JP3520741B2 - Galvannealed steel sheet with excellent plating adhesion - Google Patents

Galvannealed steel sheet with excellent plating adhesion

Info

Publication number
JP3520741B2
JP3520741B2 JP30260097A JP30260097A JP3520741B2 JP 3520741 B2 JP3520741 B2 JP 3520741B2 JP 30260097 A JP30260097 A JP 30260097A JP 30260097 A JP30260097 A JP 30260097A JP 3520741 B2 JP3520741 B2 JP 3520741B2
Authority
JP
Japan
Prior art keywords
steel sheet
base steel
plating
grain size
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30260097A
Other languages
Japanese (ja)
Other versions
JPH11140587A (en
Inventor
洋一 飛山
一章 京野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP30260097A priority Critical patent/JP3520741B2/en
Publication of JPH11140587A publication Critical patent/JPH11140587A/en
Application granted granted Critical
Publication of JP3520741B2 publication Critical patent/JP3520741B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、自動車用防錆鋼板
として多用されている合金化溶融亜鉛めっき鋼板および
その製造方法に関し、特に、めっき密着性に優れた合金
化溶融亜鉛めっき鋼板に関するものである。 【0002】 【従来の技術】現在、自動車用防錆鋼板としてその優れ
た犠牲防食能から亜鉛系の溶融めっき鋼板、電気めっき
鋼板が開発、実用化されている。なかでも、合金化溶融
亜鉛めっき鋼板は製造コストが低廉でかつ高耐食性を有
することから、亜鉛めっき鋼板のうち特に実車に多用さ
れている。 【0003】しかし、合金化溶融亜鉛めっき鋼板は、溶
融亜鉛めっきした後、通常500 ℃近傍の温度域で合金化
処理を施し地鉄(:素地鋼板)とめっき層である亜鉛と
の相互拡散によりZn-Fe の金属間化合物を生成させると
いう方法によって製造するため、電気系の亜鉛めっき鋼
板に比較して、めっき層と素地鋼板との密着性に劣ると
いう問題を有している。 【0004】溶融亜鉛めっき鋼板、合金化溶融亜鉛めっ
き鋼板の場合、上記した問題点の改善策として、めっき
浴中に適当量のAlを添加することによりめっき密着性を
改善する方法が以前から知られており、現在工程的に生
産されている亜鉛系溶融めっき鋼板はAl含有亜鉛浴にて
めっきが施されている。しかしながら、上記方法のみで
は自動車用鋼板として要求されているめっき層の密着性
を常に確保するには不十分であり、合金化溶融亜鉛めっ
き鋼板の場合、例えば合金化温度の適正化などによって
良好なめっき密着性を確保しようとする技術が開示され
ている。 【0005】また、合金化溶融亜鉛めっき鋼板の場合、
既往の研究から、めっき層の密着性とめっきの相構造と
の間には密接な関係があり、めっき層/地鉄界面に形成
される鉄含有率の高い金属間化合物Γ相の存在が多くな
ると密着性が劣化することが示されている。これに対し
て、先にも述べたように、合金化溶融亜鉛めっき鋼板の
めっき層は、亜鉛めっき層と素地鋼板との相互拡散によ
り形成されるものであるから、通常の方法では、めっき
浴にAlが存在していてもめっき層/素地鋼板(地鉄)界
面に不可避的にΓ相が生成してしまう。 【0006】すなわち、先に述べた浴中Al濃度の管理や
合金化温度の適正化によって、ある程度までΓ相生成の
抑制は可能であるものの、その生成を完全に抑制するこ
とはできず、製品性能であるめっき密着性も相対的には
良好であっても十分な水準に到達したとは言いがたい。 【0007】 【発明が解決しようとする課題】本発明は、前記した従
来技術の問題点を解決し、めっき密着性に優れた合金化
溶融亜鉛めっき鋼板を提供することを目的とする。 【0008】 【課題を解決するための手段】本発明は、鋼板の少なく
とも片面に合金化溶融亜鉛めっき層を有し、 該めっき層
直下の素地鋼板表層の平均フェライト結晶粒径d1 と素
地鋼板板厚中心部の平均フェライト結晶粒径d2 との比
〔:d1 /d2 〕が下記式(1) を満足し、前記素地鋼板
表層の平均フェライト結晶粒径d 1 が13μm以上であ
ことを特徴とするめっき密着性に優れた合金化溶融亜鉛
めっき鋼板である。 【0009】d1 /d2 <0.8 ………(1) 【0010】 【発明の実施の形態】以下、本発明をさらに詳細に説明
する。本発明者らは、前記した点に鑑み、合金化溶融亜
鉛めっき鋼板の性状について研究した結果、合金化溶融
亜鉛めっき鋼板製造工程のうち素材鋼板を焼鈍する前
に、鋼板表面に歪みを付与することで、合金化後のめっ
き層直下の素地鋼板表層の結晶粒径を素地鋼板板厚中心
部の結晶粒径より小さくすることによって、母材(素地
鋼板)の機械的性質を損なうことなくめっき層の密着性
を飛躍的に向上させることが可能であることを見いだし
た。 【0011】前記したように、本発明は、めっき層直下
の素地鋼板表層の平均フェライト結晶粒径(以下素地鋼
板表層の結晶粒径とも記す)d1 と素地鋼板の板厚中心
部の平均フェライト結晶粒径(以下素地鋼板板厚中心部
の結晶粒径とも記す)d2 との比〔:d1 /d2 〕が下
記式(1) を満足し、素地鋼板表層の平均フェライト結晶
粒径d 1 が13μm以上であるめっき密着性に著しく優れ
た合金化溶融亜鉛めっき鋼板を提供するものである。 【0012】d1 /d2 <0.8 ………(1) めっき層直下の素地鋼板表層の結晶粒径を制御すること
によってめっき密着性が向上する理由は、下記のとおり
である。先ず、前記したように、合金化溶融亜鉛めっき
の密着性は、めっき層と素地鋼板との界面のめっき相構
造に大きく影響され、界面に生成されるΓ相が多くなる
とめっき密着性は劣化する。 【0013】このΓ相の生成と合金化条件とは密接な関
係があり、合金化温度を一定温度以下に制御することで
良好なめっき密着性が確保される。通常、例えば素地鋼
板が極低炭素軟鋼の場合、合金化溶融亜鉛めっき鋼板
は、合金化温度が500 ℃近傍の温度域で生産されること
が多いが、一般に合金化温度はライン速度と合金化炉の
炉長で決定してしまい、生産性を上げようとすると合金
化温度を上げなくてはならず、結果的にめっき密着性が
劣化してしまうという問題がある。 【0014】また、素地鋼板がSi,Mn,P などを多く含有
する高張力鋼板の場合、当該鋼中成分は合金化を遅延す
る作用を有するため、一定の生産性を確保するためには
さらに一層合金化温度を上げなくてはならず、前記した
と同様の理由でめっき密着性はさらに劣化してしまう。
従って、合金化速度を何らかの方法で上げることが可能
になれば上記問題は解決される。 【0015】溶融亜鉛めっき鋼板のめっき層の合金化過
程において、一般に合金化溶融亜鉛めっき層はめっき層
の亜鉛と素地鋼板との相互熱拡散によって生成され、全
体の合金化速度は素地鋼板からの鉄の拡散に大きく支配
される。通常の合金化溶融亜鉛めっき鋼板の製造条件に
おいては、素地鋼板結晶粒界からの鉄の拡散が支配的で
あり、従って亜鉛と接する粒界が多いほど合金化速度は
速くなる。 【0016】従って、めっき直前の素地鋼板表面の結晶
粒径が小さいほど合金化促進という観点からは有利にな
り、生産性を落とさずに比較的低い温度で合金化が可能
となり、結果的にΓ相の少ない密着性の良好なめっき層
を得ることが可能となる。さらに、めっき密着性は界面
の相構造だけでなく界面の形状にも影響され、界面の凹
凸が多いほど密着性には有利である。 【0017】本発明で開示するめっき層直下の素地鋼板
表層の結晶粒径を小さく規定した鋼板は、界面の凹凸も
通常の鋼板に比較して多くなり、いわゆる投錨効果が発
現しめっき密着性を格段に向上させることができる。以
上述べたように、本発明は、素地鋼板表面の結晶粒径を
小さくすることにより、合金化を促進させることでめっ
き層の界面構造を密着性に有利なΓ相の少ないものと
し、さらに投錨効果によりめっき密着性を著しく良好に
するものである。 【0018】しかしながら、通常、鋼板のフェライト結
晶粒径は熱処理条件、圧下率、鋼中成分などによって決
まるものであり、またこれらの条件は素材が要求される
機械的特性によって必然的に決定される。言い換えれ
ば、合金化溶融亜鉛めっき鋼板のめっき密着性のみ向上
させるために結晶粒径を小さくすると、要求される鋼板
の機械的特性を満足させることができなくなる。 【0019】本発明者らは上記問題点を解決するために
鋭意検討した結果、合金化促進に寄与するのは鋼板表
面、厳密に言うと合金化溶融亜鉛めっき層直下の素地鋼
板表層の結晶粒までであり、この領域の結晶粒径を制御
することにより素材の機械的性質を変化させずにめっき
密着性を向上させることが可能であることを見いだし
た。 【0020】定量的には、めっき層直下の素地鋼板表層
の結晶粒径d1 と素地鋼板板厚中心部の結晶粒径d2
の比〔:d1 /d2 〕をd1 /d2 <0.8 とすることに
よって、素地鋼板の機械的特性を損なうことなくめっき
密着性に優れた合金化溶融亜鉛めっき鋼板を提供するこ
とができる。本発明において前記した両者の比によって
規定した理由は、下記の通りである。 【0021】前記したように、素地鋼板板厚中心部の結
晶粒径は素材に要求される機械的特性から決定されるの
で、素地鋼板によっては良好な伸び、深絞り性を発現さ
せるために大きな結晶粒径を有する素材もあり、単純に
結晶粒径を一定値以下に規定する場合、素材の機械的特
性および素材の合金化促進の両立の観点から意味がな
い。 【0022】合金化溶融亜鉛めっき鋼板のめっき層直下
の素地鋼板表層の結晶粒径d1 と素地鋼板板厚中心部の
結晶粒径d2 との比〔:d1 /d2 〕をd1 /d2 <0.
8 とした本発明の合金化溶融亜鉛めっき鋼板は、連続溶
融亜鉛めっき設備(CGL) で行われる再結晶焼鈍前に、素
地鋼板表面に局部的に歪みを付与することにより実現可
能となる。 【0023】すなわち、素地鋼板の表層のみに付与され
た歪みによって、再結晶焼鈍時に、素地鋼板の表層の結
晶粒径が素地鋼板板厚中心部の結晶粒径より細かくな
り、前記した理由で合金化促進効果が発現する。素地鋼
板の表層に歪みを与える具体的方法としては、冷延鋼板
を素材とする合金化溶融亜鉛めっき鋼板であれば、冷延
後、めっき前、すなわち焼鈍前に鋼板表面を研削する方
法が例示される。 【0024】本発明で必要とする鋼板性状とするために
は、鋼板を、表層から、好ましくは1 〜100g/m2 、より
好ましくは1〜10g/m2研削することによって、その後の
焼鈍過程で、前記したような表層が中心部より細かい結
晶粒を有する合金化溶融亜鉛めっき鋼板を製造すること
ができる。この場合、研削方法は特に限定するものでな
く、研削手段としてはスコッチブライト、セラミックロ
ールなどによる研削が可能である。 【0025】また、素地鋼板が冷延鋼板の場合、研削以
外に冷間圧延時のロールの表面粗さを粗くするような方
法によって素地鋼板表面に局部的に歪みを導入すること
が可能である。上記方法によって鋼板表面に歪みが導入
された鋼板は、連続溶融亜鉛めっきラインでめっき前に
焼鈍されるが、本発明においては焼鈍時の雰囲気の露点
は−10℃以下、より望ましくは−20℃以下であることが
必要である。 【0026】この理由は、ラジアントチューブによる加
熱炉を有する連続溶融亜鉛めっきラインにおいては、通
常、水素を数%含有する還元ガス中で焼鈍されるが、露
点が−10℃を超えると、鋼中に不可避的に存在するか、
または合金元素として意図的に添加しているPが鋼板表
面に濃化し、合金化速度を著しく遅延させることになる
ためである。 【0027】上記した方法によって素地鋼板表層に歪み
を導入し、めっき前の焼鈍により素地鋼板表層の結晶粒
を微細化した後の合金化溶融亜鉛めっきの方法は、以下
のとおりである。まず、溶融めっき時のめっき浴のAl濃
度は、これを浴中の総Al濃度から総鉄濃度を引いた値と
定義した場合、この濃度で0.06〜0.15wt%であることが
必要である。 【0028】浴中Al濃度を上記のように規定したのは、
Al濃度が0.06wt%未満では他条件をいかに限定しても合
金化後の鋼板/めっき界面にはΓ相が多量に生成してし
まい、十分な密着性が確保できないためである。また、
Al濃度の上限を規定した理由は、Al濃度が0.15wt%を超
えてしまうと合金化速度が著しく遅くなり、鋼板の結晶
粒径を制御して合金化速度を促進させることにより密着
性を向上させるという本来の目的には合わなくなってし
まうからである。 【0029】溶融めっき後の合金化条件に関しては、め
っき相構造の観点から合金化温度は可及的に低温である
ことが望ましく、まためっき層中の鉄含有率もη相が残
存しない範囲で低い方が望ましい。すなわち、合金化温
度としては、520 ℃以下、より好ましくは490 ℃以下、
めっき層中の鉄含有率は11wt%以下、より好ましくは10
wt%以下、7wt%以上が目標値として与えられる。 【0030】本発明では素地鋼板の対象としては主に冷
延鋼板としているが、鋼板組成は特にこれを限定するも
のではない。具体的には、近年合金化溶融亜鉛めっき鋼
板の素材として多用されており優れた機械的特性、特に
延び、深絞り性を有するTi系、Nb系、Ti-Nb 系極低炭素
鋼板をはじめ、低炭素鋼板、さらにこれらに合金元素と
してMn,Si,P などの元素を添加した高張力鋼板などを挙
げることができる。 【0031】また、本発明の合金化溶融亜鉛めっき鋼板
においては、前記したように、合金化溶融亜鉛めっき鋼
板のめっき層直下の素地鋼板表層の平均フェライト結晶
粒径d1 と素地鋼板板厚中心部の平均フェライト結晶粒
径d2 との比〔:d1 /d2〕がd1 /d2 <0.8 を満
足すればよいが、さらには、当該比率〔:d1 /d2
がd1 /d2 ≧0.1 を満足することが、より好ましい。 【0032】これは、d1 /d2 <0.1 の場合、合金化
速度が異常に促進され、溶融亜鉛めっき時にも合金化が
生じ、溶融亜鉛めっき時に合金層が厚く成長してしま
い、一般的に行われているガスワイピングノズルによる
めっき付着量の制御が困難になるためである。また、本
発明の合金化溶融亜鉛めっき鋼板のめっき付着量は特に
制限するものではないが、めっき付着量=10〜100g/m2
であることが、より好ましい。 【0033】これは、めっき付着量が10g/m2未満の場
合、耐食性が低下し、逆に100g/m2 超えの場合、耐食性
の向上効果が実用的に飽和し経済的でないためである。 【0034】 【実施例】以下、本発明を実施例に基づき具体的に説明
する。表1に示す組成の板厚:0.7mm の冷延鋼板の表面
に、実験室的にスコッチブライトによる研削を施した
(実施例1〜、比較例1〜3)。研削時の重量法によ
り求めた研削量を表2に示す。 【0035】研削を施した鋼板(実施例1〜、比較例
1〜3)および末研削で素地鋼板表面に歪を付与しない
冷延鋼板(比較例4〜6)を素材として、実験室で堅型
溶融めっき装置を用い、アルカリ電解脱脂、塩酸酸洗に
引き続き下記の条件で焼鈍、溶融亜鉛めっきを行った。 (焼鈍条件:) 雰囲気ガス;組成:5vol%H2−N2、露点:−40℃ 昇温速度 ;10℃/sec 焼鈍温度 ;800 〜850 ℃ 焼鈍時間 ;20sec 冷却速度 ;10℃/sec (溶融亜鉛めっき条件:) めっき浴組成; Al:0.14wt%、Fe:0.04wt %、Pb:0.008
wt%、残:Zn 浴温 ; 475℃ 侵入板温 ; 475℃ 侵漬時間 ; 1sec めっき付着量; 50g/m2 以上の方法で製造した溶融亜鉛めっき鋼板を、直接通電
加熱炉にて大気雰囲気中で昇温し、表2に示す合金化温
度で合金化処理を行った後、窒素ガスを吹き付けること
により冷却し、合金化溶融亜鉛めっき鋼板を作製した。 【0036】上記のようにして得られた合金化溶融亜鉛
めっき鋼板(:GA)のめっき層をインヒビター入りの
塩酸に溶解させ、溶解液をICP発光分析によって分析
し、めっき付着量、めっき層の鉄含有率を求めた。得ら
れためっき付着量、めっき層の鉄含有率を、表2に示
す。また、合金化溶融亜鉛めっき鋼板の結晶粒径を、下
記方法に従って測定した。 【0037】先ず、合金化溶融亜鉛めっき鋼板(:G
A)のめっき層をインヒビター入りの塩酸で溶解除去
し、その後、素地鋼板の組織が観察できるように鋼板表
面を研磨厚み約5μm で研磨し、ナイタール腐食後、組
織写真を撮影した。得られた組織写真から、素地鋼板の
圧延方向の任意の線分LL およびこれに直交する線分L
C によってそれぞれ切り取られる結晶粒の数をそれぞれ
nL ,nCとし、フェライト結晶粒径dL、dCをdL
=LL /nL ,dC=LC /nC によって求め、両者の
平均を求めd11とし、視野を10回変えて同様の方法で求
めたそれぞれの値を平均し、素地鋼板表層の平均フェラ
イト結晶粒径d1 を求めた。 【0038】なお、線分の長さの選択は、線分中の結晶
の数が少なくとも20個以上になるようにその長さを決め
た。また、素地鋼板の板厚方向の中心部の結晶粒径に関
しては、素地鋼板の板厚が半分になるまで片側研磨し、
研磨面に関して上記と全く同様の方法で素地鋼板板厚中
心部の平均フェライト結晶粒径d2 を求めた。 【0039】このようにして求めたd1 、d2 および両
者の比d1 /d2 を表2に示す。さらに、めっき層の性
能試験として、合金化溶融亜鉛めっき鋼板の試験片につ
いて、下記に示すパウダリング性試験を行い、蛍光X線
分析にて測定したZnのカウント数(CPS) を、めっき剥離
量の指標であるパウダリング指数とした。得られたZnの
カウント数(CPS) であるパウダリング指数を表2に示
す。 【0040】<パウダリング性試験:> 試験片サイズ;幅40mm×長さ100mm 90度曲げもどし→テープ剥離→テープ剥離面を蛍光X線
分析 表2に示すように、本発明によれば、焼鈍前の素地鋼板
表面に歪みを付与し、合金化溶融亜鉛めっき層直下の素
地鋼板表層の平均フェライト結晶粒径d1 と、素地鋼板
板厚中心部の平均フェライト結晶粒径d2 との比〔:d
1 /d2 〕を、d1 /d2 <0.8 とし、かつ素地鋼板表
層の平均フェライト結晶粒径d 1 が13μm以上とするこ
とによって、合金化溶融亜鉛めっき鋼板のめっき密着性
を飛躍的に向上することが可能となった。 【0041】 【表1】【0042】 【表2】【0043】 【発明の効果】本発明によれば、母材の機械的特性を損
なうことなく、合金化溶融亜鉛めっき鋼板のめっき密着
性を飛躍的に向上することが可能となった。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alloyed hot-dip galvanized steel sheet frequently used as a rust-preventive steel sheet for automobiles and a method for producing the same. The present invention relates to a galvannealed steel sheet. [0002] Currently, zinc-based hot-dip coated steel sheets and electroplated steel sheets have been developed and put into practical use as rust-preventive steel sheets for automobiles because of their excellent sacrificial corrosion protection ability. Among them, galvannealed steel sheets are widely used especially in actual vehicles among galvanized steel sheets because of their low production cost and high corrosion resistance. However, the galvannealed steel sheet is subjected to an alloying treatment usually at a temperature of around 500 ° C. after the hot-dip galvanization, and the mutual diffusion between the ground iron (base steel sheet) and the zinc as the plating layer is caused. Since it is produced by a method of generating an intermetallic compound of Zn-Fe, there is a problem that the adhesion between the plating layer and the base steel sheet is inferior to that of an electrical galvanized steel sheet. [0004] In the case of hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet, a method of improving plating adhesion by adding an appropriate amount of Al to a plating bath has been known as a measure for solving the above-mentioned problems. The hot-dip galvanized steel sheet currently produced in the process is plated in an Al-containing zinc bath. However, the above method alone is not always sufficient to ensure the adhesion of the plating layer required for a steel sheet for automobiles, and in the case of an alloyed hot-dip galvanized steel sheet, a good A technique for securing plating adhesion is disclosed. In the case of galvannealed steel sheets,
Previous studies have shown that there is a close relationship between the adhesion of the plating layer and the phase structure of the plating, and the presence of a high iron content intermetallic compound Γ phase formed at the plating layer / base iron interface is often present. It is shown that the adhesiveness deteriorates when it becomes. On the other hand, as described above, the plating layer of the galvannealed steel sheet is formed by mutual diffusion between the galvanized layer and the base steel sheet. Al phase is inevitably generated at the interface between the plating layer and the base steel sheet (base iron) even if Al exists in the steel. That is, by controlling the Al concentration in the bath and optimizing the alloying temperature as described above, the formation of the Γ phase can be suppressed to some extent, but the formation cannot be completely suppressed. It is hard to say that the plating adhesion, which is the performance, has reached a sufficient level even though it is relatively good. An object of the present invention is to solve the above-mentioned problems of the prior art and to provide an alloyed hot-dip galvanized steel sheet having excellent plating adhesion. [0008] The present invention SUMMARY OF] is at least one side has a galvannealed layer, the average ferrite grain size d 1 and the base steel sheet of the base steel sheet surface just under the plating layer of the steel sheet the ratio between the average ferrite grain size d 2 of the center of plate thickness [: d 1 / d 2] satisfies the following formula (1), wherein the basis steel sheet
The average ferrite grain size d 1 of the surface layer is excellent galvannealed steel sheet in a plating adhesion, characterized in der Rukoto than 13 .mu.m. D 1 / d 2 <0.8 (1) The present invention will be described in more detail below. The present inventors have studied the properties of the alloyed hot-dip galvanized steel sheet in view of the above-described points.As a result, the steel sheet surface is strained before annealing the material steel sheet in the alloyed hot-dip galvanized steel sheet manufacturing process. By making the crystal grain size of the surface layer of the base steel sheet immediately below the plating layer after alloying smaller than the crystal grain size at the center of the base steel sheet thickness, plating can be performed without impairing the mechanical properties of the base material (base steel sheet). It has been found that it is possible to dramatically improve the adhesion of the layers. As described above, the present invention provides an average ferrite grain size (hereinafter also referred to as a crystal grain size of a surface layer of a base steel sheet) d 1 of a surface layer of a base steel sheet immediately below a plating layer and an average ferrite grain diameter of a central portion of the sheet thickness of the base steel sheet. The ratio of the crystal grain size (hereinafter also referred to as the crystal grain size at the center of the thickness of the base steel sheet) d 2 [: d 1 / d 2 ] satisfies the following formula (1), and the average ferrite crystal in the surface layer of the base steel sheet
In which the particle diameter d 1 to provide a significantly better galvannealed steel sheet or der Rumekki adhesion 13 .mu.m. D 1 / d 2 <0.8 (1) The reason why the plating adhesion is improved by controlling the crystal grain size of the surface layer of the base steel sheet immediately below the plating layer is as follows. First, as described above, the adhesion of the alloyed hot-dip galvanized coating is greatly affected by the plating phase structure at the interface between the plating layer and the base steel sheet, and the plating adhesion is degraded when the Γ phase generated at the interface increases. . There is a close relationship between the formation of the Γ phase and the alloying conditions, and by controlling the alloying temperature to a certain temperature or less, good plating adhesion is ensured. Usually, for example, when the base steel sheet is an ultra-low carbon mild steel, an alloyed hot-dip galvanized steel sheet is often produced in an alloying temperature range of around 500 ° C, but generally, the alloying temperature depends on the line speed and the alloying temperature. It is determined by the furnace length of the furnace, and in order to increase the productivity, the alloying temperature must be increased, resulting in a problem that the plating adhesion is deteriorated. When the base steel sheet is a high-tensile steel sheet containing a large amount of Si, Mn, P, etc., the components in the steel have a function of delaying alloying. The alloying temperature must be further increased, and the plating adhesion is further deteriorated for the same reason as described above.
Therefore, if the alloying speed can be increased in any way, the above problem is solved. In the process of alloying the galvanized layer of a hot-dip galvanized steel sheet, generally, the galvannealed layer is generated by mutual thermal diffusion between the zinc of the galvanized layer and the base steel sheet, and the overall alloying speed is reduced by It is largely controlled by iron diffusion. Under normal production conditions for galvannealed steel sheets, the diffusion of iron from the crystal grain boundaries of the base steel sheet is dominant, and therefore the alloying speed increases as the number of grain boundaries in contact with zinc increases. Therefore, the smaller the crystal grain size of the surface of the base steel sheet immediately before plating is more advantageous from the viewpoint of promoting the alloying, and the alloying can be performed at a relatively low temperature without lowering the productivity. It is possible to obtain a plating layer having few phases and good adhesion. Furthermore, the plating adhesion is affected not only by the phase structure of the interface but also by the shape of the interface. The more irregularities at the interface, the more advantageous the adhesion. In the steel sheet disclosed in the present invention, in which the crystal grain size of the surface layer of the base steel sheet immediately below the plating layer is specified to be small, the unevenness of the interface is larger than that of a normal steel sheet, so that a so-called anchor effect is exhibited and the plating adhesion is improved. It can be significantly improved. As described above, the present invention reduces the crystal grain size on the surface of the base steel sheet, promotes alloying, and reduces the interface structure of the plating layer to have a small phase which is advantageous for adhesion, and further anchors the anchor. The effect is to significantly improve the plating adhesion. However, usually, the ferrite crystal grain size of a steel sheet is determined by heat treatment conditions, rolling reduction, components in steel, and the like, and these conditions are necessarily determined by the mechanical properties required of the material. . In other words, if the crystal grain size is reduced to improve only the plating adhesion of the galvannealed steel sheet, the required mechanical properties of the steel sheet cannot be satisfied. The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems. As a result, it is found that it is the surface of the steel sheet that contributes to the promotion of alloying, more specifically, the crystal grains of the surface layer of the base steel sheet immediately below the galvannealed layer. By controlling the crystal grain size in this region, it has been found that plating adhesion can be improved without changing the mechanical properties of the material. Quantitatively, the ratio [: d 1 / d 2 ] of the crystal grain size d 1 of the surface layer of the base steel sheet immediately below the plating layer to the crystal grain size d 2 at the center of the thickness of the base steel sheet is represented by d 1 / d. By setting < 2, it is possible to provide a galvannealed steel sheet having excellent plating adhesion without impairing the mechanical properties of the base steel sheet. The reason defined by the ratio of the two in the present invention is as follows. As described above, the crystal grain size at the center of the thickness of the base steel sheet is determined by the mechanical properties required for the material. Some materials have a crystal grain size. If the crystal grain size is simply defined to a certain value or less, it is meaningless from the viewpoint of achieving both mechanical properties of the material and promotion of alloying of the material. The ratio [: d 1 / d 2 ] of the crystal grain diameter d 1 of the surface layer of the base steel sheet immediately below the coating layer of the alloyed hot-dip galvanized steel sheet to the crystal grain diameter d 2 of the central part of the base steel sheet thickness is represented by d 1 / D 2 <0.
The alloyed hot-dip galvanized steel sheet of the present invention set to 8 can be realized by locally imparting strain to the surface of the base steel sheet before recrystallization annealing performed in the continuous hot-dip galvanizing equipment (CGL). That is, due to the strain imparted only to the surface layer of the base steel sheet, during recrystallization annealing, the crystal grain size of the surface layer of the base steel sheet becomes smaller than the crystal grain size at the center of the thickness of the base steel sheet. The conversion promoting effect is exhibited. As a specific method of giving a strain to the surface layer of the base steel sheet, a method of grinding the steel sheet surface after cold rolling, before plating, that is, before annealing, if a galvannealed steel sheet using a cold rolled steel sheet as a material is exemplified. Is done. [0024] To a steel sheet properties required in the present invention, a steel sheet, the surface layer, by preferably 1 to 100 g / m 2, more preferably 1 to 10 g / m 2 Grinding, subsequent annealing process Thus, an alloyed hot-dip galvanized steel sheet having a surface layer having crystal grains finer than the central portion as described above can be manufactured. In this case, the grinding method is not particularly limited, and grinding using a scotch bright, a ceramic roll, or the like is possible. When the base steel sheet is a cold-rolled steel sheet, it is possible to locally introduce distortion to the surface of the base steel sheet by a method of increasing the surface roughness of the roll during cold rolling other than grinding. . The steel sheet having the strain introduced into the steel sheet surface by the above method is annealed before plating in a continuous hot-dip galvanizing line.In the present invention, the dew point of the atmosphere at the time of annealing is −10 ° C. or less, more preferably −20 ° C. It must be: The reason is that in a continuous hot-dip galvanizing line having a heating furnace using a radiant tube, annealing is usually performed in a reducing gas containing several% of hydrogen. Inevitably exist in
Alternatively, P intentionally added as an alloy element concentrates on the surface of the steel sheet, which significantly slows down the alloying speed. The method of galvannealing after the introduction of strain into the surface layer of the base steel sheet by the above-described method and the refinement of the crystal grains of the surface layer of the base steel sheet by annealing before plating is as follows. First, when the Al concentration in the plating bath during hot-dip plating is defined as a value obtained by subtracting the total iron concentration from the total Al concentration in the bath, the concentration needs to be 0.06 to 0.15 wt%. The Al concentration in the bath is defined as described above.
If the Al concentration is less than 0.06 wt%, a large amount of Γ phase is generated at the steel sheet / plating interface after alloying, no matter how the other conditions are limited, and sufficient adhesion cannot be ensured. Also,
The reason for specifying the upper limit of the Al concentration is that if the Al concentration exceeds 0.15 wt%, the alloying speed becomes extremely slow, and the adhesion is improved by controlling the crystal grain size of the steel sheet to accelerate the alloying speed. This is because it does not meet the original purpose of making it work. Regarding the alloying conditions after hot-dip plating, it is desirable that the alloying temperature be as low as possible from the viewpoint of the plating phase structure, and that the iron content in the plating layer be within a range in which the η phase does not remain. Lower is desirable. That is, the alloying temperature is 520 ° C or less, more preferably 490 ° C or less,
The iron content in the plating layer is 11% by weight or less, more preferably 10% by weight.
wt% or less and 7 wt% or more are given as target values. In the present invention, the base steel sheet is mainly a cold-rolled steel sheet, but the composition of the steel sheet is not particularly limited. Specifically, in recent years, Ti-based, Nb-based, Ti-Nb-based ultra-low carbon steel sheets, which have been widely used as materials for galvannealed steel sheets and have excellent mechanical properties, especially Examples thereof include low-carbon steel sheets, and high-strength steel sheets to which elements such as Mn, Si, and P are added as alloying elements. Further, in the galvannealed steel sheet of the present invention, as described above, the average ferrite grain size d 1 of the surface layer of the base steel sheet immediately below the plating layer of the galvannealed steel sheet and the thickness center of the base steel sheet The ratio [: d 1 / d 2 ] to the average ferrite crystal grain size d 2 of the part may satisfy d 1 / d 2 <0.8, and furthermore, the ratio [: d 1 / d 2 ]
More preferably satisfies d 1 / d 2 ≧ 0.1. This is because when d 1 / d 2 <0.1, the alloying speed is abnormally accelerated, alloying occurs even during hot-dip galvanizing, and the alloy layer grows thicker during hot-dip galvanizing. This is because it is difficult to control the amount of plating applied by the gas wiping nozzle performed in the above. Further, the coating weight of the galvannealed steel sheet of the present invention is not particularly limited, but the coating weight = 10 to 100 g / m 2
Is more preferable. This is because when the coating weight is less than 10 g / m 2 , the corrosion resistance is lowered, and when it exceeds 100 g / m 2 , the effect of improving the corrosion resistance is practically saturated and is not economical. Hereinafter, the present invention will be described in detail with reference to examples. The surface of a cold-rolled steel sheet having a composition shown in Table 1 and having a thickness of 0.7 mm was ground in a laboratory by Scotch Bright (Examples 1 to 4 and Comparative Examples 1 to 3). Table 2 shows the grinding amount obtained by the weight method during grinding. In a laboratory, a ground steel sheet (Examples 1 to 4 and Comparative Examples 1 to 3) and a cold-rolled steel sheet (Comparative Examples 4 to 6) which do not impart distortion to the surface of the base steel sheet by final grinding are used as materials. Using a rigid hot-dip galvanizing apparatus, annealing and hot-dip galvanizing were performed under the following conditions following alkaline electrolytic degreasing and hydrochloric acid pickling. (Annealing conditions :) Atmosphere gas; composition: 5 vol% H 2 -N 2 , dew point: -40 ° C Heating rate: 10 ° C / sec Annealing temperature: 800 to 850 ° C Annealing time: 20 sec Cooling rate: 10 ° C / sec ( Hot-dip galvanizing conditions :) Plating bath composition; Al: 0.14 wt%, Fe: 0.04 wt%, Pb: 0.008
wt%, balance: Zn bath temperature; 475 ° C Penetration plate temperature; 475 ° C Immersion time: 1 sec Coating weight: 50g / m 2 or more of hot-dip galvanized steel sheet produced by direct heating furnace After the temperature was raised in the furnace and the alloying treatment was performed at the alloying temperature shown in Table 2, the alloy was cooled by blowing nitrogen gas to produce a galvannealed steel sheet. The plating layer of the galvannealed steel sheet (: GA) obtained as described above was dissolved in hydrochloric acid containing an inhibitor, and the solution was analyzed by ICP emission spectroscopy. The iron content was determined. Table 2 shows the obtained coating weight and the iron content of the plating layer. The crystal grain size of the galvannealed steel sheet was measured according to the following method. First, a galvannealed steel sheet (G
The plating layer of A) was dissolved and removed with hydrochloric acid containing an inhibitor. Thereafter, the surface of the steel sheet was polished to a polishing thickness of about 5 μm so that the structure of the base steel sheet could be observed. After the nital corrosion, a structure photograph was taken. From the obtained structure photograph, an arbitrary line segment LL in the rolling direction of the base steel sheet and a line segment L orthogonal thereto are shown.
The number of crystal grains cut by C is defined as nL and nC, respectively, and the ferrite crystal grain diameters dL and dC are defined as dL.
= LL / nL, determined by dC = LC / nC, and d 11 obtains an average of both the average of each of the values determined by the same methods by changing the field of view 10 times, the average ferrite crystal grain size of the base steel sheet surface layer It was determined d 1. The length of the line segment was selected so that the number of crystals in the line segment was at least 20 or more. In addition, regarding the crystal grain size at the center in the thickness direction of the base steel sheet, one side polishing until the thickness of the base steel sheet is reduced to half,
With respect to the polished surface, the average ferrite grain size d 2 at the center of the thickness of the base steel sheet was determined in exactly the same manner as described above. Table 1 shows d 1 and d 2 thus determined and the ratio d 1 / d 2 of both. Further, as a performance test of the plating layer, a powdering test was performed on the test piece of the alloyed hot-dip galvanized steel sheet, and the Zn count number (CPS) measured by X-ray fluorescence analysis was measured. And the powdering index. Table 2 shows the obtained powdering index, which is the count number (CPS) of Zn. <Powderability test:> Specimen size: width 40 mm × length 100 mm 90 degree bending back → tape peeling → tape peeling surface As shown in Table 2 for fluorescent X-ray analysis, according to the present invention, annealing was performed. the strain was applied before the base steel sheet surface, the ratio between the average ferrite grain size d 1 of the base steel sheet surface just under the galvannealed layer, the average ferrite grain size d 2 of the base steel sheet thickness center [ : D
1 / d 2 ] is set to d 1 / d 2 <0.8 , and
By setting the average ferrite crystal grain size d 1 of the layer to 13 μm or more, it became possible to dramatically improve the plating adhesion of the galvannealed steel sheet. [Table 1] [Table 2] According to the present invention, it has become possible to significantly improve the plating adhesion of an alloyed hot-dip galvanized steel sheet without impairing the mechanical properties of the base material.

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 301 C23C 2/02 Continuation of front page (58) Field surveyed (Int. Cl. 7 , DB name) C22C 38/00 301 C23C 2/02

Claims (1)

(57)【特許請求の範囲】 【請求項1】 鋼板の少なくとも片面に合金化溶融亜鉛
めっき層を有し、 該めっき層直下の素地鋼板表層の平均
フェライト結晶粒径d1 と素地鋼板板厚中心部の平均フ
ェライト結晶粒径d2 との比〔:d1 /d2 〕が下記式
(1) を満足し、前記素地鋼板表層の平均フェライト結晶
粒径d 1 が13μm以上であることを特徴とするめっき密
着性に優れた合金化溶融亜鉛めっき鋼板。 記 d1 /d2 <0.8 ………(1)
(57) [Claims] [Claim 1] A steel sheet has an alloyed hot-dip galvanized layer on at least one side thereof, and has an average ferrite grain size d 1 of the surface layer of the base steel sheet immediately below the coating layer and a thickness of the base steel sheet The ratio [: d 1 / d 2 ] to the average ferrite grain size d 2 at the center is expressed by the following formula:
Satisfies (1) and the average ferrite crystal of the surface layer of the base steel sheet
Excellent galvannealed steel sheet coating adhesion particle diameter d 1 is characterized by der Rukoto than 13 .mu.m. Note d 1 / d 2 <0.8 ............ (1)
JP30260097A 1997-11-05 1997-11-05 Galvannealed steel sheet with excellent plating adhesion Expired - Fee Related JP3520741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30260097A JP3520741B2 (en) 1997-11-05 1997-11-05 Galvannealed steel sheet with excellent plating adhesion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30260097A JP3520741B2 (en) 1997-11-05 1997-11-05 Galvannealed steel sheet with excellent plating adhesion

Publications (2)

Publication Number Publication Date
JPH11140587A JPH11140587A (en) 1999-05-25
JP3520741B2 true JP3520741B2 (en) 2004-04-19

Family

ID=17910938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30260097A Expired - Fee Related JP3520741B2 (en) 1997-11-05 1997-11-05 Galvannealed steel sheet with excellent plating adhesion

Country Status (1)

Country Link
JP (1) JP3520741B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10822683B2 (en) 2014-11-05 2020-11-03 Nippon Steel Corporation Hot-dip galvanized steel sheet
MX2017005507A (en) 2014-11-05 2017-06-20 Nippon Steel & Sumitomo Metal Corp Hot-dip galvanized steel sheet.
CN107109554B (en) 2014-11-05 2018-11-09 新日铁住金株式会社 hot-dip galvanized steel sheet
JP2018535313A (en) * 2015-09-30 2018-11-29 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG Flat steel product having a Zn galvanic treatment protective coating and method for producing the same
KR102345533B1 (en) 2017-07-31 2021-12-31 닛폰세이테츠 가부시키가이샤 hot dip galvanized steel
CN110914464B (en) 2017-07-31 2021-10-15 日本制铁株式会社 Hot-dip galvanized steel sheet
US11426975B2 (en) 2017-07-31 2022-08-30 Nippon Steel Corporation Hot-dip galvanized steel sheet
JP6939614B2 (en) * 2018-02-02 2021-09-22 日本製鉄株式会社 Manufacturing method of alloyed hot-dip galvanized steel sheet

Also Published As

Publication number Publication date
JPH11140587A (en) 1999-05-25

Similar Documents

Publication Publication Date Title
US8216397B2 (en) High-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having fatigue resistance, corrosion resistance, ductility and plating adhesion, after severe deformation, and a method of producing the same
US5494706A (en) Method for producing zinc coated steel sheet
JPH05331537A (en) Manufacture of galvannealed high tensile strength cold rolled steel plate excellent in corrosion resistance and formability
JP3132406B2 (en) Alloyed hot-dip galvanized steel sheet and manufacturing method thereof
JP3520741B2 (en) Galvannealed steel sheet with excellent plating adhesion
JP2825671B2 (en) Hot-dip Zn-Mg-Al-Sn plated steel sheet
JP2002309358A (en) Galvannealed steel sheet with excellent workability
EP0632141B1 (en) Surface treated steel sheet and method therefore
JP2661409B2 (en) Cold-rolled steel sheet for deep drawing, its galvanized product, and method for producing them
JPH0543982A (en) Cold rolled steel sheet for deep drawing and its production
JP3382697B2 (en) Manufacturing method of galvannealed steel sheet
JP3185530B2 (en) Surface-treated steel sheet for deep drawing excellent in corrosion resistance and method for producing the same
JP2525165B2 (en) Method for manufacturing high strength galvanized steel sheet
JP3198900B2 (en) Manufacturing method of thin galvanized steel sheet
JP3198902B2 (en) Manufacturing method of thin galvanized steel sheet
JP3400289B2 (en) Manufacturing method of galvannealed steel sheet with excellent plating adhesion
EP0632140A1 (en) Method for producing zinc coated sheet
JPH0551714A (en) Hot-dip galvanizing method for si-containing steel sheet
JP2002047547A (en) Method for producing hot dip metal coated high tensile steel sheet
JP2003251401A (en) Method for producing cold-rolled steel sheet and method for producing galvanized steel sheet
JP2638400B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP3052835B2 (en) Galvannealed steel sheet
JP3016333B2 (en) Cold drawn steel sheet for deep drawing excellent in corrosion resistance and method for producing the same
JP3159017B2 (en) Manufacturing method of thin galvanized steel sheet
JP3766655B2 (en) Method for producing high-Si high-strength galvannealed steel sheet with excellent plating adhesion and workability

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080213

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110213

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130213

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130213

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees