する。図1は、本発明に係る電
気二重層コンデンサの、完成したあとの断面を占めす図
である。図2は、図1に示す電気二重層コンデンサを第
1の実施の形態の製造方法によって製造して行くとき
の、製造途中のコンデンサの断面を工程順に示す図であ
る。図1と図4(d)とを比較して、本発明に係る電気
二重層コンデンサは、分極性電極3A,3B中に空孔6
が形成されていて、その空孔6の中にも電解質溶液が保
持されている点が、従来の電気二重層コンデンサと異な
っている。この空孔6は、のちに述べるように、活性炭
粉末より大きく10μm未満の粒度を有する粒子に相当
する体積を持っている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram occupying a cross section of an electric double layer capacitor according to the present invention after completion. FIG. 2 is a view showing a cross section of the capacitor in the process of manufacturing when the electric double layer capacitor shown in FIG. 1 is manufactured by the manufacturing method according to the first embodiment in the order of steps. Comparing FIG. 1 and FIG. 4 (d), the electric double layer capacitor according to the present invention has holes 6 in the polarizable electrodes 3 A and 3 B.
Is formed, and the electrolyte solution is held also in the pores 6, which is different from the conventional electric double layer capacitor. As will be described later, the pores 6 have a volume corresponding to particles having a particle size larger than the activated carbon powder and smaller than 10 μm.

【0015】本発明の電気二重層コンデンサにおいて
は、分極性電極3A,3B内に活性炭粉末と同等程度の
大きさの空孔6を生じさせ、その空孔6の中にも電解質
溶液を保持させるので、分極性電極3A,3B内に含ま
れる電解質溶液の絶対量が、従来に比べ増加する。本発
明は、このようにして電解質溶液の絶対量を増すことに
よって、電解質溶液のドライアップを抑制し、これに起
因する長期間の静電容量の減少率を小さくすると共に、
分極性電極3A,3B間のイオン伝導性を向上させ、初
期のESRを低くしている。
In the electric double layer capacitor of the present invention, the pores 6 of the same size as the activated carbon powder are formed in the polarizable electrodes 3A and 3B, and the electrolyte solution is held also in the pores 6. Therefore, the absolute amount of the electrolyte solution contained in the polarizable electrodes 3A and 3B is increased as compared with the conventional one. The present invention, by increasing the absolute amount of the electrolyte solution in this way, to suppress the dry-up of the electrolyte solution, and to reduce the rate of decrease in long-term capacitance due to this,
The ionic conductivity between the polarizable electrodes 3A and 3B is improved, and the initial ESR is lowered.

【0016】図1に示す本発明の電気二重層コンデンサ
は、第1の実施の形態の製造方法によって、以下のよう
にして製造される。図2を参照して、始めに、図示はし
ないが、活性炭粉末と7.5wt%のバインダーとを混
合する。その後、これにポリ−4−ビニルピリジン(以
下、P4VPと記す)の粒子を添加し、攪拌して分極性
電極材を調合する。活性炭粉末には粒度が1〜5μmの
ものを用い、バインダーにはポリフッ化ビニリデンを用
いたがポリビニルブチラートを用いてもよい。P4VP
の粒子には、固形のP4VPを粉砕して440メッシュ
の標準ふるいにかけ、活性炭粉末と同じ粒度になるまで
粉砕したものを用いた。
The electric double layer capacitor of the present invention shown in FIG. 1 is manufactured by the manufacturing method of the first embodiment as follows. Referring to FIG. 2, first, although not shown, activated carbon powder and 7.5 wt% binder are mixed. Thereafter, particles of poly-4-vinylpyridine (hereinafter referred to as P4VP) are added to this, and the mixture is stirred to prepare a polarizable electrode material. Activated carbon powder having a particle size of 1 to 5 μm was used, and polyvinylidene fluoride was used as a binder, but polyvinyl butyrate may be used. P4VP
As the particles, solid P4VP was crushed, passed through a standard sieve of 440 mesh, and crushed to the same particle size as the activated carbon powder.

【0017】次に、上述のようにして準備しておいた分
極性電極材を、スクリーン印刷などの方法を用いて、厚
さが40〜100μm程度の薄膜状になるように集電体
1に塗布し、120℃の温度で乾燥して分極性電極3を
得る(図2(a))。この分極性電極3の中には、P4
VPの粒子4が点在している。集電体1には、カーボン
を混入して導電性を与えたブチルゴムを用いたが、導電
性プラスチックフィルムを用いることもできる。
Next, the polarizable electrode material prepared as described above is applied to the current collector 1 by a method such as screen printing so as to form a thin film having a thickness of about 40 to 100 μm. It is applied and dried at a temperature of 120 ° C. to obtain the polarizable electrode 3 (FIG. 2A). In the polarizable electrode 3, P4
Particles 4 of VP are scattered. As the current collector 1, butyl rubber mixed with carbon to give conductivity is used, but a conductive plastic film can also be used.

【0018】次いで、分極性電極3の外周部に非電子導
電性を有する枠状のガスケット2を配置し、18kg/
cm2 の圧力を加えて、集電体1とガスケット2とを圧
着する(図2(b))。ガスケット2には絶縁性のブチ
ルゴムを用いたが、熱可塑性樹脂フィルムでもよい。
Next, a frame-shaped gasket 2 having non-electron conductivity is placed on the outer peripheral portion of the polarizable electrode 3, and 18 kg /
A pressure of cm 2 is applied to pressure-bond the current collector 1 and the gasket 2 (FIG. 2 (b)). Insulating butyl rubber is used for the gasket 2, but a thermoplastic resin film may be used.

【0019】次に、分極性電極3に、電解質溶液である
40wt%の硫酸水溶液を、分極性電極3の体積と等し
い量滴下し、1.33×103 Pa程度まで減圧して、
分極性電極3内に硫酸水溶液を含浸させる(図2
(c))。
Next, a 40 wt% sulfuric acid aqueous solution, which is an electrolyte solution, is dropped onto the polarizable electrode 3 in an amount equal to the volume of the polarizable electrode 3, and the pressure is reduced to about 1.33 × 10 3 Pa.
The polarizable electrode 3 is impregnated with a sulfuric acid aqueous solution (see FIG. 2).
(C)).

【0020】その後、これまでの工程で作製した、電解
質溶液含浸済みの分極性電極とガスケットを備える集電
体を2枚用意し、それぞれの分極性電極3A、3Bがポ
リエチレンからなる多孔性のセパレーター5を介して対
面するように対置させ、これに120℃の温度と18k
g/cm2 の圧力を20分間加え、2つのガスケット2
A、2Bを熱融着させて(図2(d))、本実施の形態
に係る電気二重層コンデンサを完成する(図1)。尚、
多孔性セパレータ5には、ポリプロピレンフィルを用い
ることもできる。
After that, two current collectors prepared in the above steps and provided with a polarizable electrode impregnated with an electrolyte solution and a gasket are prepared, and each polarizable electrode 3A, 3B is a porous separator made of polyethylene. 5 so that they face each other, and the temperature of 120 ° C. and 18 k
Applying a pressure of g / cm 2 for 20 minutes, two gaskets 2
A and 2B are heat-sealed (FIG. 2 (d)) to complete the electric double layer capacitor according to the present embodiment (FIG. 1). still,
Polypropylene fill can also be used for the porous separator 5.

【0021】本実施の形態の電気二重層コンデンサにお
いては、図2(c)に示す電解質溶液含浸工程で、求核
性を有する窒素原子を含む重合体であるP4VPの粒子
4が、分極性電極3に含浸させた硫酸水溶液によって四
級化して硫酸水溶液中に溶解し、そのP4VPの粒子4
が存在していたあとに空孔6が形成され、それと同時に
できた空孔6内にも硫酸水溶液が保持される結果、分極
性電極3中の電解質溶液の絶対量が従来に比べ増加し、
また、空孔6ができることにより電解質溶液中のイオン
が分子間力の影響を受けることなくスムーズに移動する
ことができるようになると考えられる。結局、従来の電
気二重層コンデンサに比べ、2つの分極性電極3A,3
B間のイオン伝導性が高まり、その分初期のESRが改
善されると共に、もともとの電解質溶液の絶対量が従来
に比べ多くなっている分、長期にわたる静電容量の減少
率は小さくなる。
In the electric double layer capacitor of the present embodiment, in the electrolyte solution impregnation step shown in FIG. 2 (c), the particles 4 of P4VP, which is a polymer containing a nitrogen atom having a nucleophilicity, are polarized electrodes. 3 was quaternized by the sulfuric acid aqueous solution impregnated in 3 and dissolved in the sulfuric acid aqueous solution, and the P4VP particles 4
After the existence of the holes, the holes 6 are formed, and at the same time, the sulfuric acid aqueous solution is retained in the holes 6 formed at the same time. As a result, the absolute amount of the electrolyte solution in the polarizable electrode 3 is increased as compared with the conventional case.
Further, it is considered that the formation of the holes 6 enables ions in the electrolyte solution to move smoothly without being affected by intermolecular force. After all, compared with the conventional electric double layer capacitor, the two polarizable electrodes 3A, 3
The ionic conductivity between B is increased, the ESR at the initial stage is improved accordingly, and the absolute amount of the original electrolyte solution is larger than that in the conventional case, so that the rate of decrease in capacitance over a long period of time becomes small.

【0022】本発明者は、上述の効果を確かめるため、
分極性電極材中のP4VPの添加率を変えた電気二重層
コンデンサを作製し、高温負荷試験に供して、ESRの
初期値と試験後の静電容量の減少率とを評価した。評価
結果を、表1に示す。尚、評価試料は、活性炭粉末と
7.5wt%のバインダーとに対し、P4VPの粒子の
添加率を0(従来の電気二重層コンデンサ)、1.0、
3.0、10.0、20.0wt%の5水準とし、各水
準の試料数を5個とした。高温負荷試験は、温度60℃
の雰囲気中で各試料の電気二重層コンデンサに0.8V
の電圧を長時間印加するもので、500時間後の静電容
量値の変化率を測定した。表1に示す値は、各5個の試
料の平均値である。
In order to confirm the above effects, the present inventor has
An electric double layer capacitor in which the addition rate of P4VP in the polarizable electrode material was changed was produced and subjected to a high temperature load test to evaluate the initial value of ESR and the reduction rate of the electrostatic capacity after the test. The evaluation results are shown in Table 1. In the evaluation sample, the addition ratio of P4VP particles to activated carbon powder and 7.5 wt% binder was 0 (conventional electric double layer capacitor), 1.0,
There were 5 levels of 3.0, 10.0, and 20.0 wt%, and the number of samples at each level was 5. High temperature load test, temperature 60 ℃
0.8V to the electric double layer capacitor of each sample in the atmosphere of
The voltage was applied for a long time, and the rate of change of the capacitance value after 500 hours was measured. The values shown in Table 1 are average values of 5 samples each.

【0023】[0023]

【表1】 [Table 1]

【0024】表1を参照して、P4VP粒子の添加量が
0wt%から10wt%まで漸次増大するに従って、E
SRの初期値及び高温負荷試験による静電容量の減少と
も、小さくなって行く。しかし、添加率が0wt%つま
り従来の電気二重層コンデンサと1.0wt%のコンデ
ンサの場合は、高温負荷試験後の静電容量の減少率がほ
ぼ同等で、他の添加量のコンデンサに比べて大きいこと
から、ドライアップによって生じる静電容量の減少を効
果的に抑制するには、P4VP粒子の添加率を3wt%
以上にしなければならず、且つ、その添加率は大きけれ
ば大きいほど効果が大であるといえる。しかし、P4V
P粒子の添加率が20wt%の場合は、無添加(従来の
電気二重層コンデンサ)のときに比べ、ESRの初期値
が増大する結果となった。これは、P4VPが四級化し
て生じるオニウム塩は電気絶縁性であることから、内部
抵抗が増加しためと考えられる。以上のことから、P4
VP粒子の添加率は、3〜10wt%の範囲であること
が望ましい。
Referring to Table 1, as the added amount of P4VP particles gradually increases from 0 wt% to 10 wt%, E
The initial value of SR and the decrease in capacitance due to the high temperature load test both decrease. However, in the case of the addition ratio of 0 wt%, that is, the conventional electric double layer capacitor and 1.0 wt% of the capacitor, the reduction rate of the capacitance after the high temperature load test is almost the same, and compared with the capacitors of other addition amounts. Therefore, in order to effectively suppress the decrease in capacitance caused by dry-up, the addition rate of P4VP particles should be 3 wt%.
It can be said that the above effect must be obtained and the larger the addition rate, the greater the effect. However, P4V
When the addition rate of P particles was 20 wt%, the initial value of ESR increased as compared with the case of no addition (conventional electric double layer capacitor). It is considered that this is because the onium salt generated by quaternization of P4VP has an electrical insulating property and thus has an increased internal resistance. From the above, P4
The addition rate of VP particles is preferably in the range of 3 to 10 wt%.

【0025】次に、P4VP粒子の粒度の影響を調べる
ために、粒度が10μmのP4VPの粒子を添加したと
ころ、分極性電極3内に生じているはずの空孔を確認で
きなかった。これは、粒子の径が大きくてできた空孔が
潰れてしまったものと考えられる。この結果から、添加
するP4VP粒子の粒度は10μmより小さくなくては
ならないといえる。但し、本発明の作用効果は、分極性
電極3内に活性炭粉末と同程度以上の大きさの空孔6を
点在させ、その空孔6の中にも電解質溶液を保持させる
ことで分極性電極中の電解質溶液の絶対量を従来より多
くしたことによって得られたものであると考えられるこ
とから、P4VP粒子4の粒度は少なくとも活性炭粉末
の粒度と同程度以上でなければならないと言える。
Next, in order to investigate the influence of the particle size of the P4VP particles, when P4VP particles having a particle size of 10 μm were added, voids that should have occurred in the polarizable electrode 3 could not be confirmed. It is considered that this is because the pores formed due to the large diameter of the particles were crushed. From this result, it can be said that the particle size of the P4VP particles to be added must be smaller than 10 μm. However, the function and effect of the present invention are that the polarizable electrode 3 has the pores 6 of the same size as or larger than the activated carbon powder scattered and the electrolyte solution is held in the pores 6 to polarize. It can be said that the particle size of the P4VP particles 4 must be at least as large as the particle size of the activated carbon powder, since it is considered that the particle size is obtained by increasing the absolute amount of the electrolyte solution in the electrode as compared with the conventional one.

【0026】次に、本発明の第2の実施の形態につい
て、説明する。本実施の形態においては、分極性電極材
に添加する空孔形成材料としてポリ−2−ビニルピリジ
ンを用い、図1に示す電気二重層コンデンサを、図4に
示す工程順つまり、従来の電気二重層コンデンサを製造
するときと同じ工程順で作製した。第2の実施の形態に
係る電気二重層コンデンサの製造途中の断面を工程順に
示す図3を参照して、先ず、導電性材料からなる平板状
の集電体1を用意し、これにガスケット2を接着する
(図3(a))。
Next, a second embodiment of the present invention will be described. In the present embodiment, poly-2-vinylpyridine is used as the pore-forming material added to the polarizable electrode material, and the electric double layer capacitor shown in FIG. 1 is manufactured in the order of steps shown in FIG. It was manufactured in the same process order as when manufacturing the multilayer capacitor. Referring to FIG. 3, which shows a cross-sectional view of a process of manufacturing the electric double layer capacitor according to the second embodiment in the order of steps, first, a flat plate-shaped current collector 1 made of a conductive material is prepared, and a gasket 2 is provided thereon. Are adhered (FIG. 3 (a)).

【0027】上の工程とは別に、図示はしないが、活性
炭粉末と、バインダーと、ポリ−2−ビニルピリジンと
を混合して、ペースト状の分極性電極材を調合してお
く。ポリ−2−ビニルピリジンの添加量は、第1の実施
の形態における添加量と同じである。
Although not shown, in addition to the above steps, a paste-like polarizable electrode material is prepared by mixing activated carbon powder, a binder and poly-2-vinylpyridine. The added amount of poly-2-vinylpyridine is the same as the added amount in the first embodiment.

【0028】次に、ガスケット2で囲まれる空間の中
に、上述のペースト状の分極性電極材3を、ドクターブ
レード法で充填する(図3(b))。このような分極性
電極材充填済みの集電体を、2枚準備する次に、分極性
電極3に、電解質溶液である40wt%の硫酸水溶液
を、分極性電極3の体積と等しい量滴下し減圧して、分
極性電極3内に硫酸水溶液を含浸させる(図3
(c))。
Next, the paste-like polarizable electrode material 3 is filled in the space surrounded by the gasket 2 by the doctor blade method (FIG. 3 (b)). Two such current collectors filled with polarizable electrode material are prepared. Next, a 40 wt% sulfuric acid aqueous solution, which is an electrolyte solution, is dropped onto the polarizable electrode 3 in an amount equal to the volume of the polarizable electrode 3. The pressure is reduced to impregnate the polarizable electrode 3 with a sulfuric acid aqueous solution (see FIG. 3).
(C)).

【0029】その後、これまでの工程で作製した、電解
質溶液含浸済みの分極性電極とガスケットとを備える集
電体を2枚用意し、それぞれの分極性電極3A、3Bが
セパレーター5を介して対面するように対置させ、これ
に温度と圧力とを加え、2つのガスケット2A、2Bを
熱融着させて(図3(d))、本実施の形態に係る電気
二重層コンデンサを完成する(図1)。
After that, two current collectors prepared in the above steps and provided with a polarizable electrode impregnated with an electrolyte solution and a gasket are prepared, and the polarizable electrodes 3A and 3B face each other via a separator 5. So that the two gaskets 2A and 2B are heat-sealed (FIG. 3 (d)) to complete the electric double layer capacitor (FIG. 3). 1).

【0030】本実施の形態に係る電気二重層コンデンサ
を、第1の実施の形態におけると同一条件の高温負荷試
験に供したところ、第1の実施の形態におけると同様の
結果が得られ、空孔形成材としてポリ−2−ビニルピリ
ジンも有効であることが確認された。
When the electric double layer capacitor according to the present embodiment was subjected to a high temperature load test under the same conditions as in the first embodiment, the same result as in the first embodiment was obtained, and It was confirmed that poly-2-vinylpyridine is also effective as a pore-forming material.

【0031】第1の実施の形態におけるように、集電体
1上に分極性電極3を形成する方法としてスクリーン印
刷法を用いると、薄い分極性電極を厚さ及び平面寸法と
も精度良く形成することができるが、その分、装置が複
雑で高価になる。また、この後の工程(図2(b))
で、分極性電極3とガスケット2とを位置合せする必要
が生じ、その分工程が複雑になる。これに対し、第2の
実施の形態のように、先に集電体1にガスケット2を装
着しておいてから、そのガスケット2の中にドクターブ
レードやスキージーなどで分極性電極材を塗り込むよう
にすると、位置合せは特に必要はないので、簡単で安価
な装置で済み、また工程が簡単になる。第2の実施の形
態の製造方法は、分極性電極の厚さや寸法精度の点では
第1の実施の形態の製造方法に及ばないものの、比較的
厚く寸法の大きい分極性電極を低コストで形成する場合
に適している。
When the screen printing method is used as the method of forming the polarizable electrode 3 on the current collector 1 as in the first embodiment, a thin polarizable electrode is formed with high precision in both thickness and plane dimensions. However, the device becomes complicated and expensive accordingly. In addition, subsequent steps (FIG. 2B)
Then, it becomes necessary to align the polarizable electrode 3 and the gasket 2, which complicates the process. On the other hand, as in the second embodiment, the gasket 2 is first attached to the current collector 1, and then the polarizable electrode material is applied into the gasket 2 with a doctor blade or a squeegee. By doing so, since alignment is not particularly required, a simple and inexpensive device is sufficient and the process is simplified. Although the manufacturing method of the second embodiment is inferior to the manufacturing method of the first embodiment in terms of the thickness and dimensional accuracy of the polarizable electrode, it is possible to form the polarizable electrode having a relatively large thickness and a large size at a low cost. Suitable for when.

【0032】ここで、第1及び第2の実施の形態におい
て、分極性電極3A,3B中に空孔6が点在するのは、
求核性を有する窒素原子を含む重合体であるポリ−4−
ビニルピリジンやポリ−2−ビニルピリジンが酸性の電
解質溶液によって四級化してオスニウム塩となって溶解
することによるものであることから、空孔形成材とし
て、同じく求核性を有する窒素原子を含む重合体で、ポ
リ−4−ビニルピリジンやポリ−2−ビニルピリジンと
同じ性質を有するポリ−3−ビニルピリジンを用いて
も、同様な効果が得られると考えられる。
Here, in the first and second embodiments, the holes 6 are scattered in the polarizable electrodes 3A and 3B.
Poly-4-, a polymer containing a nucleophilic nitrogen atom
Since vinyl pyridine and poly-2-vinyl pyridine are quaternized by an acidic electrolyte solution to dissolve into an osmium salt and dissolve therein, the same nucleophilic nitrogen atom is contained as a pore-forming material. It is considered that the same effect can be obtained by using poly-3-vinylpyridine having the same properties as poly-4-vinylpyridine or poly-2-vinylpyridine in the polymer.

【0033】[0033]

【発明の効果】以上説明したように、本発明によれば、
等価直列抵抗が低く、長期にわたる静電容量値の安定性
に優れた電気二重層コンデンサを提供できる。
As described above, according to the present invention,
It is possible to provide an electric double layer capacitor having a low equivalent series resistance and excellent stability of electrostatic capacitance value for a long period of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る電気二重層コンデンサの、完成し
た後の断面を占めす図である。
FIG. 1 is a diagram occupying a cross section of an electric double layer capacitor according to the present invention after completion.

【図2】第1の実施の形態における電気二重層コンデン
サの製造途中の断面を、工程順に示す図である。
FIG. 2 is a diagram showing a cross section of the electric double layer capacitor in the process of manufacturing according to the first embodiment in the order of steps.

【図3】第2の実施の形態における電気二重層コンデン
サの製造途中の断面を、工程順に示す図である。
FIG. 3 is a diagram showing a cross section of the electric double layer capacitor in the process of manufacturing according to the second embodiment in the order of steps.

【図4】従来の電気二重層コンデンサの製造途中の断面
を、工程順に示す図である。
FIG. 4 is a diagram showing a cross section of a conventional electric double layer capacitor in the process of being manufactured in the order of steps.

【符号の説明】[Explanation of symbols]

1,1A,1B 集電体 2,2A,2B ガスケット 3,3A,3B 分極性電極 4 P4VPの粒子 5 セパレータ 6 空孔 30,30A,30B 分極性電極 1,1A, 1B Current collector 2,2A, 2B gasket 3,3A, 3B Polarizing electrodes 4 P4VP particles 5 separator 6 holes 30, 30A, 30B Polarizing electrodes

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−90919(JP,A) 特開 平2−82507(JP,A) 特開 昭63−196028(JP,A) 特開2000−228334(JP,A) 特開 平8−97101(JP,A) 特開 平6−97004(JP,A) 特開 平5−21274(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01G 9/058 ─────────────────────────────────────────────────── --- Continuation of the front page (56) Reference JP-A-59-90919 (JP, A) JP-A-2-82507 (JP, A) JP-A-63-196028 (JP, A) JP-A-2000-228334 (JP, A) JP-A-8-97101 (JP, A) JP-A-6-97004 (JP, A) JP-A-5-21274 (JP, A) (58) Fields investigated (Int. Cl. 7) , DB name) H01G 9/058

Claims (11)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 活性炭粉末とバインダーとを含む電極材
から作られかつ電解質溶液を含ませた分極性電極を用い
る電気二重層コンデンサにおいて、前記分極性電極中
に、前記活性炭粉末より大で10μmより小なる粒度の
粒子に相当する空孔を点在させ、その空孔内にも前記電
解質溶液を保持させたことを特徴とする電気二重層コン
デンサ。
1. An electric double layer capacitor using a polarizable electrode made of an electrode material containing activated carbon powder and a binder and containing an electrolyte solution, wherein the polarizable electrode is larger than the activated carbon powder by at least 10 μm. An electric double layer capacitor, characterized in that holes corresponding to particles of a small particle size are scattered, and the electrolyte solution is held also in the holes.
【請求項2】 前記電解質溶液が酸性水溶液であること
を特徴とする、請求項1に記載の電気二重層コンデン
サ。
2. The electric double layer capacitor according to claim 1, wherein the electrolyte solution is an acidic aqueous solution.
【請求項3】 活性炭粉末に電解質溶液を含ませた分極
性電極を用いる電気二重層コンデンサの製造方法であっ
て、 少なくとも活性炭粉末と、前記電解質溶液に可溶の重合
体又は共重合体の粒子からなる空孔形成材と、バインダ
ーとを含むペースト状の分極性電極材を形成する電極材
形成工程と、 前記分極性電極材を電子伝導性で平板状の集電体の一方
の表面の所定部分に塗布して分極性電極となす分極性電
極形成工程と、 前記集電体の前記分極性電極の外周に非電子伝導性で枠
状のガスケットを配置し、前記集電体と前記ガスケット
とを接着するガスケット装着工程と、前記分極性電極に電解質溶液を含ませ、前記電解質溶液
によって前記空孔形成材を溶解し、前記空孔形成材の存
在していた箇所に空孔を形成する、含浸および空孔形成
の工程と 、 前記ガスケットと電解質溶液含有の分極性電極とを備え
る集電体を、二つ、分極性電極どうしが非電子伝導性で
イオン透過性のセパレータを介して対面するように配置
し、ガスケットどうしを接着する合体工程とを備える電
気二重層コンデンサの製造方法。
3. A method of manufacturing an electric double layer capacitor using a polarizable electrode comprising an activated carbon powder and an electrolyte solution contained therein, comprising at least activated carbon powder and particles of a polymer or copolymer soluble in the electrolyte solution. An electrode material forming step of forming a paste-like polarizable electrode material containing a pore forming material and a binder; A step of forming a polarizable electrode by applying it to a part to form a polarizable electrode, arranging a non-electroconductive conductive frame-shaped gasket on the outer periphery of the polarizable electrode of the current collector, and the current collector and the gasket A step of attaching a gasket for adhering, and adding the electrolyte solution to the polarizable electrode,
Dissolves the pore-forming material by
Impregnation and vacancy formation, which creates vacancies where they were present
The step of, and a current collector comprising the gasket and a polarizable electrode containing an electrolyte solution, two, the polarizable electrodes are arranged so as to face each other via a non-electroconductive and ion-permeable separator, A method of manufacturing an electric double layer capacitor, comprising a step of adhering gaskets together.
【請求項4】 活性炭粉末に電解質溶液を含ませた分極
性電極を用いる電気二重層コンデンサの製造方法であっ
て、 少なくとも活性炭粉末と、前記電解質溶液に可溶な重合
体又は共重合体の粒子からなる空孔形成材と、バインダ
ーとを含むペースト状の分極性電極材を形成する電極材
形成工程と、 電子伝導性で平板状の集電体に非電子伝導性で枠状のガ
スケットを接着するガスケット装着工程と、 前記分極性電極材を、前記ガスケット装着工程終了後の
集電体とガスケットとで形成される空間内に充填して分
極性電極となす分極性電極形成工程と、前記分極性電極に電解質溶液を含ませ、前記電解質溶液
によって前記空孔形成材を溶解し、前記空孔形成材の存
在していた箇所に空孔を形成する、含浸および空孔形成
の工程と 、 前記ガスケットと電解質溶液含有の分極性電極とを備え
る集電体を、二つ、分極性電極どうしが非電子伝導性で
イオン透過性のセパレータを介して対面するように配置
し、ガスケットどうしを接着する合体工程とを備える電
気二重層コンデンサの製造方法。
4. A method for producing an electric double layer capacitor using a polarizable electrode comprising an activated carbon powder and an electrolyte solution contained therein, comprising at least activated carbon powder and polymer or copolymer particles soluble in the electrolyte solution. Electrode material forming process to form a paste-like polarizable electrode material containing a hole-forming material and a binder, and a non-electroconductive, frame-shaped gasket bonded to an electron-conductive, plate-shaped current collector to the gasket installation process, the polarizable electrode material, and the gasket mounting step after the end of the current collector and the gasket and is filled in the space polarizable electrode and forming polarizable electrode forming step being formed by the partial Including an electrolyte solution in the polar electrode, the electrolyte solution
Dissolves the pore-forming material by
Impregnation and vacancy formation, which creates vacancies where they were present
The step of, and a current collector comprising the gasket and a polarizable electrode containing an electrolyte solution, two, the polarizable electrodes are arranged so as to face each other via a non-electroconductive and ion-permeable separator, A method of manufacturing an electric double layer capacitor, comprising a step of adhering gaskets together.
【請求項5】 活性炭粉末に電解質溶液を含ませた分極
性電極を用いる電気二重層コンデンサの製造方法であっ
て、 少なくとも活性炭粉末と、前記電解質溶液に可溶の重合
体又は共重合体の粒子からなる空孔形成材と、バインダ
ーとを含むペースト状の分極性電極材を形成する電極材
形成工程と、 前記分極性電極材を電子伝導性で平板状の集電体の一方
の表面の所定部分に塗布して分極性電極となす分極性電
極形成工程と、 前記集電体の前記分極性電極の外周に非電子伝導性で枠
状のガスケットを配置し、前記集電体と前記ガスケット
とを接着するガスケット装着工程と、 前記分極性電極に電解質溶液を含ませる含浸工程と、 前記ガスケットと電解質溶液含有の分極性電極とを備え
る集電体を、二つ、分極性電極どうしが非電子伝導性で
イオン透過性のセパレータを介して対面するように配置
し、ガス ケットどうしを接着する合体工程とを備え、前
記空孔形成材に、ポリ−4−ビニルピリジン、ポリ−3
−ビニルピリジン又はポリ−2−ビニルピリジンから選
ばれた少なくとも一種以上の粒子を用いることを特徴と
する 電気二重層コンデンサの製造方法。
5. Polarization in which an activated carbon powder contains an electrolyte solution
It is a method of manufacturing an electric double layer capacitor using a conductive electrode.
And at least activated carbon powder and a soluble polymer in the electrolyte solution.
For forming pores composed of particles of a polymer or a copolymer, and a binder
Electrode material for forming a paste-like polarizable electrode material containing
One of the forming step and the above-mentioned polarizable electrode material is an electronically conductive flat plate current collector.
A polarizable electrode formed by applying it to a predetermined part of the surface of the
A step of forming a pole and a non-electroconductive frame around the polarizable electrode of the current collector.
-Shaped gasket is arranged, and the current collector and the gasket are arranged.
A step of attaching a gasket for adhering to each other, an impregnation step of allowing the polarizable electrode to contain an electrolyte solution, and a polarizable electrode containing the gasket and the electrolyte solution.
Two current collectors that have polarizable electrodes
Arranged to face each other through an ion-permeable separator
And, and a coalescing step of bonding the gasket to each other, before
For the pore forming material, poly-4-vinylpyridine, poly-3
-Selected from vinyl pyridine or poly-2-vinyl pyridine
Characterized by using at least one type of particles
Method of manufacturing the electric double layer capacitor to be.
【請求項6】 活性炭粉末に電解質溶液を含ませた分極
性電極を用いる電気二重層コンデンサの製造方法であっ
て、 少なくとも活性炭粉末と、前記電解質溶液に可溶な重合
体又は共重合体の粒子からなる空孔形成材と、バインダ
ーとを含むペースト状の分極性電極材を形成する電極材
形成工程と、 電子伝導性で平板状の集電体に非電子伝導性で枠状のガ
スケットを接着するガスケット装着工程と、 前記分極性電極材を、前記ガスケット装着工程終了後の
集電体とガスケットとで形成される空間内に充填して分
極性電極となす分極性電極形成工程と、 前記分極性電極に電解質溶液を含ませる含浸工程と、 前記ガスケットと電解質溶液含有の分極性電極とを備え
る集電体を、二つ、分極性電極どうしが非電子伝導性で
イオン透過性のセパレータを介して対面するように配置
し、ガスケットどうしを接着する合体工程とを備え、前
記空孔形成材に、ポリ−4−ビニルピリジン、ポリ−3
−ビニルピリジン又はポリ−2−ビニルピリジンから選
ばれた少なくとも一種以上の粒子を用いることを特徴と
する 電気二重層コンデンサの製造方法。
6. Polarization in which an activated carbon powder contains an electrolyte solution
It is a method of manufacturing an electric double layer capacitor using a conductive electrode.
At least activated carbon powder and a soluble polymer in the electrolyte solution.
For forming pores composed of particles of a polymer or a copolymer, and a binder
Electrode material for forming a paste-like polarizable electrode material containing
In the formation process, a non-electroconductive and frame-shaped collector is attached to the electron-conductive and flat collector.
After the gasket mounting step for adhering the sket and the polarizable electrode material after the gasket mounting step is completed.
Fill the space formed by the current collector and the gasket
It comprises a polarizable electrode forming step of forming a polar electrode, an impregnating step of impregnating the polarizable electrode with an electrolyte solution, a gasket and a polarizable electrode containing the electrolyte solution.
Two current collectors that have polarizable electrodes
Arranged to face each other through an ion-permeable separator
And a process of adhering the gaskets together.
For the pore forming material, poly-4-vinylpyridine, poly-3
-Selected from vinyl pyridine or poly-2-vinyl pyridine
Characterized by using at least one type of particles
Method of manufacturing the electric double layer capacitor to be.
【請求項7】 前記電解質溶液に酸性水溶液を用いるこ
とを特徴とする、請求項3乃至6に記載の電気二重層コ
ンデンサの製造方法。
7. The method of manufacturing an electric double layer capacitor according to claim 3 , wherein an acidic aqueous solution is used as the electrolyte solution.
【請求項8】 前記空孔形成材に、求核性を有する窒素
原子を含む重合体又は共重合体の粒子を用いることを特
徴とする、請求項3乃至6に記載の電気二重層コンデン
サの製造方法。
8. The electric double layer capacitor according to claim 3 , wherein particles of a polymer or a copolymer containing a nucleophilic nitrogen atom are used as the pore forming material. Production method.
【請求項9】 前記空孔形成材に、ポリ−4−ビニルピ
リジン、ポリ−3−ビニルピリジン又はポリ−2−ビニ
ルピリジンから選ばれた少なくとも一種以上の粒子を用
いることを特徴とする、請求項3乃至4に記載の電気二
重層コンデンサの製造方法。
9. The pore-forming material comprises at least one kind of particles selected from poly-4-vinylpyridine, poly-3-vinylpyridine or poly-2-vinylpyridine. Item 5. A method for manufacturing an electric double layer capacitor according to items 3 to 4 .
【請求項10】 前記電極材形成工程では、前記分極性
電極材における空孔形成材の含有率を3wt%以上10
wt%以下にすることを特徴とする、請求項3乃至6
記載の電気二重層コンデンサの製造方法。
10. In the electrode material forming step, the content ratio of the hole forming material in the polarizable electrode material is 3 wt% or more 10
7. The method for manufacturing an electric double layer capacitor according to claim 3 , wherein the content is set to not more than wt%.
【請求項11】 前記空孔形成材の粒度を、前記活性炭
粉末より大で10μm未満とすることを特徴とする、請
求項3乃至10のいずれかに記載の電気二重層コンデン
サの製造方法。
The particle size of 11. The pore-forming agent, characterized by less than 10μm by greater than said activated carbon powder, a manufacturing method of an electric double layer capacitor according to any one of claims 3 to 10.
JP2000002559A 2000-01-11 2000-01-11 Electric double layer capacitor, manufacturing method thereof, and polarizable electrode material Expired - Fee Related JP3521386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000002559A JP3521386B2 (en) 2000-01-11 2000-01-11 Electric double layer capacitor, manufacturing method thereof, and polarizable electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000002559A JP3521386B2 (en) 2000-01-11 2000-01-11 Electric double layer capacitor, manufacturing method thereof, and polarizable electrode material

Publications (2)

Publication Number Publication Date
JP2001196276A JP2001196276A (en) 2001-07-19
JP3521386B2 true JP3521386B2 (en) 2004-04-19

Family

ID=18531654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000002559A Expired - Fee Related JP3521386B2 (en) 2000-01-11 2000-01-11 Electric double layer capacitor, manufacturing method thereof, and polarizable electrode material

Country Status (1)

Country Link
JP (1) JP3521386B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100967916B1 (en) 2008-06-05 2010-07-06 캡솔루션 주식회사 chip type electric double layer capacitor and making method therefor
WO2018122851A2 (en) 2016-12-29 2018-07-05 POCell Tech Ltd. Processes and systems for supercapacitor stack fabrication

Also Published As

Publication number Publication date
JP2001196276A (en) 2001-07-19

Similar Documents

Publication Publication Date Title
US6773468B2 (en) Method of making electrochemical capacitor using a printable composition
US5150283A (en) Electric double layer capacitor and method for producing the same
EP2715753B1 (en) Conductive polymer dispersions for solid electrolytic capacitors
EP1314174B1 (en) Electrochemical double layer capacitor having carbon powder electrodes
KR101287435B1 (en) Electric double layer capacitor
US7623339B2 (en) Electrochemical device
CA2735432A1 (en) High voltage edlc cell and method for the manufacture thereof
KR20020065355A (en) Electric double layer capacitor with improved activated carbon electrodes
JP3521386B2 (en) Electric double layer capacitor, manufacturing method thereof, and polarizable electrode material
JPS62200715A (en) Electric double-layer capacitor
JP3466117B2 (en) Electric double layer capacitor, basic cell thereof, and method of manufacturing basic cell
KR100334240B1 (en) Electric energy storage device and method for manufacturing the same
JP2000286165A (en) Electric double-layer capacitor and manufacture thereof
KR101105715B1 (en) An electrode for electric double layer capacitor and method of manufacturing an electrode
KR20180110335A (en) Composite for ultracapacitor electrode, manufacturing method of ultracapacitor electrode using the composite, and ultracapacitor manufactured by the method
JP3132523B2 (en) Electrode material and method of manufacturing electric double layer capacitor having the same
KR100750996B1 (en) Electric double layer capacitor, polarizable electrode for electric double layer capacitor and method for manufacturing the same
JP2507125B2 (en) Electric double layer capacitor and manufacturing method thereof
JP3418431B2 (en) Electric double layer capacitor and method of manufacturing the same
JP6693863B2 (en) Electric double layer capacitor
JPH01165108A (en) Electric double layer capacitor
JP2000182903A (en) Electric double-layered capacitor and its manufacture
JPS62239513A (en) Electric double-layer capacitor
JP2000348976A (en) Electric double-layer capacitor
JPH01103818A (en) Electric double-layer capacitor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040129

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees